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Abstract 18 

Solar-induced chlorophyll fluorescence (SIF) has long been regarded as a proxy for 19 

photosynthesis and has shown superiority in estimating gross primary production (GPP) 20 

compared to traditional vegetation indices, especially in evergreen ecosystems. However, 21 

current SIF-based GPP estimations regard the canopy as a large leaf and seldom consider the 22 

impact of interactions among light, canopy structure, and leaf physiology. In this study, we 23 

proposed GPP estimation models with different descriptions of light–structure–physiology 24 

interactions (including the layered model, the two-leaf model, and the layered two-leaf model) 25 
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and compared their performances with the big-leaf model using half-hourly (or hourly) 26 

observations at evergreen needleleaf forest sites. First, we found that the big-leaf model 27 

underestimated GPP, especially at noon. All models showed higher accuracy than that of the 28 

big-leaf model. Second, we investigated the diurnal dynamics of GPP estimations in each 29 

canopy layer and found that models with a two-leaf assumption captured the diurnal variations 30 

in GPP better than that with the layered assumption. We also deduced that the poor performance 31 

of the big-leaf model was related to its overestimation of the overall light stress on the redox 32 

state of PSII reaction centers (qL). Finally, we noticed that the qL at the canopy scale had lower 33 

sensitivity to light change than the single-leaf qL and that the light response of canopy-scale qL 34 

was influenced by the leaf area index during seasonal cycles. Overall, this study describes 35 

methods to accurately estimate sub-daily GPP from SIF in evergreen needleleaf forests and 36 

demonstrates that the interactions among light, canopy structure, and leaf physiology regulate 37 

the SIF-GPP relationship at the canopy scale. Further, it indicates the need to consider the 38 

description of light distribution within the canopy in next-generation terrestrial biosphere 39 

models, even if they incorporate SIF to constrain their parameterization. Thus, upscaling the 40 

established leaf-scale mechanistic SIF-GPP relationship or findings to canopy-scale 41 

applications still requires much work, especially when there are significant changes in 42 

environmental conditions and their within-canopy distributions. 43 

Keywords: solar-induced chlorophyll fluorescence (SIF); gross primary productivity (GPP); 44 

two-leaf model; layered model; evergreen needle forests 45 

1. Introduction 46 

Photosynthesis in terrestrial ecosystems plays an important role in the global carbon cycle, 47 

offsetting approximately 30% of anthropogenic carbon dioxide (CO2) emissions over the past 48 

century (Friedlingstein et al., 2020). Compared to ocean carbon sinks, land carbon cycles are 49 

sensitive to climate change and are highly unstable (Ciais et al., 2005; Friedlingstein et al., 2020; 50 

Luijkx et al., 2015; Maia et al., 2020), making them a crucial but largely uncertain part of global 51 

change studies. As one of the largest fluxes in the terrestrial carbon cycle (Wang et al., 2022b), 52 
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gross primary production (GPP) indicates the CO2-assimilation ability of vegetation and is the 53 

foundation of many ecosystem functions and services (for example, providing food and fiber, 54 

altering local climate, and regulating the land–air interaction process) (Migliavacca et al., 2021; 55 

Ryu et al., 2019; Xiao et al., 2019). However, substantial difficulties and uncertainties in GPP 56 

quantification at a large scale remain despite decades of research (Ryu et al., 2019).  57 

Before the emergence of state-of-art solar-induced chlorophyll fluorescence (SIF) techniques, 58 

ground GPP data were mainly obtained from in situ measurements of eddy covariance flux 59 

towers with limited spatial representativeness, and global GPP products were either model-60 

based estimates, including light use efficiency models and process models, such as VPM 61 

(Zhang et al., 2017) and BEPS (Chen et al., 1999), or upscaled values from flux tower 62 

observations (for example, FLUXCOM) (Jung et al., 2019). These traditional GPP 63 

measurements and products are either not ideal for supporting the analyses on large 64 

spatiotemporal scales due to significant regional bias or are based on multiple large 65 

simplifications and assumptions (Anav et al., 2015; Wang et al., 2022a), leading to large 66 

uncertainties and divergence in their long-term trends (Cai et al., 2014; Wang et al., 2022a; 67 

Zheng et al., 2020). Remote-sensing methods based on vegetation indices (VIs) could partly 68 

capture the dynamics of photosynthesis and assist in the estimation of GPP, buthe effectiveness 69 

of VIs-based methods is mainly related to their representativeness of vegetation greenness (Li 70 

and Xiao, 2020), indicating that they might lose their power in ecosystems with an almost 71 

invariant canopy structure (such as evergreen forests) (Magney et al., 2019). The rapid 72 

development of SIF measurement and retrieval methods has facilitated the monitoring of 73 

photosynthetic dynamics on a large scale (Guanter et al. 2021; Joiner et al. 2011, 2016; 74 

Mohammed et al. 2019; Schimel et al. 2015; Sun et al. 2017; Du et al., 2022), although some 75 

limitations still exist, such as the sparse sampling or coarse spatial resolution of current satellite-76 

based SIF products. SIF is the electromagnetic signal emitted by chlorophyll molecules after 77 

absorbing solar radiation, and. Together with non-photochemical quenching (NPQ) and 78 

photochemical reactions, SIF consumes it competes with photochemical reactions and non-79 

photochemical quenching (NPQ) for  the total absorbed light inside plants. Therefore, SIF 80 

contains information on physiology that can be detected using remote sensors (Porcar-Castell 81 
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et al., 2014). Numerous studies have demonstrated the tight link between SIF and GPP, although 82 

studies also show the decoupling of SIF and GPP during mild stress events (Helm et al., 2020; 83 

Marrs et al., 2020) and changes in their relationship at different spatiotemporal scales (Magney 84 

et al., 2020). Further, SIF is employed as a proxy for photosynthesis in many agricultural, 85 

ecological, and Earth system studies (Sun et al., 2015; Wang et al., 2020; Y. Zhang et al., 2020). 86 

Several studies have directly used the empirical relationship to estimate GPP via SIF 87 

observations, even though this relationship has been proven to be biome-specific (Damm et al., 88 

2015; Liu et al., 2017).  89 

Despite the widespread use of SIF as a proxy for GPP, discrepancies between them remain. 90 

Following the framework of Monteith’s light use efficiency model (Monteith, 1972), Although 91 

both SIF and GPP are largely driven by absorbed photosynthetic active radiation (APAR), 92 

which largely explains their strong correlation at the canopy scale (Du et al., 2017; Miao et al., 93 

2018)., discrepancies between them remain.  However, GPP is also influenced by light use 94 

efficiency (LUE), and canopy SIF is regulated by fluorescence quantum efficiency (ΦF) and 95 

escape probability (fesc). TThe possible discrepancy between LUE and ΦF×fesc is one of the 96 

essential explanations for the dynamic relationship or decoupling between SIF and GPP. At the 97 

leaf scale, The physiological dynamics in the  both ΦF and -LUE relationshipcarry 98 

physiological information (Porcar-Castell et al., 2014), and the dynamics in their relationship 99 

theoretically influence the SIF-GPP relationship. , and theFor far-red SIF, a positive correlation 100 

between LUE and fesc (for far-red SIF) is found at the seasonal scale,  also strengthening 101 

strengthens the link between SIF and GPP (Liu et al., 2020). These mechanisms result in the 102 

coupling of SIF and GPP as a mixture of canopy structure interference and physiological 103 

processes. Previous studies have provided us with the opportunity to obtain the total SIF at the 104 

photosystem scale (Liu et al., 2019; Liu et al., 2020; Yang et al., 2020; Zeng et al., 2019), with 105 

which we can decompose the contribution of the canopy structure and reduce the uncertainty 106 

in SIF-GPP relationships (Zhang et al., 2019). However, rRecent studies have shown 107 

thatdemonstrated the variant the physiological linkage between SIF and GPP is also variant 108 

(Magney et al., 2020). Further, which, this relationship can be influenced by the environment 109 

and the status of the plant (for example, stress conditions and development stages) (Chen et al., 110 



5 

 

2022b, 2022a; Kim et al., 2021; Paul-Limoges et al., 2018; Zhuang et al., 2020). Even for 111 

evergreen needleleaf forests (ENF) with little variation in fesc during seasonal cycles, the SIF 112 

does not change in perfect agreement with GPP and shows lower sensitivity to environmental 113 

changes (Pierrat et al., 2022b; Yang et al., 2022). 114 

Therefore, accurate estimation of GPP using SIF also requires the construction of a mechanistic 115 

model with the help of physiological findings. The mechanistic light response (MLR) model 116 

proposed by Gu (2019) is a model that helps us to understand the association and inconsistency 117 

of the physiological information in SIF and GPP. It links the quantitative SIF-GPP relationship 118 

to active fluorescence parameters with specific physiological meanings, such as qL (the fraction 119 

of opened PSII reaction centers) and ΦPSIImax (the maximum photochemical quantum yield of 120 

PSII), thus allowing the combination of passive and active fluorescence measurements to 121 

directly estimate GPP. In this model, qL is a key parameter influenced by the actual illumination 122 

condition of leaves; thus, the dynamics of qL are crucial to SIF-based GPP estimations during 123 

in diurnal cycles. The effectiveness of the MLR model has already been demonstrated by a 124 

previous leaf-scale study (Han et al., 2022b) but has not been extensively tested at the canopy 125 

scale or long time scales. 126 

Although oOne study has attempted to directly estimate GPP from canopy SIF in a winter-127 

wheat field (Liu et al., 2022), but it is based on uses the big-leaf assumption of canopy structure. 128 

The big-leaf assumption regards vegetation as a large flat leaf and assumes the same leaf 129 

property and the same direct and diffuse radiation conditions in the canopy (Guan et al., 2022; 130 

McCallum et al., 2013; Sellers et al., 1992). Therefore, GPP estimations using this method 131 

neglect the possible impact of the light distribution (caused by the three-dimensional structure) 132 

within the canopy. This big-leaf assumption is acceptable for crops with a simple structure and 133 

low height (anthropogenic ecosystems), as indicated by the model’s success in direct SIF-based 134 

estimation in Liu’s study (2022), but it may be unsuitable for natural ecosystems with complex 135 

canopy structures. This The big-leaf assumption does not introduce cause much uncertainty to 136 

GPP estimation at the seasonal scale (Chen et al., 1999), but is unsuitable for the half-hourly 137 

estimation of GPP in forests (Chen et al., 1999). During daily cycles, the diurnal variation in 138 

light leads to a nonlinear relationship between fluorescence and photosynthesis due to their 139 
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different light responses (Liu et al., 2021; Maguire et al., 2020). In addition, dDiurnal changes 140 

in incident light interplay with the canopy structure, leading to a dynamic vertical gradient 141 

(redistribution) of light within the canopy. This interaction changes the actual light environment 142 

faced by each leaf, thereby causing vertical variations in the biophysical status of leaves and 143 

influencing the diurnal patterns of SIF and GPP (Chang et al., 2021).. Therefore, it is necessary 144 

to consider the dynamic light and its interaction with the canopy structure and leaf physiology 145 

along the vertical dimension when using canopy SIF observations to estimate the half-hourly 146 

GPP in forest ecosystems. Recently, some studies using the LUE framework considered the 147 

impact of vertical light gradient on LUE and improved the GPP estimation(Guan et al., 2022, 148 

2021), but there are no study directly considering the impact of vertical light gradient on SIF-149 

GPP relationship to improve SIF-based GPP estimation at sub-daily scales. 150 

Previous leaf-scale observations at two ENF sites have demonstrated that knowledge of sub-151 

canopy and diurnal patterns of irradiance can assist in the investigation of physiological 152 

constraints on fluorescence (Maguire et al., 2020), but there have been few canopy-scale studies 153 

accounting for this issue. Recently, an observational study investigated the contributions of 154 

understory and midstory SIF to the total SIF, and it showed the different relationships between 155 

GPP and SIF in different layers (Morozumi et al., 2023). In addition, total emitted SIF was 156 

found to outperform top-of-canopy SIF in GPP estimation in many observational studies (X. 157 

Liu et al., 2020; Lu et al., 2020; Z. Zhang et al., 2020), which indicate the importance of 158 

considering vertical variations within the canopy. There was also a study combining 159 

hyperspectral observations at different canopy layers with SCOPE modeling to estimate the 160 

total SIF in a subtropical evergreen forest. The results of that study showed that using the 161 

layered SIF benefits GPP estimation (Zhu et al., 2023).  In additionThese studies highlight the 162 

importance of considering canopy vertical heterogeneity in the interpretation and application 163 

of SIF (Chang et al., 2021). 164 

The vertical distribution of light plays an important role in the canopy’s vertical heterogeneity. 165 

It should be considered in SIF-based GPP estimation since it impacts both the source energy 166 

for photosynthesis and the photosynthetic response of spectral fluorescence (Rajewicz et al., 167 

2023). Dividing the canopy into several layers and estimating the GPP for each layer separately 168 
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may be a solution that can be used to consider the vertical distribution of light, but does not 169 

consider the situation in which there may be two types of leaves irradiated by direct light or 170 

scattered light at the same depth in the canopy. At midday in summerUnder high light 171 

conditions, leaves exposed to direct light are likely to be light-saturated or even photoinhibited, 172 

whereas leaves exposed to scattered light can still photosynthesize efficiently. Therefore, 173 

differentiating sunlit and shaded leaves can improve the SIF-based GPP estimation (Zhang et 174 

al., 2023). Being widely used in terrestrial biosphere models, the two-leaf model simply divides 175 

the leaves into shaded and sunlit leaves and describes the different light environments faced by 176 

them (Chen et al., 1999; Guan et al., 2022; He et al., 2013). Thus, this method considers the 177 

different effects of direct and scattered light on plant photosynthesis. However, because it uses 178 

the overall light environment of shaded leaves and does not explicitly describe the scattered 179 

light gradient in the vertical direction, we are unsure whether this simplification will 180 

significantly impact the SIF estimation of GPP. The methods described above illustrate within-181 

canopy light distribution in different ways, but we cannot directly determine the description 182 

that is more suitable for SIF-based half-hourly GPP estimation in ENFs. 183 

Therefore, in this study, we used SIF to estimate GPP using tower-based observations at ENF 184 

sites under the framework of the MLR model. We employed a layered model (separating leaves 185 

into several layers), a two-leaf model (separating leaves into sunlit and shaded groups), and a 186 

layered two-leaf model (separating leaves into sunlit and shaded groups for each layer) to 187 

describe the interaction among the light conditions, canopy structure, and leaf physiology to 188 

estimate half-hourly GPP. We then compared the effectiveness of these three models with that 189 

of the big-leaf assumption and analyzed their performances in tracking GPP dynamics during 190 

the day. With the help of accurate GPP estimation results, we obtained the canopy-scale qL, 191 

determined its light response pattern, and compared it with the leaf-scale pattern. In this study, 192 

we attempted to answer the following questions:1. How can SIF-based GPP estimates be 193 

improved at the half-hourly scale, and how does the big-leaf assumption affect the SIF-based 194 

GPP estimation at ENF sites? 2. What are the differences in the performance of models with 195 

different descriptions of light–structure–physiology interactions (including layered, two-leaf, 196 

and layered two-leaf models)? 3. How does the redistribution of light within the canopy affect 197 
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the diurnal variation and vertical distribution pattern of GPP and plants’ physiological 198 

properties (qL)? 4. What is the difference in the light responses of the overall qL (referred to as 199 

“canopy-scale qL” in the following part) and the single-leaf qL, and what factors can explain 200 

this difference? 201 

2. Materials and Methods  202 

2.1 Study Sites 203 

In this study, we used tower-based SIF and GPP observations from three open-access ENF sites 204 

to examine the performance of our methods; to investigate the dynamics of the estimated GPP, 205 

light conditions, and qL at different canopy depths; and to obtain the canopy-scale qL. Among 206 

these sites, the data for the boreal forest site (Southern Old Black Spruce, located in Canada, 207 

site ID: CA-Obs) was obtained from FLUXNET and spanned September 2018 to December 208 

2020 (Pierrat et al., 2022); the data for subalpine conifer forest site (Niwot Ridge, located in 209 

America, site ID: US-NR1) was obtained from AmeriFlux, and had observations from 210 

September 2017 to June 2018 (Magney et al., 2019); and the data for the temperate ENF site 211 

(located in Taehwa Mountain in South Korea, site ID: KR-TCK) was obtained from AsiaFlux, 212 

covering measurements from September 2018 to December 2018 (Kim et al., 2021). The 213 

photosynthetic active radiation (PAR) averages of the observations were similar during the 214 

study period (for the KR-TCK site, 680.59 μmol/m2/s; for the CA-obs site, 607.22 μmol/m2/s; 215 

for the US-NR1site, 689.06 μmol/m2/s). The annual average air temperature at these sites was 216 

1.4 °C (CA-obs), 1.5 °C (US-NR1), and 12.7 °C (KR-TCK). Other detailed information 217 

regarding these sites is provided in Table S1. We tested the landscape heterological conditions 218 

around the sites via visual interpretation using the Google Earth platform, and images of the 219 

landscape conditions around these sites are shown in Figure S1. Using the ratio of 30 m NDVI 220 

(the normalized difference vegetation index) to 250 m NDVI as the indicator of 221 

representativeness, we found that all sites are generally homogeneous and have fine 222 

representativeness (close to 1; Figure S2).  223 
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2.2 Datasets  224 

All the SIF data used in this research were obtained from canopy-scale measurements using 225 

tower-based monitoring systems. For the CA-obs site, the average canopy height was 226 

approximately 16 m, and a scanning spectrometer system (Photospec) was installed at the top 227 

of a 26 m tower to obtain the canopy SIF (Pierrat et al., 2022). The PhotoSpec system enables 228 

SIF retrieval in the red (680–686 nm) and far-red (745–758 nm) wavelength ranges (Grossmann 229 

et al., 2018), as well as supports the calculation of vegetation indices due to its moderate 230 

resolution at the corresponding wavelengths. The US-NR1 site also used the Photospec system 231 

fixed on the top of a tower (also 26 m above the ground) and measured the spectra with a time 232 

resolution of ∼20 s per measurement (Magney et al., 2019). SIF values at both CA-obs and US-233 

NR1 sites were retrieved using a Fraunhofer-line-based based fitting algorithm (Grossmann et 234 

al., 2018), and the SIF retrieval error was lower than 0.2 Wm2/sr/μm at the CA-obs site. For the 235 

KR-TCK site, the average canopy height was approximately 20 m, and observations were 236 

measured using a QE Pro system installed at the top of the 40 m tower. At this site, only far-red 237 

SIF (760 nm) was retrieved using the Singular Vector Decomposition (SVD) method, and SIF 238 

values with rRMSE larger than 25% were removed to ensure data quality. The spectral 239 

reflectance at this site was collected using Jaz spectroradiometers (Ocean Insight, Dunedin, FL, 240 

USA), which cover a spectral range of 350–1020 nm (Kim et al., 2021). Notably, the unit of 241 

SIF measurements at both the CA-obs and US-NR1 sites was mW/m2/nm/sr due to the 242 

hemispherical–conical configuration of Photospec, whereas the unit of SIF measurements at 243 

the KR-TCK site was mW/m2/nm because two cosine correctors were used to obtain the 244 

hemispheric SIF.  245 

GPP measurement relies on the eddy covariance technique. For all sites, a 3-D sonic 246 

anemometer and infrared gas analyzer fixed on the flux towers were used to measure the wind 247 

speed and CO2 concentration, which allowed calculation of the 30 min net ecosystem exchange 248 

(NEE) using Eddy-Pro software. Then, various preprocessing procedures, including data 249 

quality control, night-time CO2 flux corrections, and gap filling, were employed on the NEE 250 

time series; finally, GPP was obtained after the partition step (Barr et al., 2004; Reichstein et 251 
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al., 2005; Wutzler et al., 2018).  252 

In addition to GPP observations, the flux tower provides meteorological data every 30 min. In 253 

this study, we mainly used air temperature, PAR, and relative humidity data. Using air 254 

temperature and relative humidity, we further determined the vapor pressure deficit according 255 

to Tetens’s formula (Monteith and Unsworth, 1990) for describing atmospheric dryness and 256 

calculating carbon-reaction-related parameters: 257 

𝑉𝑃𝐷 = 0.61078 × 𝑒
17.27×𝑇𝑎
𝑇𝑎+237.3 × (1 − 𝑅𝐻) (1) 258 

where 𝑇𝑎  is the air temperature (°C), RH is relative humidity (%), and VPD is the vapor 259 

pressure deficit (kPa). In our study, the unit of VPD was converted to Pa. By averaging the 260 

records every half hour, all these sites provided a continuous time series of observations at a 261 

temporal resolution of 30 min, except US-NR1 (because only hourly GPP was obtained at this 262 

site). Based on the 30 min incident PAR and the PAR at the top of the atmosphere (which was 263 

calculated using the latitude, longitude, and corresponding time), we calculated the clearness 264 

index following the method in Chen et al. (1999) to describe the weather condition and 265 

determine the ratio of direct to diffuse light in the two-leaf model: 266 

CI =
PAR

PARTOA
=

PAR

𝑆0 × 0.46
 (2) 267 

where S0 represents the solar constant (1367 W/m2), and 0.46 is the fraction of PAR in the 268 

incoming solar radiance. We used 0.219 covert the unit of PAR (from μmol/m2/s to W/m2) in 269 

this equation. 270 

In this study, we also used the leaf area index (LAI) and clumping index (Ω) to describe canopy 271 

structure. The LAI data used in this research were obtained from a GLASS LAI product with 272 

500 m spatial resolution (Xiao et al., 2014), and the Ω data were also from a 500 m satellite 273 

product generated based on MODIS products (Jiao et al., 2018). The time series of LAI and Ω 274 

were extracted according to the location of each site, and the possible uncertainties introduced 275 

by satellite products were tested using ground measurement LAI data at the KR-TCK site. We 276 

also used another clumping index dataset to clarify the uncertainties introduced by different 277 

satellite clumping index products (Li and Fang, 2022). To estimate the escape probability of 278 
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SIF photons (details in Section 2.5, equation 18), we also employed NDVI, NIR (near-infrared 279 

reflectance), and fPAR using the in situ measurements provided by each site (Kim et al., 2021; 280 

Magney et al., 2019; Pierrat et al., 2022a). More details can be found in the original papers 281 

(Kim et al., 2021; Magney et al., 2019; Pierrat et al., 2022a). 282 

2.3 The framework of SIF-based GPP estimation  283 

In this study, we used the framework of the MLR model to estimate GPP at three ENF sites. 284 

According to previous work (Gu et al., 2019), the electron transportation rate (J) can be 285 

expressed using the full-band PSII SIF (SIFfull) and fluorescence kinetics parameters: 286 

𝐽 =
(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 (3) 287 

where SIFfull refers to the total full-band PSII SIF (unit: μmol/m2/s, calculation details in Section 288 

2.5); qL is the fraction of opened PSII reaction centers; ΦPSIImax is the maximum photochemical 289 

quantum yield of PSII; and kdf is the ratio of the rate constant for constitutive heat loss to the 290 

rate constant for fluorescence emission, which is almost a constant (Zaks et al., 2012). In this 291 

study, we used kdf = 9, which was in accordance with previous measurements (Liu et al., 2022). 292 

qL can be expressed as an exponential function of light (Liu et al., 2021a), and ΦPSIImax can be 293 

estimated using a quadratic function of temperature due to its high correlation with temperature 294 

(Swoczyna et al., 2022; Vitale et al., 2012):  295 

𝑞𝐿 = 𝑎𝐿  𝑒−𝑏𝐿𝑃𝐴𝑅 (4) 296 

𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥 = 𝑎 𝑇𝑎
2 + 𝑏𝑇𝑎 + 𝑐 (5) 297 

where Ta represents the temperature, and PAR is the photosynthetic active radiance. We took 298 

aL = 1, bL = 0.001, a = -0.0011, b = 0.036, and c = 0.44, according to previous studies (Feng et 299 

al., 2021). The values of aL and bL are consistent with previous studies (Feng et al., 2021), and 300 

the values of a, b, and c were fitted based on long-term pulse amplitude modulation (PAM) 301 

observations (for details, see Text S1). 302 

Notably, J in the MLR model represents the actual electron transport rate, which is possible 303 

because the SIF in this model already contains information about the light reaction in 304 
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photosynthesis. Thus, this SIF-based model does not require the complex estimation of Jmax 305 

(maximum electron transport rate) and comparison of Ac (rubisco-limited photosynthesis) and 306 

Aj (RuBP-limited photosynthesis), which is crucial in the widely used FvCB model (Farquhar 307 

et al., 1980). 308 

For the quantitative relationship between J and GPP, we referred to the FvCB model and used 309 

the following equation: 310 

𝐺𝑃𝑃 = 𝐽
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
 (6) 311 

where 𝐶𝑖 is the intercellular CO2 partial pressure, and Γ* is the photocompensation point of 312 

CO2 in the absence of dark respiration. The estimation of 𝐶𝑖 and Γ* is included in Section 2.6. 313 

Finally, combining Equations 3 and 6, we used the following model to estimate GPP (Gu et al., 314 

2019): 315 

𝐺𝑃𝑃 =
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥
𝑆𝐼𝐹𝑓𝑢𝑙𝑙  (7) 316 

2.4 Description of interactions among light, canopy structure, and leaf physiology  317 

Compared to the vertical distribution of environmental factors such as temperature and moisture, 318 

the vertical distribution of light exposure of leaves within the canopy is highly dynamic during 319 

diurnal cycles. Because the intensity and angle of incident light vary significantly with time, 320 

light is redistributed when it penetrates the canopy, resulting in a changing vertical gradient and 321 

horizontal heterology in within-canopy illumination. Furthermore, one of the key parameters 322 

in the MLR model, qL, is highly sensitive to changes in light. Therefore, diurnal variation in 323 

light affects SIF and GPP by interfering with the canopy-scale APAR, and it also alters the 324 

relationship between SIF and GPP by regulating the qL of individual leaves. Therefore, the 325 

dynamics of the SIF-GPP relationship and canopy-scale qL (the overall qL) at the half-hourly 326 

scale are the result of the interaction among light, canopy structure, and plants’ physiological 327 

properties, which should be described well for the accurate estimation of half-hourly (or hourly) 328 

GPP. In this study, we proposed and compared methods with different assumptions (layered, 329 

two-leaf, and layered two-leaf assumptions) to describe the manner in which the canopy 330 
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structure affects light distribution and qL. 331 

2.4.1 Construction of a layered model 332 

First, we used a layered model to capture the vertical gradient of light. This method separates 333 

the canopy into several layers and estimates the GPP for each layer. Adding these GPP values, 334 

we obtained the GPP of the entire canopy (the layered GPP in this study). The canopy layers 335 

were divided according to the canopy optical depth of LAI rather than vertical height. Therefore, 336 

a layer with a higher index indicated a location in a deeper canopy. The GPP estimation in each 337 

layer followed the MLR framework in Equation 7, and product of APAR and ΦF was used to 338 

divide SIFfull of the whole canopy into the full-band PSII SIF of different layers: 339 

𝑆𝐼𝐹𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑖 × 𝛷𝐹𝑖

∑ 𝐴𝑃𝐴𝑅𝐿 × 𝛷𝐹𝐿
𝑛
𝐿=1

  (8) 340 

where n represents the total number of layers; i is the layer index (ranging from 0 to n-1, where 341 

i = 0 represents the top layer); and SIFi, APARi, and ΦFi represent the full-band PSII SIF, APAR, 342 

and ΦF in layer i, respectively. We used n = 10 in this research, and to assess the uncertainty 343 

introduced by the value of n, we tested different values (n = 5, 10, 20, 40, 80, 160, 320, and 344 

640) to examine the impact of the model performance. 345 

In this method, we simplified the radiative transmission process and did not account for the 346 

impacts of leaf single scattering albedo, the fraction of diffused light, and the absorption and 347 

reflectance of soil backgrounds. Therefore, the APAR for each canopy layer can be expressed 348 

as the difference between the PAR at the top of this layer and the PAR at the top of the next 349 

layer (Chang et al., 2021). Here, APARi is represented as the difference between the PAR in 350 

layer i+ 1 (PARi+1) and that in layer i (PARi), ΦFi can be estimated using a fitted function of 351 

PARi (Liu et al., 2021), and PARi can be obtained according to Lambert–Beer’s law: 352 

𝐴𝑃𝐴𝑅𝑖 = 𝑃𝐴𝑅𝑖 − 𝑃𝐴𝑅𝑖+1 (9) 353 

 𝑃𝐴𝑅𝑖 = 𝑃𝐴𝑅 × 𝑒
−

0.5×𝛺×𝐿𝐴𝐼𝑎𝑖
cos (𝑆𝑍𝐴)  (10) 354 

where PAR is the incident PAR at the top of the canopy, LAIai is the accumulated LAI from the 355 

top to layer i (equal to LAI × i/n), 𝛺 is the clumping index, and SZA is the solar zenith angle. 356 
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Combining Equations 9 and 15, we can obtain the qL of layer i and use it to estimate the GPP 357 

of layer i (GPPi). Although ΦFi can be influenced by many other factors, PAR contributes 358 

significantly to its vertical variation. Compared to the variation in APAR, variation in ΦF is 359 

usually small (Van der Tol et al., 2014) and may not significantly influence the results. We 360 

examined the model’s performance when solely APAR was used for the SIF partition to clarify 361 

the contribution of ΦF to the model’s performance. 362 

2.4.2 Construction of the two-leaf model 363 

The second method used to describe light–structure interaction is based on the two-leaf model 364 

proposed by Chen et al. (1999), which considers different illumination conditions in the 365 

horizontal direction. In the two-leaf model, the leaves are separated into sunlit and shaded 366 

groups, and the total GPP is calculated using the sum of GPPs from sunlit and shaded leaves. 367 

Similar to the layered model, we divided the SIFfull of the entire canopy into SIFshade and SIFsun 368 

according to APAR × ΦF. Here, APARshade, and APARsun could be estimated using the 369 

following equations: 370 

APAR𝑠𝑢𝑛 = (1 − a) ∗ PAR𝑠𝑢𝑛 ∗ LAI𝑠𝑢𝑛 (11) 371 

APAR𝑠ℎ𝑎𝑑𝑒 = (1 − a) ∗ PAR𝑠ℎ𝑎𝑑𝑒 ∗ LAI𝑠ℎ𝑎𝑑𝑒 (12) 372 

where a represents the leaf albedo, taken as 0.15 for evergreen needle forests according to a 373 

previous study (He et al., 2013), and PAR𝑠𝑢𝑛, PAR𝑠ℎ𝑎𝑑𝑒, LAI𝑠𝑢𝑛, and LAI𝑠ℎ𝑎𝑑𝑒 are directly 374 

calculated using the equations in the work of Chen et al. (1999) (Details in Supplementary Text 375 

S2). Because the two-leaf model includes the effects of direct PAR and diffuse PAR, calculating 376 

these parameters requires the clearness index for the partition of PAR: 377 

𝑃𝐴𝑅𝑑𝑖𝑓 = 𝑃𝐴𝑅 × (0.7527 + 3.8453𝐶𝐼 − 16.316𝐶𝐼2 + 18.962𝐶𝐼3 − 7.0802𝐶𝐼4) (13) 378 

𝑃𝐴𝑅𝑑𝑖𝑟 = 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑑𝑖𝑓 (14) 379 

where PARdif is the diffuse PAR, PARdir is the direct PAR, and CI is the clearness index. 380 

2.4.3 Construction of the layered two-leaf model 381 

Finally, although the two-leaf model considered the different light conditions for sunlit and 382 
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shaded leaves, it only divided the leaves into two groups and used PARshade to represent the 383 

overall illumination of shaded leaves. This simplification neglected the vertical gradient of 384 

diffuse PAR in the canopy, which may introduce uncertainty in ecosystems with large tree 385 

heights. To examine whether this issue will influence GPP estimation, we combined the layered 386 

model and the two-leaf model to establish a layered two-leaf model. In this model, SIFi in layer 387 

i was still allocated to SIFshade_i and SIFsun_i based on APAR×ΦF. Therefore, SIFsun and SIFshade 388 

in layer i and were expressed as the following equations: 389 

𝑆𝐼𝐹𝑠𝑢𝑛_𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝑖 × 𝛷𝐹𝑠𝑢𝑛_𝑖

∑ 𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝐿 × 𝛷𝐹𝐿 + ∑ 𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝐿 × 𝛷𝐹𝑠𝑢𝑛_𝐿
𝑛
𝐿=1

𝑛
𝐿=1

  (15) 390 

𝑆𝐼𝐹𝑠ℎ𝑎𝑑𝑒_𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝑖 × 𝛷𝐹𝑠ℎ𝑎𝑑𝑒_𝑖

∑ 𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝐿 × 𝛷𝐹𝐿 + ∑ 𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝐿 × 𝛷𝐹𝑠𝑢𝑛_𝐿
𝑛
𝐿=1

𝑛
𝐿=1

  (16) 391 

By replacing LAI with LAIai (accumulated LAI from the top to the layer i, equals to LAI×i/n) 392 

in Chen’s work (1999), we calculated PARsun_i and PARshade_i in layer i; by dividing the LAIi 393 

into sunlit fraction and shaded fraction, we obtained LAIsun_i and LAIshade_i; finally, using 394 

equations similar to Equations 11 and 12, we obtained APARsun_i and APARshade_i. In the 395 

combined model (layered two-leaf model), we estimated the GPPshade and GPPsun for each layer, 396 

and the sum of these GPPs from different leaf groups was the final GPP estimated using the 397 

third method. 398 

2.5 Conversion from SIF observations to full-band PSII SIF (SIFfull) 399 

Due to the multi-scattering and reabsorption effects during radiative transfer in the canopy, the 400 

SIF signal observed by sensors is only a small fraction of the total SIF and is also a mixture of 401 

the signals emitted by different photosystems (PSI and PSII). Therefore, we first partitioned the 402 

observed SIF into SIFPSII and SIFPSI using the ratio of PSII fluorescence to the PSI+PSII 403 

fluorescence given wavelength (fPSII): 404 

𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑜𝑏𝑠 =  𝑆𝐼𝐹𝑜𝑏𝑠 × 𝑓𝑃𝑆𝐼𝐼 (17) 405 

For the KR-TCK site, fPSII was calculated at 760 nm wavelength; for the CA-obs and US-NR1 406 

sites, fPSII was calculated as the ratio of the integrated PSII SIF to the integrated total SIF from 407 

745 to 758 nm. We calculated the fPSII values based on the Soil Canopy Observation of 408 
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Photosynthesis and Energy (SCOPE) model simulations considering various canopy structure 409 

conditions described by Liu et al. (2022), and obtained values of 0.6676 for the Ca-obs and US-410 

NR1sites and 0.6481 for the KR-TCK site. 411 

Then, to downscale the canopy-scale PSII SIF, we calculated the escape probability of SIF 412 

photons from the leaf surface to the top of the canopy (fesc) using the method proposed by 413 

Zeng et al. (2019): 414 

𝑓𝑒𝑠𝑐 =
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
=  

𝑁𝐷𝑉𝐼 × 𝑁𝐼𝑅

𝑓𝑃𝐴𝑅
(18) 415 

where NIRv is the near-infrared reflectance of vegetation, NDVI is the normalized difference 416 

vegetation index, and fPAR is the fraction of absorbed photosynthetic active radiation. This 417 

method is based on the similar radiative transfer of reflectance and emitted SIF at the near-418 

infrared wavelengths. Upon dividing the canopy-scale SIF observations (SIFPSII_obs) using fesc, 419 

we obtained the total SIF signals on the leaf surface (SIFPSII_leaf). We then used the escape 420 

probability of the SIF photons from the photosystems to the leaf surface (fLp) to further 421 

downscale SIFPSII_leaf to the total SIF at the photosystem scale (SIFPSII_ps). In this study, we only 422 

employed the far-red SIF and regarded fLp as a constant (approximately 0.9) according to 423 

previous studies (Liu et al., 2022; Liu et al., 2020c; Lu et al., 2020). In summary, PSII SIF at 424 

the photosystem scale (SIFPSII_ps) was obtained using the following equation: 425 

𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑝𝑠 =
𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑜𝑏𝑠

𝑓𝑒𝑠𝑐 × 𝑓𝐿𝑝
 (19) 426 

Because the wavelength of SIF emission ranged from 650 to 800 nm, but SIFPSII_ps only 427 

represents the SIF signal at the specific wavelength (745 to 758 nm for CA-obs and US-NR1 428 

site, 760 nm for the KR-TCK site), we converted SIFPSII_ps to obtain the total full-band PSII SIF 429 

(SIFfull, the integration of SIF in the wavelengths from 640 to 850nm, unit: μmol/m2/s) to 430 

estimate photosynthesis according to a previous study (Liu et al., 2022): 431 

𝑆𝐼𝐹𝑓𝑢𝑙𝑙 = ∑ (𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑝𝑠 × 𝑓𝑐(𝜆) ×
𝜆 × 106

ℎ × 𝑐 × 𝑁𝐴 × 103 × 109)

850

𝜆=640

 (20) 432 

where 𝑓𝑐(𝜆) is the conversion factor used for calculating SIF at the 𝜆 wavelength, ℎ is the 433 

Planck constant (6.63 × 10−34 J⋅s), c is the speed of light t (3 × 108 m/s), λ is the wavelength 434 

(nm), and 𝑁𝐴 is the Avogadro constant (6.02 × 1023 mol−1). The conversion factor 𝑓𝑐(𝜆) was 435 
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determined by the first principal component of the PSII SIF spectrum simulations, as described 436 

by Liu (2022). 437 

Combing equation 17, 19, and 20, we completed the conversion of observed SIF (SIFobs) to full-438 

band PSII SIF (SIFfull). 439 

2.6 Determination of carbon-reaction-related parameters in GPP estimations 440 

The carbon-reaction-related parameters in our MLR-based model refer to the intercellular CO2 441 

concentration (Ci) and the photocompensation point of CO2 without dark respiration (Γ*). To 442 

estimate Γ*, we followed the previously described altitude-dependent temperature function 443 

(Bernacchi et al., 2001; G D Farquhar et al., 1980), and to estimate Ci, we used a method based 444 

on iteration.  445 

To estimate Ci, we first selected records with PAR higher than the 90th percentile for each day 446 

and regarded the photosynthesis at that time as Rubisco-limited (the photosynthetic apparatus 447 

should be light-saturated when there is abundant light; otherwise, it is wasting energy to develop 448 

a high photosynthetic capacity that can seldom be reached). At this time, the actual GPP equals 449 

the Rubisco-limited GPP: 450 

𝐽
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
= 𝑉𝑐𝑚𝑎𝑥

𝐶𝑖 − 𝛤∗

𝐶𝑖 + 𝐾
 (21) 451 

Thus, we can calculate Vcmax (maximum carboxylation rate) using the actual electron transport 452 

rate (J) estimated using SIFfull and other biophysical properties of plants: 453 

𝑉𝑐𝑚𝑎𝑥 = J
𝐶𝑖 + 𝐾

4𝐶𝑖 + 8𝛤∗
=

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(𝐶𝑖 + 𝐾)

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(4𝐶𝑖 + 8𝛤∗)
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙  (22) 454 

where K is the effective Michaelis–Menten coefficient of Rubisco-limited photosynthesis, 455 

which can be estimated using the Michaelis–Menten constants for the carboxylation and 456 

oxygenation reactions (Farquhar et al., 1980). In this equation, K,  𝛤∗, and 𝐶𝑖 are daily values 457 

calculated based on the average of records above the 90th percentile PAR, and all of their units 458 

are Pa. During this process, we excluded observations with 90th percentile PAR below 500 459 

μmol/m2/s and observations obtained on cloudy days (CI < 0.5) to ensure the Rubisco-limited 460 

condition; further, linear interpolation was conducted for the gap-filling of Vcmax. Then, based 461 
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on the instantaneous temperature response of Vcmax, we converted Vcmax to Vcmax25 (Kattge and 462 

Knorr, 2007), which will be used in the following iteration process to estimate the half-hourly 463 

real-time Ci. 464 

Notably, Ci in Equation 22 is a daily value calculated using a method based on the theory of 465 

optimal stomatal behavior (Harrison et al., 2021) and cannot capture the light response of 466 

stomata during diurnal cycles. Therefore, we used the following iteration to estimate the real-467 

time Ci for every half-hour record for comparison: 468 

Step 1: Set the initial Ci = 0.7 × Ca, where Ca stands for the ambient CO2 concentration; 469 

Step 2: Estimate the net assimilation rate Anet (the analog of GPP minus dark respiration at the 470 

leaf scale) using the following equation: 471 

𝐴𝑛𝑒𝑡 = J
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
− 𝑅𝑑 =

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(𝐶𝑖 − 𝛤∗)

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(4𝐶𝑖 + 8𝛤∗)
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙  − 𝑅𝑑 (23) 472 

where Rd is the dark respiration derived from its temperature response and Rd25 (the dark 473 

respiration rate at 25 °C), and Rd25 equals 0.015 × Vcmax25. 474 

Step 3: Estimate the stomatal conductance for CO2 (Gc, unit: mol/m2/s) according to previous 475 

studies on stomatal behavior (Wang and Leuning, 1998): 476 

 477 

𝐺𝑐 = 0.64 × (𝐺0 +
(𝑎 − 1)𝑓𝑤𝐴𝑛𝑒𝑡

𝐶𝑖 (1 +
𝑉𝑃𝐷
𝐷0

)
) (24)

 478 

where G0 is the residual conductance (0.01, unit: mol/m2/s); a is a parameter related to CO2 479 

diffusion on the leaf surface, which is assumed to be 11; fw is related to the soil moisture and 480 

is taken as 1; VPD is the vapor pressure deficit (unit: kPa); and D0 is regarded as a constant 481 

showing the stomatal sensitivity to VPD (1.5, unit: kPa). 482 

Step 4: Update Ci using the diffusion model (Ju et al., 2006): 483 

𝐶𝑖 = 𝐶𝑎 −
𝐴𝑛𝑒𝑡

𝐺𝑐

(25) 484 

By repeating Steps 2–4 until Ci becomes stable, we can obtain the final half-hourly Ci. This 485 
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iteration was performed for every leaf group (both sunlit and shaded leaves for the two-leaf 486 

model and all leaves at different canopy depths for the layered model) to consider the impact 487 

of light conditions on gas exchange. The estimations using this method to calculate Ci were 488 

labeled with the suffix “_iter”. 489 

In this study, we also used another simple method to estimate Ci for comparison (Shan et al., 490 

2021): 491 

𝐶𝑖 =
3𝐶𝑎𝛤∗ − 𝛤∗ 1.6𝑉𝑃𝐷

𝜆
− 𝐶𝑎√3𝛤∗ 1.6𝑉𝑃𝐷

𝜆

3𝛤∗ −
1.6𝑉𝑃𝐷

𝜆

 (26) 492 

where 𝜆 is a parameter describing the marginal water cost of plant carbon assimilation, and 493 

the unit of VPD in this equation is hPa. Because 𝜆 is almost constant for a specific vegetation 494 

type, we simply used 𝜆 = 900 in this study. Compared to the iterative method, this simple 495 

method does not consider the possible influence of light conditions on stomatal closure. The 496 

estimations using this simple λ-based method to calculate Ci were labeled with the suffix 497 

“_lambda”. 498 

Finally, for comparison, we also used two empirical SIF-based GPP models to estimate GPP: 499 

one of them used the linear regression to fit the SIF—GPP relationship, and the other used a 500 

nonlinear function (quadratic function) to describe the SIF—GPP relationship. GPP estimates 501 

from the linear model are GPP_linear, and GPP estimates from the model are GPP_nonlinear. 502 

3. Results 503 

3.1 Performances of different SIF-based GPP estimation models 504 

In this study, we used different strategies to describe the interaction between light and canopy 505 

structure to estimate the half-hourly (or hourly) GPP from tower-based SIF observations at three 506 

ENFs. Here, we evaluated and compared the performances of these different models, and the 507 

results are shown in Figure 1. 508 
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 509 

Figure 1. The performance of different models in estimating the half-hourly (or hourly) GPP. 510 

Each row represents the results of different methods, and each column represents the results 511 

of different ENF sites. (a)-(c), (d)-(f), (g)-(i), and (j)-(l) show the performance of the two-leaf, 512 

layered, layered two-leaf, and big-leaf models, respectively. The figures in the first column show 513 

the GPP estimation tested at the CA-obs site, the figures in the second column show the results 514 

of the US-NR1 site, and those in the last column show the results of the KR-TCK site. All GPP 515 

estimations in this figure used the iterative method to estimate Ci. The color of the dots 516 
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represents the corresponding air temperature, the dashed black line is the regression line, and 517 

the solid red line is the 1:1 line. 518 

As displayed in the last row (Figure 1j-1l), the big-leaf model significantly underestimated GPP 519 

and had the lowest R2 among the tested models. For all three sites in this study, GPP estimations 520 

from the big-leaf model exhibited a nonlinear relationship with GPP observations, and the 521 

slopes of the regression lines indicated that the big-leaf assumption would lead to 522 

approximately 45% underestimation, especially when the GPP value was high. In contrast, the 523 

models with a better description of the vertical or horizontal light distribution (including the 524 

layered model, the two-leaf model, and the layered two-leaf model) showed better 525 

performances (Figure 1a-1i), and the GPP estimates showed more linear relationships with the 526 

observed values. For the CA-obs site, the two-leaf model (Figure 1a) showed the best 527 

performance, with R2 = 0.68, and a regression line close to the 1:1 line (slope:0.99); for the US-528 

NR1 and KR-TCK sites, although the two-leaf model had high R2, the layered model showed 529 

regression lines closest to the 1:1 line (for US-NR1, slope = 0.91; for KR-TCK, slope = 0.99). 530 

Compared with the results of the layered model, the GPP estimates from the two-leaf model 531 

were higher when the GPP and temperature were high (according to the distribution of scatters) 532 

and lower when the GPP and temperature were low (according to the interception of regression 533 

lines). Although the layered two-leaf model also avoided the underestimation problem and had 534 

a relatively high R2, it did not show better performance than the two-leaf model at the CA-obs 535 

and US-NR1 sites and even increased the overall RMSE at the US-NR1 and KR-TCK sites. We 536 

also tested the results of different models using the simple λ-based method for Ci estimation 537 

(Figure S3) and obtained similar results. In addition, we investigated the model’s performance 538 

under sunny (clearness index >0.5) and cloudy conditions (clearness index <0.5) and found that 539 

the results do not change significantly (Figures S4-S5). 540 

 541 
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 542 

Figure 2. Time series of GPP observations and GPP estimates from the (a) two-leaf, (b) layered, 543 

(c) layered two-leaf, (d) big-leaf, and (e) linear models using the empirical linear relationship 544 

between SIF and GPP and from the (f) nonlinear model based on the empirical relationship 545 

between SIF and GPP. The grey dots represent the half-hourly observations, and the pink dots 546 

represent the GPP estimates. Here, we only displayed the results from the CA-obs site using 547 

the iterative method for estimating Ci. 548 

Figure 2 shows the time series of the observed and estimated GPP of different models. Here, 
549 

we can see that the two-leaf, layered, and layered two-leaf models all managed to capture the 
550 

dynamics of GPP observations, and there was no significant difference among their 
551 

performances (Figure 2a-2c). However, the big-leaf model underestimated GPP, which was 
552 

especially significant during the middays of summer (Figure 2d). In addition, empirical models 
553 
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based on the empirical relationship between SIF and GPP also failed to track the dynamics of 
554 

half-hourly GPP. In Figure 2e, the linear model overestimated the low GPP values during the 
555 

entire study period. In Figure 3f, the nonlinear model showed truncation when the GPP 
556 

estimation reached a certain value (~ 15 μmol/m2/s) and thus underestimated the high GPP 
557 

values in summer. Furthermore, the nonlinear model also overestimated the low GPP values, 
558 

even though this overestimation problem in the nonlinear model was not as significant as that 
559 

in the linear model. 
560 

Further analysis of the difference between the big-leaf and two-leaf models showed that their 
561 

discrepancy was higher under conditions with high light intensity (and thereby higher GPP). 
562 

Compared to environmental factors such as VPD and temperature, PAR showed the highest 
563 

correlation with GPP bias (GPP estimation from the two-leaf model minus GPP estimations 
564 

from the big-leaf model; R2 = 0.15; Figure S36a), whereas the GPP relative bias (obtained by 
565 

dividing GPP bias by GPP values) showed a much lower correlation with PAR (R2 = 0.001, 
566 

Figure S6b). Similarly, the difference between the big-leaf and layered models was also highly 
567 

related to incident light. In addition, while a better description of the light–structure–physiology 
568 

interaction within the canopy improved the accuracy of GPP estimation (Figure 1, 2), we found 
569 

that the estimation of Ci did not influence the results significantly (Figure 1 vs. Figure S3). 
570 

Indeed, there was a difference in the GPP estimations using different Ci estimations, and it 
571 

showed a high correlation with VPD, but this difference was very small. Therefore, the 
572 

uncertainties caused by the change in stomatal behavior under different light conditions (which 
573 

influences Ci) were not the most important factor influencing GPP estimation at the half-hourly 
574 

scale. 
575 

3.2 Diurnal dynamics of GPP estimations from different models  576 

As the intensity and angle of incident light change significantly during the day, the within-577 

canopy illumination and its distribution vary with time, which may thereby modify the diurnal 578 

dynamics of the whole-canopy GPP and its estimation. Figure 3 shows the dynamics of the 579 

observed and estimated GPP from different models during the day (composited using all 580 

observations during the study period). Although the GPP estimations using iterative methods 581 
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to calculate Ci were slightly higher than those obtained using the simple λ-based method at 582 

midday, there was high consistency in GPP estimations using different Ci calculation methods 583 

(Figure 3a-d, GPP_lambda vs. GPP_iter). In contrast, the diurnal dynamics of GPP estimates 584 

from models assuming different light–structure–physiology interactions) varied significantly. 585 

GPP estimations from both the two-leaf and layered two-leaf models tracked the bell-shaped 586 

dynamics of GPP observations (Figure 3a, 3c), but the layered model underestimated GPP at 587 

midday and overestimated GPP in the early morning and late afternoon (Figure 3b). As depicted 588 

in Figure 3d, the big-leaf model showed the most significant underestimation at midday but 589 

performed well when the light was relatively weak (before 8:00 and after 18:00). In contrast to 590 

their poor performance in Figure 2, both the empirical linear and nonlinear models tracked the 591 

diurnal dynamics of GPP well (Figure 3e, 3f), probably because they were based on the 592 

statistical relationship and were thus able to capture the “overall” pattern. 593 

 594 

Figure 3. Diurnal dynamics of GPP observation and GPP estimates from (a) the two-leaf, (b) 595 

layered, (c) layered two-leaf, (d) big-leaf, (e) linear, and (f) nonlinear models. Variables with the 596 

suffix “_iter” refer to GPP estimation with Ci estimated using the iterative method, and variables 597 

with the suffix “_lambda” refer to GPP estimation with Ci estimated via the simple λ-based 598 

method. This figure shows the results from the CA-obs site using all of the half-hourly data 599 

obtained during the entire study period. The solid lines represent the average dynamics, and 600 
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the shaded areas represent 95% confidence intervals. Similar results were obtained at the other 601 

sites. 602 

In Figure 4, we selected two sunny days during summer to further examine the differences in 603 

GPP estimations using the big-leaf model and other models. On those two days, PAR, SIF, and 604 

GPP showed “bell-shaped” patterns (Figure 4d, 4f, 4g), even though GPP had higher 605 

uncertainty and exhibited a less-smooth curve. Similar to the results in Figure 3, the layered, 606 

two-leaf, and layered two-leaf models all capture the midday increase in GPP, whereas the big-607 

leaf model underestimated the GPP from 8:00 to 17:00 (Figure 4a-4c). This underestimation 608 

was more significant when the PAR was higher and was not significantly related to temperature 609 

changes, as exhibited in Figure 4e (because the temperature kept increasing in the afternoon, 610 

but the underestimation was weaker at that time). We further investigated the daily cycles of 611 

the estimated J/SIF ratio and J using the big-leaf model to understand the reasons for its poor 612 

performance. Figure 4h shows a significant midday reduction in the J/SIF ratio estimated by 613 

the big-leaf model, and Figure 4e indicates that the big-leaf assumption “suppressed” the ratio 614 

so strongly that even the estimated J (which equals J/SIF ratio times SIF) cannot capture the 615 

midday increase in photosynthesis.  616 

 617 

Figure 4. Comparison between the diurnal dynamics of GPP estimations from the big-leaf 618 
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model and the (a) layered, (b) two-leaf, and (c) layered two-leaf models and the corresponding 619 

(d) incident PAR, (e) temperature, (f) SIF, and (g) GPP on July 29, 2019, and August 2, 2019. 620 

(h) shows the changes in estimated J/SIF ratio, and (i) shows the dynamics of estimated J using 621 

the big-leaf model. The shaded areas represent the 95% interval. All the data used in this figure 622 

were obtained from the CA-obs half-hourly dataset. 623 

3.3 Diurnal dynamics of GPP in different canopy layers (under different light conditions) 624 

Due to the changing illumination and its distribution in the canopy, photosynthesis from 625 

different leaf groups (specifically, in different layers or under different light conditions) varies 626 

during the day, leading to the heterogeneity of GPP within the canopy. In Figure 5, we 627 

investigated the vertical variation in the diurnal dynamics of GPP estimations in each layer 628 

(depth) of the canopy to determine the reason for the midday underestimation and early morning 629 

overestimation in the layered model (as indicated in Figure 3b and 4a). Figure 5a and 5b display 630 

the estimated GPP dynamics derived from the layered model on July 29, 2019, and August 2, 631 

2019, respectively. The results showed that the layered model successfully captured the 632 

increased GPP at noon in the bottom layers but showed a significant reduction in midday GPP 633 

in the top layers. Therefore, the discrepancy between GPP estimation from the layered model 634 

and GPP observations (Figure 3b) was mainly related to its unsatisfactory estimation in the top 635 

layers. The underestimation problem in the top layers (the top 5) was so severe that the GPP 636 

estimations even exhibited a reduction trend at noon and became smaller than the GPP 637 

estimations in the bottom layers. However, the results derived from the layered two-leaf model 638 

showed an increase in GPP at noon in both the bottom and top layers (Figure 5c and 5d). As the 639 

only difference between these two models was their assumption of light distribution, the 640 

different results in Figure 5a and 5c, 5b, and 5d indicated that the description of light–canopy–641 

physiological interaction was important in the half-hourly GPP estimations, especially when 642 

considering the diurnal patterns of photosynthesis. The layered model assumes that all the 643 

leaves were not shaded and received direct light (even though the light decayed when it 644 
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penetrated the canopy); thus, this model may have overestimated the overall high light stress 645 

on the top leaves and “over-penalized” their qL at midday; simultaneously, because it does not 646 

consider that gaps among leaves could cause light spots in the deep canopy and high light 647 

conditions for some leaves, it might have underestimated the overall light condition in the 648 

bottom layers and thus slightly overestimated the qL and thereby GPP in the bottom layers at 649 

noon.    650 

 651 

Figure 5. Diurnal dynamics of GPP estimation in different layers. The GPP estimations in (a) 652 

and (b) came from the layered model, and the GPP estimations in (c) and (d) came from the 653 

layered two-leaf model. The color of the dots represents the layer index, and a larger number 654 

represents a deeper location within the canopy. The LAI of each layer in this figure can be 655 

calculated as total LAI/10. 656 

To investigate the dynamic distribution of GPP within the canopy, we further studied the depths 657 

of the layer above which the leaves contributed 80% of the total GPP during two sunny days 658 

(Figure 6). Using the vertical GPP estimations displayed in Figure 5, we found that both the 659 

layered and layered two-leaf models indicated that the GPP contribution at midday came from 660 

deeper layers than that in the morning or afternoon, which led to the “bell-shaped” curve in 661 
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Figure 6a and 6b. That is, the incident PAR (including direct and diffused fractions) can 662 

penetrate deeper into the canopy at noon and trigger increased photosynthesis in the bottom 663 

layer leaves. The deepest 80% GPP contribution depth estimated from the layered model is 8, 664 

which is slightly deeper than the depth of 7 from the layered two-leaf model; meanwhile, the 665 

80% GPP contribution depths before 8:00 and after 18:00 estimated by the layered model were 666 

shallower than those estimated by the layered two-leaf model, which may relate to the lack of 667 

consideration of diffused light in the layered model. 668 

 669 

Figure 6. Depths of the layer above which the leaves contributed 80% of the total GPP on July 670 

29, 2019, and August 2, 2019. Data used for depth estimation and plotting were half-hourly 671 

estimations from (a) the layered model and (b) the layered two-leaf model at the CA-obs site.  672 

 673 
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Figure 7. (a) Diurnal variation in the GPP contribution of shaded leaves; (b) seasonal variation 674 

in the GPP contribution of shaded leaves; (c) diurnal variation in the LAI fraction of shaded 675 

leaves; (d) seasonal variation in the LAI fraction of shaded leaves. The cross-marks in the plots 676 

represent the outliers, the black dots represent the mean values of each box, and the green 677 

lines represent the median values of each box. 678 

In Figure 7a and 7b, we investigated the diurnal change in the GPP contribution of the shaded 679 

leaves and compared it with their seasonal dynamics. Here, we found that the GPP fraction 680 

from shaded leaves decreased in the morning and increased in the afternoon, while it increased 681 

from spring to summer and decreased from autumn to winter. These dynamics were consistent 682 

with the dynamics of the shaded LAI fraction at the diurnal and seasonal scales displayed in 683 

Figure 7c and 7d, respectively. These results indicate that the contribution of shaded leaves was 684 

more important in the morning and afternoon, when there was an apparent change in the solar 685 

zenith angle during the day; however, at the seasonal scale, the denser canopy led to a higher 686 

shaded LAI fraction and thus made GPP from shaded leaves (which used diffused light for 687 

photosynthesis) more crucial in summer. According to the result in Figure 7a, we deduced that 688 

the reason for the higher contribution of the bottom layers at noon in Figure 6b (compared to 689 

the morning and evening) should not only be attributed to the increase in the total intensity of 690 

diffused light but also to the direct light penetrating to the deeper layers through the gaps among 691 

leaves (indicated by the increase in the sunlit leaf fraction and reduction in the shaded leaf 692 

fraction) at midday.  693 

3.4 Comparison of single-leaf qL and “canopy-scale qL”  694 

To clarify the possible differences between single-leaf qL and canopy-scale qL, we used the 695 

framework of the big-leaf model but GPP estimations from the layered model or layered two-696 

leaf model as input to calculate the canopy-scale qL. Figure 8 shows the different light 697 

responses of single-leaf qL (red dots), canopy-scale qL calculated from the results of the two-698 

leaf model (pink dots), and canopy-scale qL calculated from the results of the layered model 699 
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(gray dots). Compared to the canopy-scale qL, the single-leaf qL (directly estimated using 700 

Equation 4) was more sensitive to the change in illumination and showed a faster decrease as 701 

the incident light increased. The scatterplot also showed that the distribution of canopy-scale 702 

qL from the two-leaf model was more dispersed than that of the canopy-scale qL from the 703 

layered model, which should be attributed to their different description of light–structure–704 

physiology interactions because both of them used the same function (Equation 4) to estimate 705 

the qL of individual leaf groups.  706 

 707 

 708 

Figure 8. The light response of single-leaf qL (in red), canopy-scale qL obtained from the 709 

layered model (in gray), and canopy-scale qL from the two-leaf model (in pink). The PAR label 710 

of the x-axis refers to the incident PAR obtained at the top of the canopy. 711 

We further investigated how LAI impacts the light response of canopy-scale qL estimated from 712 

the two-leaf model in Figure 9a (and the canopy-scale qL estimated from the layered model in 713 

Figure S7). We found that the LAI largely explained the variation in the light response of canopy 714 

qL and that a higher LAI corresponded to a less-sensitive light response of canopy qL (a less- 715 

steep slope in the relationship between qL and PAR) (Figure 9 and S5). We further compared 716 

the canopy-scale qL of sunlit leaves (using GPP of sunlit leaves) and that of shaded leaves 717 

(Figure 9b, 9c) and found that the qL of the shaded leaves showed a less-sensitive response to 718 

changes in light than sunlit leaves and that the impact of LAI on the light response of canopy-719 

scale qL was more significant for sunlit leaves. 720 
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 721 

Figure 9. The impact of LAI on the light response of the (a) canopy-scale qL from the two-leaf 722 

model; (b) canopy-scale qL of sunlit leaves; (c) canopy-scale qL of shaded leaves. The color of 723 

the dots represents the corresponding LAI. The PAR label of the x-axis refers to the incident 724 

PAR obtained at the top of the canopy. 725 

 726 

Figure 10. The diurnal patterns of single-leaf qL (red lines), canopy qL from the layered model 727 

(black lines), canopy-scale qL from the two-leaf model (green lines), and the qL in different 728 

layers of the canopy (colored scatters). The color of the dots represents the layer index, and 729 

the larger number represents the deeper location within the canopy. The LAI of each layer in 730 

this figure can be calculated as total LAI/10. 731 

Using the observations from two sunny days, we compared the diurnal patterns of single-leaf 732 

qL, canopy qL from the layered model, canopy-scale qL from the two-leaf model, and qL in 733 

different canopy layers in Figure 10. Here, we found that the single leaf showed the same pattern 734 
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as the qL in the first layer of the canopy, with lower values than those in the other layers due to 735 

their higher light exposure (the incident PAR at the top of the canopy). The qL values in the top 736 

layers were higher than those in the bottom layers, and the difference was greater at noon. The 737 

canopy-scale qL from the layered model showed moderate qL dynamics (compared to the qL 738 

in the top and bottom layers) and was lower than the canopy-scale qL from the two-leaf model 739 

at noon. The differences in these qL dynamics indicated that the interaction between light and 740 

canopy structure (which leads to light redistribution within the canopy) could influence the 741 

dynamics of canopy-scale qL (the “overall qL”) and that underestimation of GPP in big-leaf 742 

models could be mainly attributed to the utility of single-leaf qL rather than the canopy-scale 743 

qL during calculation.   744 

4. Discussion 745 

In this study, we found that employing the big-leaf assumption in the SIF-based GPP estimation 746 

would lead to significant underestimation at the half-hourly scale (Figure 1j-1l, Figure 2d), and 747 

this underestimation mainly appeared under intense light conditions (at noon), which thereby 748 

distorted the diurnal patterns of estimated GPP (Figure 3d, Figure 4a-4c). However, when the 749 

interaction of light, canopy structure, and plants’ physiological factors was considered to 750 

provide a more accurate description of the light redistribution within the canopy, the accuracy 751 

of half-hourly GPP estimation could be significantly improved, and the estimation results could 752 

better capture the diurnal pattern of GPP (Figure 1a-1i, Figure 2a-2c, and Figure 3a-3c). The 753 

success of our attempt demonstrated that the unsuitable description of light–structure–754 

physiologica interactions in the big-leaf model is responsible for the poor estimation of the 755 

J/SIF ratio (Figure 4h-4i), thereby influencing the half-hourly GPP estimation. 756 

Due to the shading and absorption effects in the radiation transmission process, incident light 757 

is attenuated from the top to the bottom of the canopy layers and causes vertical gradients of 758 

the light condition and photosynthesis within the canopy (Chen et al., 1999; Yang et al., 2021). 759 

During diurnal cycles, variation in the combination of light intensity and incident angle leads 760 

to the redistribution of light and changes the vertical gradients, which affects the dynamics of 761 



33 

 

qL at different canopy depths (Chang et al., 2021). This can be proved by the simulated diurnal 762 

patterns of PAR and qL (a crucial parameter in MLR-based GPP estimation models) in different 763 

layers under clear sky conditions (Figures S8 and S9). To clarify the impacts of the light 764 

intensity and incident angle (solar zenith angle) on the variation patterns of qL in different 765 

layers, we further controlled the variation in light intensity and incident angle by fixing them 766 

before the simulation and found that the dynamics of light and qL in the upper layers of the 767 

canopy were mainly influenced by the daily variation pattern of light intensity, whereas those 768 

in the lower layer were mainly influenced by the change in the incident angle (Figures S8 and 769 

S9). We also found that the difference in qL at different depths was greater at midday (smaller 770 

SZA) than in the morning and evening (larger SZA), which partly explained the more 771 

significant GPP underestimation at noon (Figure S9). Therefore, the pattern of qL results from 772 

interactions among light, canopy structure, and leaf physiology, which explains why 773 

considering this interaction improved the GPP estimation accuracy in our research. 774 

Our study demonstrated that it is important to select a proper light-canopy interaction 775 

assumption when SIF is used to estimate the half-hourly GPP. The widely used big-leaf model 776 

assumes that the canopy is a big foliage, and thus, all of the leaves in the canopy are considered 777 

sunlit leaves and have the same physiological properties (Gu et al., 2019; Liu et al., 2022). 778 

Therefore, all the leaves in the canopy are considered to be under high-light conditions and 779 

even in a photoinhibition state at midday in summer. As there is a monotonical negative 780 

correlation between qL and light intensity (Han et al., 2022a; Liu et al., 2021), this assumption 781 

would make the qL “over-penalized” at noon, which causes underestimation of the high GPP 782 

values. In comparison, the layered model determines the light levels at different depths so that 783 

not all leaves are assumed to be in a high-light intensity state; thus, it improves the estimation 784 

accuracy and is more consistent with reality. The two-leaf model further counts the effects of 785 

direct light, diffused light, and the clumping condition of leaves to improve the model’s 786 

accuracy. As the model assumes that only a fraction of leaves receives high-intensity direct 787 

light and that many other leaves are under milder diffused light, it describes the real condition 788 

well and can avoid significant underestimation under high-light conditions. 789 

The two-leaf model and layered two-leaf model should be attributed to the merit of two-leaf 790 
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assumptions; however, we used this assumption here differently from that in previous studies. 791 

The two-leaf assumption has been applied in light use efficiency (LUE) photosynthetic modules 792 

integrated into terrestrial ecosystem models (e.g., BEPS models) or SIF simulation models in 793 

previous studies (Cui et al., 2020; Liu et al., 1997) and has been demonstrated to perform well 794 

(Zheng et al., 2020). Previous LUE models used different LUEs to describe the different 795 

physiological characteristics of sunlit and shaded leaves, and the LUE values (LUEshade and 796 

LUEsun) were mostly obtained from calibration or empirical results. As the variations in the 797 

angle and intensity of incident light during the day alter the amount of light penetrating the 798 

lower canopy and lead to highly dynamic overall light conditions, the determination of LUEshade 799 

and LUEsun (which respond to the light condition) without the support of clear mechanisms will 800 

introduce uncertainty in the results. In contrast, our method contains a clear mechanistic 801 

expression of the SIF-GPP relationship. Except for the physiological information included in 802 

the SIF signal, we mainly used qL to capture the differences in the physiological properties of 803 

shaded and sunlit leaves. Because the difference in qL between shaded and sunlit leaves can be 804 

calculated directly using their incident light, our model can show the difference in the 805 

physiological characteristics of shaded and sunlit leaves more clearly and directly; thus, it can 806 

consider the fertilization effect of diffused light without the need for calibration. We 807 

acknowledge that other physiological factors may also contribute to the different photosynthetic 808 

capacities between sunlit and shaded leaves, but we do not consider these contributions in this 809 

study. Nevertheless, recent studies have proven the importance of considering the impact of 810 

light on LUE (Guan et al., 2022, 2021), and the good performance of their modified LUE model 811 

with radiation scalar confirmed that the differences in LUE between sunlit and shaded leaves 812 

are mainly caused by the differences in light conditions, which means that consideration of light 813 

impacts should be good enough to provide relatively accurate estimations.  814 

Even though physiological differences remain between sunlit and shaded leaves that were not 815 

considered in this study, they may influence the performance of two-leaf models. As the 816 

different micro-environments and long-term adaptation may cause differences in physiological 817 

properties (such as the light response) of sunlit and shaded leaves, we evaluated this effect by 818 

using different qL light response curves in sunlit and shaded leaves (Chang et al., 2021) and 819 
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found that it did not significantly influence our results (Figure S10a,b vs. Figure 1a). In addition, 820 

we tried to assign SIF using APAR without considering the different physiological signals of 821 

sunlit and shaded leaves (sunlit ΦF vs. shaded ΦF), and we found that the effect was not 822 

significant (Figure S10c vs. Figure 1a). This result suggests that the differences or estimation 823 

uncertainty in the physiological signals in SIF (ΦF) do not significantly affect the GPP 824 

estimation from the two-leaf model, whereas the difference in qL matters.  825 

Unlike other models proposed in this study, the big-leaf model directly uses the single-leaf qL 826 

to estimate GPP. However, the canopy-scale qL obtained from the relatively accurate GPP 827 

estimations in our study showed a lower sensitivity to incident light than the single-leaf qL 828 

(Figures 8 and 10). The light response of canopy-scale qL is influenced by LAI, but when the 829 

canopy density decreases (with low LAI), it is closer to the single-leaf pattern (Figures 8, 9a). 830 

Therefore, we deduce that the big-leaf assumption might be more acceptable for sparser 831 

canopies with simple structures but not for dense canopies with complex structures. In addition, 832 

as the light response of canopy-scale qL is too complicated to be described by merely one 833 

function (Figures 8 and 9), it might be inefficient to simply correct the leaf-scale response 834 

function (or even use another function type) and then apply it at the canopy scale. This result is 835 

echoed by a previous study showing depression in fluorescence at the leaf level but not in the 836 

canopy of a pine forest (Louis et al., 2006). In that study, the canopy structure also impacts the 837 

canopy-scale pattern by modulating the light penetrating into deeper canopy layers. 838 

Although models with an improved description of the light–structure–physiology interactions 839 

in our study performed well in capturing the diurnal dynamics of GPP, we have to admit that 840 

there are still some uncertainties. First, we used satellite-based LAI rather than ground 841 

observations collected at each site in our study. The possible mismatch or error in these satellite 842 

data may affect the accuracy of GPP estimation. To clarify these problems, we replaced the 843 

GLASS LAI with the ground LAI measurement at the KR-TCK site (only this site had ground 844 

observation of LAI) and found that this did not significantly influence GPP estimation (Figure 845 

S11). Second, there were uncertainties in the satellite-based Ω dataset. Therefore, we also tested 846 

another satellite clumping index dataset at the CA-obs site and found that although there were 847 

differences in the clumping index results, this discrepancy was not passed down to the model 848 
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outputs (Figure S10d vs. Figure 1a). Third, although the comparison between Figure 1 and 849 

Figure S3 demonstrated that the methods used to estimate Ci and the consideration of light 850 

response of stomatal behaviors do not introduce much difference in GPP estimation, and the 851 

iterative method still slightly increased the accuracy. Third, for the layered model, the number 852 

of layers (n) also influences the model performance, and we found that the increase in layer 853 

numbers increased the R2, RMSE, and regression slope but reduced the regression interception 854 

of the relationship between the observed and estimated GPP (Figure S12). However, when the 855 

number of layers was greater than 320, it no longer impacted the accuracy of GPP estimation. 856 

For the layered model using the interactive method to estimate Ci, R2 dropped significantly as 857 

the number of layers continued to increase after reaching 80, but this phenomenon was not 858 

found in the layered model using the simple λ-based method. This result indicated that using 859 

the interactive method makes the model more sensitive to uncertainties in SIF (SIF in each layer 860 

has larger uncertainty as the number of layers increases), even though it had a higher R2 861 

compared to the simple λ-based method. Finally, although we employed the widely accepted 862 

Lambert–Beer’s law and the method proposed by Chen et al. (1999), uncertainty remains in the 863 

description of vertical variation in light. For the quantification of such uncertainty, we employed 864 

the 3-D Discrete Anisotropic Radiative Transfer Model (DART) to validate the PAR estimation 865 

in each layer for three different scenes (Appendix A). The results demonstrated the 866 

effectiveness of Lambert–Beer’s law in describing the vertical profile of PAR for ENF sites (R2 867 

higher than 0.9; Figures A1, A2). However, the results also indicated that violating the canopy 868 

homogenous assumption in the real world would undermine the effectiveness of Lambert–869 

Beer’s law, leading to a less-credible estimation of light distribution in relatively sparse and 870 

highly heterogeneous canopies. Nevertheless, the key point of this study is to highlight the 871 

importance of considering vertical light distribution when using SIF to estimate GPP. Although 872 

we only used the 1-D radioactive transfer models and highly simplified the canopy structure in 873 

this study, the GPP estimates still showed high consistency with the GPP observation. In the 874 

future, combining 3-D models and Lidar measurements would enable a more accurate 875 

estimation of the PAR profile, thereby assisting in a more accurate estimation of GPP via SIF. 876 

There are also some limitations in our study. Although the layered model and two-leaf model 877 
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considered the vertical and horizontal heterogeneity of light conditions and leaf biophysical 878 

properties (mainly the redox state of PSII reaction centers indicated by qL), they do not indicate 879 

that we thoroughly considered the variations in leaf biophysical properties. The inherent 880 

differences in leaves (for example, age, status, and nutrient conditions) were not considered. In 881 

this study, we used the empirical relationship between PAR and qL; however, previous studies 882 

have shown that temperature could also influence qL (Han et al., 2021). We could not consider 883 

the impacts of temperature heterogeneity or other environmental factors within the canopy, 884 

mainly because of the lack of a modeled relationship between qL and temperature and the 885 

difficulty in obtaining the temperature distribution in canopies. This might make the models 886 

incapable of reproducing photoinhibition under high temperatures, which probably explains the 887 

decreased GPP in the afternoon of August 2, 2019, at the CA-obs site (Figure 4g). In addition, 888 

none of the models in our study considered the contribution of understory species, but they are 889 

important for the total photosynthesis of the whole ecosystem (Nunes et al., 2022). As there are 890 

many non-photosynthetic organisms (such as branches and trunks) that block light transmission 891 

within the canopy, the woody fraction, the space among trees, and the orientation of the terrain 892 

slope are also issues that need further consideration (Chang et al., 2021). 893 

5. Conclusion 894 

In this study, we developed SIF-based GPP estimation models with different descriptions of 895 

light–structure–physiological interactions, including a layered model, a two-leaf model, and a 896 

layered two-leaf model. We compared their performances with the big-leaf model on a half-897 

hourly scale at three ENF sites. The results showed that the big-leaf model significantly 898 

underestimated the half-hourly GPP. The underestimation mainly occurred at midday, which 899 

distorted the diurnal dynamics of the estimated GPP. In contrast, the layered model, two-leaf 900 

model, and layered two-leaf model all improved the estimation accuracy. Compared with the 901 

layered model, both the two-leaf model and the layered two-leaf model showed daily patterns 902 

closer to reality, with no significant differences between them. We further investigated the 903 

diurnal dynamics of GPP and qL in different layers and found that the big-leaf and layered 904 

assumptions overestimated the overall light stress at noon and thus “over-penalized” qL, 905 
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leading to the underestimation of GPP. In the morning and afternoon, the leaves on the top 906 

layers of the canopy contributed significantly to the total GPP, but as the solar zenith angle 907 

decreased at noon, leaves from the deeper layers also played an important role. Finally, by 908 

comparing the single-leaf scale qL with the canopy-scale qL (obtained from relatively accurate 909 

GPP estimations), we demonstrated that the canopy-scale qL was less sensitive to light than the 910 

single-leaf scale qL and that the difference was larger for the shaded leaf group or when the 911 

LAI was high.  912 

Appendix 913 

 914 

Figure A1. The nadir view (a, d) and the side view (b, e) of the 3-D scene, and the accuracy of PARi 915 

estimated using Lambert–Beer’s law (c, f). The method was examined in canopies with different densities. 916 

Canopies were divided into 16 layers, and the PAR in each layer (PARi for layer i) was calculated when 917 

SZA =0°, 9°, 18°, 27°, 36°, 45°, 54°, 63°, 81°. (a-c) shows the condition in a relatively sparse canopy, 918 

and (d-f) shows the condition in a dense canopy. 919 
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 920 

Figure A2. The accuracy of PARi estimated using Lambert–Beer’s law in a turbid canopy (more 921 

homogenous; LAI=2). PAR in each layer (PARi for layer i) was calculated when SZA =0°, 9°, 18°, 27°, 922 

36°, 45°, 54°, 63°, 81°.  923 
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Figure 11. The performance of different models in estimating the half-hourly (or hourly) GPP. 1285 

Each row represents the results of different methods, and each column represents the results of 1286 

different ENF sites. (a)-(c), (d)-(f), (g)-(i), and (j)-(l) show the performance of the two-leaf, 1287 
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layered, layered two-leaf, and big-leaf models, respectively. The figures in the first column 1288 

show the GPP estimation tested at the CA-obs site, the figures in the second column show the 1289 

results of the US-NR1 site, and those in the last column show the results of the KR-TCK site. 1290 

All GPP estimations in this figure used the iterative method to estimate Ci. The color of the 1291 

dots represents the corresponding air temperature, the dashed black line is the regression line, 1292 

and the solid red line is the 1:1 line. 1293 

Figure 22. Time series of GPP observations and GPP estimates from the (a) two-leaf, (b) 1294 

layered, (c) layered two-leaf, (d) big-leaf, and (e) linear models using the empirical linear 1295 

relationship between SIF and GPP and from the (f) nonlinear model based on the empirical 1296 

relationship between SIF and GPP. The grey dots represent the half-hourly observations, and 1297 

the pink dots represent the GPP estimates. Here, we only displayed the results from the CA-obs 1298 

site using the iterative method for estimating Ci. 1299 

Figure 33. Diurnal dynamics of GPP observation and GPP estimates from (a) the two-leaf, (b) 1300 

layered, (c) layered two-leaf, (d) big-leaf, (e) linear, and (f) nonlinear models. Variables with 1301 

the suffix “_iter” refer to GPP estimation with Ci estimated using the iterative method, and 1302 

variables with the suffix “_lambda” refer to GPP estimation with Ci estimated via the simple λ-1303 

based method. This figure shows the results from the CA-obs site using all of the half-hourly 1304 

data obtained during the entire study period. The solid lines represent the average dynamics, 1305 

and the shaded areas represent 95% confidence intervals. Similar results were obtained at the 1306 

other sites. 1307 

Figure 44. Comparison between the diurnal dynamics of GPP estimations from the big-leaf 1308 

model and the (a) layered, (b) two-leaf, and (c) layered two-leaf models and the corresponding 1309 

(d) incident PAR, (e) temperature, (f) SIF, and (g) GPP on July 29, 2019, and August 2, 2019. 1310 

(h) shows the changes in estimated J/SIF ratio, and (i) shows the dynamics of estimated J using 1311 

the big-leaf model. The shaded areas represent the 95% interval. All the data used in this figure 1312 

were obtained from the CA-obs half-hourly dataset. 1313 

Figure 55. Diurnal dynamics of GPP estimation in different layers. The GPP estimations in (a) 1314 

and (b) came from the layered model, and the GPP estimations in (c) and (d) came from the 1315 
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layered two-leaf model. The color of the dots represents the layer index, and a larger number 1316 

represents a deeper location within the canopy. The LAI of each layer in this figure can be 1317 

calculated as total LAI/10. 1318 

Figure 66. Depths of the layer above which the leaves contributed 80% of the total GPP on 1319 

July 29, 2019, and August 2, 2019. Data used for depth estimation and plotting were half-hourly 1320 

estimations from (a) the layered model and (b) the layered two-leaf model at the CA-obs site.  1321 

Figure 77. (a) Diurnal variation in the GPP contribution of shaded leaves; (b) seasonal variation 1322 

in the GPP contribution of shaded leaves; (c) diurnal variation in the LAI fraction of shaded 1323 

leaves; (d) seasonal variation in the LAI fraction of shaded leaves. The cross-marks in the plots 1324 

represent the outliers, the black dots represent the mean values of each box, and the green lines 1325 

represent the median values of each box. 1326 

Figure 88. The light response of single-leaf qL (in red), canopy-scale qL obtained from the 1327 

layered model (in gray), and canopy-scale qL from the two-leaf model (in pink). The PAR label 1328 

of the x-axis refers to the incident PAR obtained at the top of the canopy. 1329 

Figure 99. The impact of LAI on the light response of the (a) canopy-scale qL from the two-1330 

leaf model; (b) canopy-scale qL of sunlit leaves; (c) canopy-scale qL of shaded leaves. The 1331 

color of the dots represents the corresponding LAI. The PAR label of the x-axis refers to the 1332 

incident PAR obtained at the top of the canopy. 1333 

Figure 1010. The diurnal patterns of single-leaf qL (red lines), canopy qL from the layered 1334 

model (black lines), canopy-scale qL from the two-leaf model (green lines), and the qL in 1335 

different layers of the canopy (colored scatters). The color of the dots represents the layer index, 1336 

and the larger number represents the deeper location within the canopy. The LAI of each layer 1337 

in this figure can be calculated as total LAI/10. 1338 
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Abstract 18 

Solar-induced chlorophyll fluorescence (SIF) has long been regarded as a proxy for 19 

photosynthesis and has shown superiority in estimating gross primary production (GPP) 20 

compared to traditional vegetation indices, especially in evergreen ecosystems. However, 21 

current SIF-based GPP estimations regard the canopy as a large leaf and seldom consider the 22 

impact of interactions among light, canopy structure, and leaf physiology. In this study, we 23 

proposed GPP estimation models with different descriptions of light–structure–physiology 24 

interactions (including the layered model, the two-leaf model, and the layered two-leaf model) 25 
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and compared their performances with the big-leaf model using half-hourly (or hourly) 26 

observations at evergreen needleleaf forest sites. First, we found that the big-leaf model 27 

underestimated GPP, especially at noon. All models showed higher accuracy than that of the 28 

big-leaf model. Second, we investigated the diurnal dynamics of GPP estimations in each 29 

canopy layer and found that models with a two-leaf assumption captured the diurnal variations 30 

in GPP better than that with the layered assumption. We also deduced that the poor performance 31 

of the big-leaf model was related to its overestimation of the overall light stress on the redox 32 

state of PSII reaction centers (qL). Finally, we noticed that the qL at the canopy scale had lower 33 

sensitivity to light change than the single-leaf qL and that the light response of canopy-scale qL 34 

was influenced by the leaf area index during seasonal cycles. Overall, this study describes 35 

methods to accurately estimate sub-daily GPP from SIF in evergreen needleleaf forests and 36 

demonstrates that the interactions among light, canopy structure, and leaf physiology regulate 37 

the SIF-GPP relationship at the canopy scale. Further, it indicates the need to consider the 38 

description of light distribution within the canopy in next-generation terrestrial biosphere 39 

models, even if they incorporate SIF to constrain their parameterization. Thus, upscaling the 40 

established leaf-scale mechanistic SIF-GPP relationship or findings to canopy-scale 41 

applications still requires much work, especially when there are significant changes in 42 

environmental conditions and their within-canopy distributions. 43 

Keywords: solar-induced chlorophyll fluorescence (SIF); gross primary productivity (GPP); 44 

two-leaf model; layered model; evergreen needle forests 45 

1. Introduction 46 

Photosynthesis in terrestrial ecosystems plays an important role in the global carbon cycle, 47 

offsetting approximately 30% of anthropogenic carbon dioxide (CO2) emissions over the past 48 

century (Friedlingstein et al., 2020). Compared to ocean carbon sinks, land carbon cycles are 49 

sensitive to climate change and are highly unstable (Ciais et al., 2005; Friedlingstein et al., 2020; 50 

Luijkx et al., 2015; Maia et al., 2020), making them a crucial but largely uncertain part of global 51 

change studies. As one of the largest fluxes in the terrestrial carbon cycle (Wang et al., 2022b), 52 
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gross primary production (GPP) indicates the CO2-assimilation ability of vegetation and is the 53 

foundation of many ecosystem functions and services (for example, providing food and fiber, 54 

altering local climate, and regulating the land–air interaction process) (Migliavacca et al., 2021; 55 

Ryu et al., 2019; Xiao et al., 2019). However, substantial difficulties and uncertainties in GPP 56 

quantification at a large scale remain despite decades of research (Ryu et al., 2019).  57 

Before the emergence of state-of-art solar-induced chlorophyll fluorescence (SIF) techniques, 58 

ground GPP data were mainly obtained from in situ measurements of eddy covariance flux 59 

towers with limited spatial representativeness, and global GPP products were either model-60 

based estimates, including light use efficiency models and process models, such as VPM 61 

(Zhang et al., 2017) and BEPS (Chen et al., 1999), or upscaled values from flux tower 62 

observations (for example, FLUXCOM) (Jung et al., 2019). These traditional GPP 63 

measurements and products are either not ideal for supporting the analyses on large 64 

spatiotemporal scales due to significant regional bias or are based on multiple large 65 

simplifications and assumptions (Anav et al., 2015; Wang et al., 2022a), leading to large 66 

uncertainties and divergence in their long-term trends (Cai et al., 2014; Wang et al., 2022a; 67 

Zheng et al., 2020). Remote-sensing methods based on vegetation indices (VIs) could partly 68 

capture the dynamics of photosynthesis and assist in the estimation of GPP, buthe effectiveness 69 

of VIs-based methods is mainly related to their representativeness of vegetation greenness (Li 70 

and Xiao, 2020), indicating that they might lose their power in ecosystems with an almost 71 

invariant canopy structure (such as evergreen forests) (Magney et al., 2019). The rapid 72 

development of SIF measurement and retrieval methods has facilitated the monitoring of 73 

photosynthetic dynamics on a large scale (Guanter et al. 2021; Joiner et al. 2011, 2016; 74 

Mohammed et al. 2019; Schimel et al. 2015; Sun et al. 2017; Du et al., 2022), although some 75 

limitations still exist, such as the sparse sampling or coarse spatial resolution of current satellite-76 

based SIF products. SIF is the electromagnetic signal emitted by chlorophyll molecules after 77 

absorbing solar radiation. Together with non-photochemical quenching (NPQ) and 78 

photochemical reactions, SIF consumes the total absorbed light inside plants. Therefore, SIF 79 

contains information on physiology that can be detected using remote sensors (Porcar-Castell 80 

et al., 2014). Numerous studies have demonstrated the tight link between SIF and GPP, although 81 
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studies also show the decoupling of SIF and GPP during mild stress events (Helm et al., 2020; 82 

Marrs et al., 2020) and changes in their relationship at different spatiotemporal scales (Magney 83 

et al., 2020). Further, SIF is employed as a proxy for photosynthesis in many agricultural, 84 

ecological, and Earth system studies (Sun et al., 2015; Wang et al., 2020; Y. Zhang et al., 2020). 85 

Several studies have directly used the empirical relationship to estimate GPP via SIF 86 

observations, even though this relationship has been proven to be biome-specific (Damm et al., 87 

2015; Liu et al., 2017).  88 

Although both SIF and GPP are largely driven by absorbed photosynthetic active radiation 89 

(APAR) at the canopy scale (Du et al., 2017; Miao et al., 2018), discrepancies between them 90 

remain. The possible discrepancy between LUE and ΦF × fesc is one of the essential 91 

explanations for the dynamic relationship or decoupling between SIF and GPP. The 92 

physiological dynamics in the ΦF-LUE relationship (Porcar-Castell et al., 2014) theoretically 93 

influence the SIF-GPP relationship, and the positive correlation between LUE and fesc (for far-94 

red SIF) found at the seasonal scale also strengthens the link between SIF and GPP (Liu et al., 95 

2020). These mechanisms result in the coupling of SIF and GPP as a mixture of canopy 96 

structure interference and physiological processes. Recent studies have demonstrated the 97 

variant physiological linkage between SIF and GPP (Magney et al., 2020), which can be 98 

influenced by the environment and the status of the plant (for example, stress conditions and 99 

development stages) (Chen et al., 2022b, 2022a; Kim et al., 2021; Paul-Limoges et al., 2018; 100 

Zhuang et al., 2020). Even for evergreen needleleaf forests (ENF) with little variation in fesc 101 

during seasonal cycles, SIF does not change in perfect agreement with GPP and shows lower 102 

sensitivity to environmental changes (Pierrat et al., 2022b; Yang et al., 2022). 103 

Therefore, accurate estimation of GPP using SIF requires the construction of a mechanistic 104 

model with the help of physiological findings. The mechanistic light response (MLR) model 105 

proposed by Gu (2019) links the quantitative SIF-GPP relationship to active fluorescence 106 

parameters with specific physiological meanings, such as qL (the fraction of opened PSII 107 

reaction centers) and ΦPSIImax (the maximum photochemical quantum yield of PSII). In this 108 

model, qL is a key parameter influenced by the actual illumination condition of leaves; thus, 109 

the dynamics of qL are crucial to SIF-based GPP estimations in diurnal cycles. The 110 
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effectiveness of the MLR model has already been demonstrated by a previous leaf-scale study 111 

(Han et al., 2022b) but has not been extensively tested at the canopy scale or long time scales. 112 

One study has attempted to directly estimate GPP from canopy SIF in a winter-wheat field (Liu 113 

et al., 2022), but it is based on the big-leaf assumption. The big-leaf assumption regards 114 

vegetation as a large flat leaf and assumes the same leaf property and the same direct and diffuse 115 

radiation conditions in the canopy (Guan et al., 2022; McCallum et al., 2013; Sellers et al., 116 

1992). Therefore, GPP estimations using this method neglect the possible impact of the light 117 

distribution (caused by the three-dimensional structure) within the canopy. This assumption is 118 

acceptable for crops with a simple structure and low height (anthropogenic ecosystems), as 119 

indicated by the model’s success in direct SIF-based estimation in Liu’s study (2022), but it 120 

may be unsuitable for natural ecosystems with complex canopy structures. The big-leaf 121 

assumption does not cause much uncertainty at the seasonal scale, but is unsuitable for the half-122 

hourly estimation of GPP in forests (Chen et al., 1999). Diurnal changes in incident light 123 

interplay with the canopy structure, leading to a dynamic vertical gradient (redistribution) of 124 

light within the canopy. This interaction changes the actual light environment faced by each 125 

leaf, thereby causing vertical variations in the biophysical status of leaves and influencing the 126 

diurnal patterns of SIF and GPP (Chang et al., 2021). Therefore, it is necessary to consider the 127 

dynamic light and its interaction with the canopy structure and leaf physiology along the 128 

vertical dimension when using canopy SIF observations to estimate the half-hourly GPP in 129 

forest ecosystems. Recently, some studies using the LUE framework considered the impact of 130 

vertical light gradient on LUE and improved the GPP estimation(Guan et al., 2022, 2021), but 131 

there are no study directly considering the impact of vertical light gradient on SIF-GPP 132 

relationship to improve SIF-based GPP estimation at sub-daily scales. 133 

Previous leaf-scale observations at two ENF sites have demonstrated that knowledge of sub-134 

canopy and diurnal patterns of irradiance can assist in the investigation of physiological 135 

constraints on fluorescence (Maguire et al., 2020), but there have been few canopy-scale studies 136 

accounting for this issue. Recently, an observational study investigated the contributions of 137 

understory and midstory SIF to the total SIF, and it showed the different relationships between 138 

GPP and SIF in different layers (Morozumi et al., 2023). In addition, total emitted SIF was 139 
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found to outperform top-of-canopy SIF in GPP estimation in many observational studies (Liu 140 

et al., 2020; Lu et al., 2020; Zhang et al., 2020), which indicate the importance of considering 141 

vertical variations within the canopy. There was also a study combining hyperspectral 142 

observations at different canopy layers with SCOPE modeling to estimate the total SIF in a 143 

subtropical evergreen forest. The results of that study showed that using the layered SIF benefits 144 

GPP estimation (Zhu et al., 2023). These studies highlight the importance of considering canopy 145 

vertical heterogeneity in the interpretation and application of SIF (Chang et al., 2021). 146 

The vertical distribution of light plays an important role in the canopy’s vertical heterogeneity. 147 

It should be considered in SIF-based GPP estimation since it impacts both the source energy 148 

for photosynthesis and the photosynthetic response of spectral fluorescence (Rajewicz et al., 149 

2023). Dividing the canopy into several layers and estimating the GPP for each layer separately 150 

may be a solution that can be used to consider the vertical distribution of light, but does not 151 

consider the situation in which there may be two types of leaves irradiated by direct light or 152 

scattered light at the same depth in the canopy. Under high light conditions, leaves exposed to 153 

direct light are likely to be light-saturated or even photoinhibited, whereas leaves exposed to 154 

scattered light can still photosynthesize efficiently. Therefore, differentiating sunlit and shaded 155 

leaves can improve the SIF-based GPP estimation (Zhang et al., 2023). Being widely used in 156 

terrestrial biosphere models, the two-leaf model divides the leaves into shaded and sunlit leaves 157 

and describes the different light environments faced by them (Chen et al., 1999; Guan et al., 158 

2022; He et al., 2013). Thus, this method considers the different effects of direct and scattered 159 

light on plant photosynthesis. However, because it uses the overall light environment of shaded 160 

leaves and does not explicitly describe the scattered light gradient in the vertical direction, we 161 

are unsure whether this simplification will significantly impact the SIF estimation of GPP. The 162 

methods described above illustrate within-canopy light distribution in different ways, but we 163 

cannot directly determine the description that is more suitable for SIF-based half-hourly GPP 164 

estimation in ENFs. 165 

Therefore, in this study, we used SIF to estimate GPP using tower-based observations at ENF 166 

sites under the framework of the MLR model. We employed a layered model (separating leaves 167 

into several layers), a two-leaf model (separating leaves into sunlit and shaded groups), and a 168 
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layered two-leaf model (separating leaves into sunlit and shaded groups for each layer) to 169 

describe the interaction among the light conditions, canopy structure, and leaf physiology to 170 

estimate half-hourly GPP. We then compared the effectiveness of these three models with that 171 

of the big-leaf assumption and analyzed their performances in tracking GPP dynamics during 172 

the day. With the help of accurate GPP estimation results, we obtained the canopy-scale qL, 173 

determined its light response pattern, and compared it with the leaf-scale pattern. In this study, 174 

we attempted to answer the following questions:1. How can SIF-based GPP estimates be 175 

improved at the half-hourly scale, and how does the big-leaf assumption affect the SIF-based 176 

GPP estimation at ENF sites? 2. What are the differences in the performance of models with 177 

different descriptions of light–structure–physiology interactions (including layered, two-leaf, 178 

and layered two-leaf models)? 3. How does the redistribution of light within the canopy affect 179 

the diurnal variation and vertical distribution pattern of GPP and plants’ physiological 180 

properties (qL)? 4. What is the difference in the light responses of the overall qL (referred to as 181 

“canopy-scale qL” in the following part) and the single-leaf qL, and what factors can explain 182 

this difference? 183 

2. Materials and Methods  184 

2.1 Study Sites 185 

In this study, we used tower-based SIF and GPP observations from three open-access ENF sites 186 

to examine the performance of our methods; to investigate the dynamics of the estimated GPP, 187 

light conditions, and qL at different canopy depths; and to obtain the canopy-scale qL. Among 188 

these sites, the data for the boreal forest site (Southern Old Black Spruce, located in Canada, 189 

site ID: CA-Obs) was obtained from FLUXNET and spanned September 2018 to December 190 

2020 (Pierrat et al., 2022); the data for subalpine conifer forest site (Niwot Ridge, located in 191 

America, site ID: US-NR1) was obtained from AmeriFlux, and had observations from 192 

September 2017 to June 2018 (Magney et al., 2019); and the data for the temperate ENF site 193 

(located in Taehwa Mountain in South Korea, site ID: KR-TCK) was obtained from AsiaFlux, 194 

covering measurements from September 2018 to December 2018 (Kim et al., 2021). The 195 
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photosynthetic active radiation (PAR) averages of the observations were similar during the 196 

study period (for the KR-TCK site, 680.59 μmol/m2/s; for the CA-obs site, 607.22 μmol/m2/s; 197 

for the US-NR1site, 689.06 μmol/m2/s). The annual average air temperature at these sites was 198 

1.4 °C (CA-obs), 1.5 °C (US-NR1), and 12.7 °C (KR-TCK). Other detailed information 199 

regarding these sites is provided in Table S1. We tested the landscape heterological conditions 200 

around the sites via visual interpretation using the Google Earth platform, and images of the 201 

landscape conditions around these sites are shown in Figure S1. Using the ratio of 30 m NDVI 202 

(the normalized difference vegetation index) to 250 m NDVI as the indicator of 203 

representativeness, we found that all sites are generally homogeneous and have fine 204 

representativeness (close to 1; Figure S2).  205 

2.2 Datasets  206 

All the SIF data used in this research were obtained from canopy-scale measurements using 207 

tower-based monitoring systems. For the CA-obs site, the average canopy height was 208 

approximately 16 m, and a scanning spectrometer system (Photospec) was installed at the top 209 

of a 26 m tower to obtain the canopy SIF (Pierrat et al., 2022). The PhotoSpec system enables 210 

SIF retrieval in the red (680–686 nm) and far-red (745–758 nm) wavelength ranges (Grossmann 211 

et al., 2018), as well as supports the calculation of vegetation indices due to its moderate 212 

resolution at the corresponding wavelengths. The US-NR1 site also used the Photospec system 213 

fixed on the top of a tower (also 26 m above the ground) and measured the spectra with a time 214 

resolution of ∼20 s per measurement (Magney et al., 2019). SIF values at both CA-obs and US-215 

NR1 sites were retrieved using a Fraunhofer-line-based based fitting algorithm (Grossmann et 216 

al., 2018), and the SIF retrieval error was lower than 0.2 Wm2/sr/μm at the CA-obs site. For the 217 

KR-TCK site, the average canopy height was approximately 20 m, and observations were 218 

measured using a QE Pro system installed at the top of the 40 m tower. At this site, only far-red 219 

SIF (760 nm) was retrieved using the Singular Vector Decomposition (SVD) method, and SIF 220 

values with rRMSE larger than 25% were removed to ensure data quality. The spectral 221 

reflectance at this site was collected using Jaz spectroradiometers (Ocean Insight, Dunedin, FL, 222 

USA), which cover a spectral range of 350–1020 nm (Kim et al., 2021). Notably, the unit of 223 
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SIF measurements at both the CA-obs and US-NR1 sites was mW/m2/nm/sr due to the 224 

hemispherical–conical configuration of Photospec, whereas the unit of SIF measurements at 225 

the KR-TCK site was mW/m2/nm because two cosine correctors were used to obtain the 226 

hemispheric SIF.  227 

GPP measurement relies on the eddy covariance technique. For all sites, a 3-D sonic 228 

anemometer and infrared gas analyzer fixed on the flux towers were used to measure the wind 229 

speed and CO2 concentration, which allowed calculation of the 30 min net ecosystem exchange 230 

(NEE) using Eddy-Pro software. Then, various preprocessing procedures, including data 231 

quality control, night-time CO2 flux corrections, and gap filling, were employed on the NEE 232 

time series; finally, GPP was obtained after the partition step (Barr et al., 2004; Reichstein et 233 

al., 2005; Wutzler et al., 2018).  234 

In addition to GPP observations, the flux tower provides meteorological data every 30 min. In 235 

this study, we mainly used air temperature, PAR, and relative humidity data. Using air 236 

temperature and relative humidity, we further determined the vapor pressure deficit according 237 

to Tetens’s formula (Monteith and Unsworth, 1990) for describing atmospheric dryness and 238 

calculating carbon-reaction-related parameters: 239 

𝑉𝑃𝐷 = 0.61078 × 𝑒
17.27×𝑇𝑎
𝑇𝑎+237.3 × (1 − 𝑅𝐻) (1) 240 

where 𝑇𝑎  is the air temperature (°C), RH is relative humidity (%), and VPD is the vapor 241 

pressure deficit (kPa). In our study, the unit of VPD was converted to Pa. By averaging the 242 

records every half hour, all these sites provided a continuous time series of observations at a 243 

temporal resolution of 30 min, except US-NR1 (because only hourly GPP was obtained at this 244 

site). Based on the 30 min incident PAR and the PAR at the top of the atmosphere (which was 245 

calculated using the latitude, longitude, and corresponding time), we calculated the clearness 246 

index following the method in Chen et al. (1999) to describe the weather condition and 247 

determine the ratio of direct to diffuse light in the two-leaf model: 248 

CI =
PAR

PARTOA
=

PAR

𝑆0 × 0.46
 (2) 249 
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where S0 represents the solar constant (1367 W/m2), and 0.46 is the fraction of PAR in the 250 

incoming solar radiance. We used 0.219 covert the unit of PAR (from μmol/m2/s to W/m2) in 251 

this equation. 252 

In this study, we also used the leaf area index (LAI) and clumping index (Ω) to describe canopy 253 

structure. The LAI data used in this research were obtained from a GLASS LAI product with 254 

500 m spatial resolution (Xiao et al., 2014), and the Ω data were also from a 500 m satellite 255 

product generated based on MODIS products (Jiao et al., 2018). The time series of LAI and Ω 256 

were extracted according to the location of each site, and the possible uncertainties introduced 257 

by satellite products were tested using ground measurement LAI data at the KR-TCK site. We 258 

also used another clumping index dataset to clarify the uncertainties introduced by different 259 

satellite clumping index products (Li and Fang, 2022). To estimate the escape probability of 260 

SIF photons (details in Section 2.5, equation 18), we also employed NDVI, NIR (near-infrared 261 

reflectance), and fPAR using the in situ measurements provided by each site (Kim et al., 2021; 262 

Magney et al., 2019; Pierrat et al., 2022a). More details can be found in the original papers 263 

(Kim et al., 2021; Magney et al., 2019; Pierrat et al., 2022a). 264 

2.3 The framework of SIF-based GPP estimation  265 

In this study, we used the framework of the MLR model to estimate GPP at three ENF sites. 266 

According to previous work (Gu et al., 2019), the electron transportation rate (J) can be 267 

expressed using the full-band PSII SIF (SIFfull) and fluorescence kinetics parameters: 268 

𝐽 =
(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 (3) 269 

where SIFfull refers to the total full-band PSII SIF (unit: μmol/m2/s, calculation details in Section 270 

2.5); qL is the fraction of opened PSII reaction centers; ΦPSIImax is the maximum photochemical 271 

quantum yield of PSII; and kdf is the ratio of the rate constant for constitutive heat loss to the 272 

rate constant for fluorescence emission, which is almost a constant (Zaks et al., 2012). In this 273 

study, we used kdf = 9, which was in accordance with previous measurements (Liu et al., 2022). 274 

qL can be expressed as an exponential function of light (Liu et al., 2021a), and ΦPSIImax can be 275 

estimated using a quadratic function of temperature due to its high correlation with temperature 276 
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(Swoczyna et al., 2022; Vitale et al., 2012):  277 

𝑞𝐿 = 𝑎𝐿  𝑒−𝑏𝐿𝑃𝐴𝑅 (4) 278 

𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥 = 𝑎 𝑇𝑎
2 + 𝑏𝑇𝑎 + 𝑐 (5) 279 

where Ta represents the temperature, and PAR is the photosynthetic active radiance. We took 280 

aL = 1, bL = 0.001, a = -0.0011, b = 0.036, and c = 0.44, according to previous studies (Feng et 281 

al., 2021). The values of aL and bL are consistent with previous studies (Feng et al., 2021), and 282 

the values of a, b, and c were fitted based on long-term pulse amplitude modulation (PAM) 283 

observations (for details, see Text S1). 284 

Notably, J in the MLR model represents the actual electron transport rate, which is possible 285 

because the SIF in this model already contains information about the light reaction in 286 

photosynthesis. Thus, this SIF-based model does not require the complex estimation of Jmax 287 

(maximum electron transport rate) and comparison of Ac (rubisco-limited photosynthesis) and 288 

Aj (RuBP-limited photosynthesis), which is crucial in the widely used FvCB model (Farquhar 289 

et al., 1980). 290 

For the quantitative relationship between J and GPP, we referred to the FvCB model and used 291 

the following equation: 292 

𝐺𝑃𝑃 = 𝐽
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
 (6) 293 

where 𝐶𝑖 is the intercellular CO2 partial pressure, and Γ* is the photocompensation point of 294 

CO2 in the absence of dark respiration. The estimation of 𝐶𝑖 and Γ* is included in Section 2.6. 295 

Finally, combining Equations 3 and 6, we used the following model to estimate GPP (Gu et al., 296 

2019): 297 

𝐺𝑃𝑃 =
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥
𝑆𝐼𝐹𝑓𝑢𝑙𝑙  (7) 298 

2.4 Description of interactions among light, canopy structure, and leaf physiology  299 

Compared to the vertical distribution of environmental factors such as temperature and moisture, 300 
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the vertical distribution of light exposure of leaves within the canopy is highly dynamic during 301 

diurnal cycles. Because the intensity and angle of incident light vary significantly with time, 302 

light is redistributed when it penetrates the canopy, resulting in a changing vertical gradient and 303 

horizontal heterology in within-canopy illumination. Furthermore, one of the key parameters 304 

in the MLR model, qL, is highly sensitive to changes in light. Therefore, diurnal variation in 305 

light affects SIF and GPP by interfering with the canopy-scale APAR, and it also alters the 306 

relationship between SIF and GPP by regulating the qL of individual leaves. Therefore, the 307 

dynamics of the SIF-GPP relationship and canopy-scale qL (the overall qL) at the half-hourly 308 

scale are the result of the interaction among light, canopy structure, and plants’ physiological 309 

properties, which should be described well for the accurate estimation of half-hourly (or hourly) 310 

GPP. In this study, we proposed and compared methods with different assumptions (layered, 311 

two-leaf, and layered two-leaf assumptions) to describe the manner in which the canopy 312 

structure affects light distribution and qL. 313 

2.4.1 Construction of a layered model 314 

First, we used a layered model to capture the vertical gradient of light. This method separates 315 

the canopy into several layers and estimates the GPP for each layer. Adding these GPP values, 316 

we obtained the GPP of the entire canopy (the layered GPP in this study). The canopy layers 317 

were divided according to the canopy optical depth of LAI rather than vertical height. Therefore, 318 

a layer with a higher index indicated a location in a deeper canopy. The GPP estimation in each 319 

layer followed the MLR framework in Equation 7, and product of APAR and ΦF was used to 320 

divide SIFfull of the whole canopy into the full-band PSII SIF of different layers: 321 

𝑆𝐼𝐹𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑖 × 𝛷𝐹𝑖

∑ 𝐴𝑃𝐴𝑅𝐿 × 𝛷𝐹𝐿
𝑛
𝐿=1

  (8) 322 

where n represents the total number of layers; i is the layer index (ranging from 0 to n-1, where 323 

i = 0 represents the top layer); and SIFi, APARi, and ΦFi represent the full-band PSII SIF, APAR, 324 

and ΦF in layer i, respectively. We used n = 10 in this research, and to assess the uncertainty 325 

introduced by the value of n, we tested different values (n = 5, 10, 20, 40, 80, 160, 320, and 326 

640) to examine the impact of the model performance. 327 
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In this method, we simplified the radiative transmission process and did not account for the 328 

impacts of leaf single scattering albedo, the fraction of diffused light, and the absorption and 329 

reflectance of soil backgrounds. Therefore, the APAR for each canopy layer can be expressed 330 

as the difference between the PAR at the top of this layer and the PAR at the top of the next 331 

layer (Chang et al., 2021). Here, APARi is represented as the difference between the PAR in 332 

layer i+ 1 (PARi+1) and that in layer i (PARi), ΦFi can be estimated using a fitted function of 333 

PARi (Liu et al., 2021), and PARi can be obtained according to Lambert–Beer’s law: 334 

𝐴𝑃𝐴𝑅𝑖 = 𝑃𝐴𝑅𝑖 − 𝑃𝐴𝑅𝑖+1 (9) 335 

 𝑃𝐴𝑅𝑖 = 𝑃𝐴𝑅 × 𝑒
−

0.5×𝛺×𝐿𝐴𝐼𝑎𝑖
cos (𝑆𝑍𝐴)  (10) 336 

where PAR is the incident PAR at the top of the canopy, LAIai is the accumulated LAI from the 337 

top to layer i (equal to LAI × i/n), 𝛺 is the clumping index, and SZA is the solar zenith angle. 338 

Combining Equations 9 and 15, we can obtain the qL of layer i and use it to estimate the GPP 339 

of layer i (GPPi). Although ΦFi can be influenced by many other factors, PAR contributes 340 

significantly to its vertical variation. Compared to the variation in APAR, variation in ΦF is 341 

usually small (Van der Tol et al., 2014) and may not significantly influence the results. We 342 

examined the model’s performance when solely APAR was used for the SIF partition to clarify 343 

the contribution of ΦF to the model’s performance. 344 

2.4.2 Construction of the two-leaf model 345 

The second method used to describe light–structure interaction is based on the two-leaf model 346 

proposed by Chen et al. (1999), which considers different illumination conditions in the 347 

horizontal direction. In the two-leaf model, the leaves are separated into sunlit and shaded 348 

groups, and the total GPP is calculated using the sum of GPPs from sunlit and shaded leaves. 349 

Similar to the layered model, we divided the SIFfull of the entire canopy into SIFshade and SIFsun 350 

according to APAR × ΦF. Here, APARshade, and APARsun could be estimated using the 351 

following equations: 352 

APAR𝑠𝑢𝑛 = (1 − a) ∗ PAR𝑠𝑢𝑛 ∗ LAI𝑠𝑢𝑛 (11) 353 

APAR𝑠ℎ𝑎𝑑𝑒 = (1 − a) ∗ PAR𝑠ℎ𝑎𝑑𝑒 ∗ LAI𝑠ℎ𝑎𝑑𝑒 (12) 354 
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where a represents the leaf albedo, taken as 0.15 for evergreen needle forests according to a 355 

previous study (He et al., 2013), and PAR𝑠𝑢𝑛, PAR𝑠ℎ𝑎𝑑𝑒, LAI𝑠𝑢𝑛, and LAI𝑠ℎ𝑎𝑑𝑒 are directly 356 

calculated using the equations in the work of Chen et al. (1999) (Details in Supplementary Text 357 

S2). Because the two-leaf model includes the effects of direct PAR and diffuse PAR, calculating 358 

these parameters requires the clearness index for the partition of PAR: 359 

𝑃𝐴𝑅𝑑𝑖𝑓 = 𝑃𝐴𝑅 × (0.7527 + 3.8453𝐶𝐼 − 16.316𝐶𝐼2 + 18.962𝐶𝐼3 − 7.0802𝐶𝐼4) (13) 360 

𝑃𝐴𝑅𝑑𝑖𝑟 = 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑑𝑖𝑓 (14) 361 

where PARdif is the diffuse PAR, PARdir is the direct PAR, and CI is the clearness index. 362 

2.4.3 Construction of the layered two-leaf model 363 

Finally, although the two-leaf model considered the different light conditions for sunlit and 364 

shaded leaves, it only divided the leaves into two groups and used PARshade to represent the 365 

overall illumination of shaded leaves. This simplification neglected the vertical gradient of 366 

diffuse PAR in the canopy, which may introduce uncertainty in ecosystems with large tree 367 

heights. To examine whether this issue will influence GPP estimation, we combined the layered 368 

model and the two-leaf model to establish a layered two-leaf model. In this model, SIFi in layer 369 

i was still allocated to SIFshade_i and SIFsun_i based on APAR×ΦF. Therefore, SIFsun and SIFshade 370 

in layer i and were expressed as the following equations: 371 

𝑆𝐼𝐹𝑠𝑢𝑛_𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝑖 × 𝛷𝐹𝑠𝑢𝑛_𝑖

∑ 𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝐿 × 𝛷𝐹𝐿 + ∑ 𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝐿 × 𝛷𝐹𝑠𝑢𝑛_𝐿
𝑛
𝐿=1

𝑛
𝐿=1

  (15) 372 

𝑆𝐼𝐹𝑠ℎ𝑎𝑑𝑒_𝑖 = 𝑆𝐼𝐹𝑓𝑢𝑙𝑙 ×
𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝑖 × 𝛷𝐹𝑠ℎ𝑎𝑑𝑒_𝑖

∑ 𝐴𝑃𝐴𝑅𝑠ℎ𝑎𝑑𝑒_𝐿 × 𝛷𝐹𝐿 + ∑ 𝐴𝑃𝐴𝑅𝑠𝑢𝑛_𝐿 × 𝛷𝐹𝑠𝑢𝑛_𝐿
𝑛
𝐿=1

𝑛
𝐿=1

  (16) 373 

By replacing LAI with LAIai (accumulated LAI from the top to the layer i, equals to LAI×i/n) 374 

in Chen’s work (1999), we calculated PARsun_i and PARshade_i in layer i; by dividing the LAIi 375 

into sunlit fraction and shaded fraction, we obtained LAIsun_i and LAIshade_i; finally, using 376 

equations similar to Equations 11 and 12, we obtained APARsun_i and APARshade_i. In the 377 

combined model (layered two-leaf model), we estimated the GPPshade and GPPsun for each layer, 378 

and the sum of these GPPs from different leaf groups was the final GPP estimated using the 379 

third method. 380 
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2.5 Conversion from SIF observations to full-band PSII SIF (SIFfull) 381 

Due to the multi-scattering and reabsorption effects during radiative transfer in the canopy, the 382 

SIF signal observed by sensors is only a small fraction of the total SIF and is also a mixture of 383 

the signals emitted by different photosystems (PSI and PSII). Therefore, we first partitioned the 384 

observed SIF into SIFPSII and SIFPSI using the ratio of PSII fluorescence to the PSI+PSII 385 

fluorescence given wavelength (fPSII): 386 

𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑜𝑏𝑠 =  𝑆𝐼𝐹𝑜𝑏𝑠 × 𝑓𝑃𝑆𝐼𝐼 (17) 387 

For the KR-TCK site, fPSII was calculated at 760 nm wavelength; for the CA-obs and US-NR1 388 

sites, fPSII was calculated as the ratio of the integrated PSII SIF to the integrated total SIF from 389 

745 to 758 nm. We calculated the fPSII values based on the Soil Canopy Observation of 390 

Photosynthesis and Energy (SCOPE) model simulations considering various canopy structure 391 

conditions described by Liu et al. (2022), and obtained values of 0.6676 for the Ca-obs and US-392 

NR1sites and 0.6481 for the KR-TCK site. 393 

Then, to downscale the canopy-scale PSII SIF, we calculated the escape probability of SIF 394 

photons from the leaf surface to the top of the canopy (fesc) using the method proposed by 395 

Zeng et al. (2019): 396 

𝑓𝑒𝑠𝑐 =
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
=  

𝑁𝐷𝑉𝐼 × 𝑁𝐼𝑅

𝑓𝑃𝐴𝑅
(18) 397 

where NIRv is the near-infrared reflectance of vegetation, NDVI is the normalized difference 398 

vegetation index, and fPAR is the fraction of absorbed photosynthetic active radiation. This 399 

method is based on the similar radiative transfer of reflectance and emitted SIF at the near-400 

infrared wavelengths. Upon dividing the canopy-scale SIF observations (SIFPSII_obs) using fesc, 401 

we obtained the total SIF signals on the leaf surface (SIFPSII_leaf). We then used the escape 402 

probability of the SIF photons from the photosystems to the leaf surface (fLp) to further 403 

downscale SIFPSII_leaf to the total SIF at the photosystem scale (SIFPSII_ps). In this study, we only 404 

employed the far-red SIF and regarded fLp as a constant (approximately 0.9) according to 405 

previous studies (Liu et al., 2022; Liu et al., 2020c; Lu et al., 2020). In summary, PSII SIF at 406 

the photosystem scale (SIFPSII_ps) was obtained using the following equation: 407 
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𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑝𝑠 =
𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑜𝑏𝑠

𝑓𝑒𝑠𝑐 × 𝑓𝐿𝑝
 (19) 408 

Because the wavelength of SIF emission ranged from 650 to 800 nm, but SIFPSII_ps only 409 

represents the SIF signal at the specific wavelength (745 to 758 nm for CA-obs and US-NR1 410 

site, 760 nm for the KR-TCK site), we converted SIFPSII_ps to obtain the total full-band PSII SIF 411 

(SIFfull, the integration of SIF in the wavelengths from 640 to 850nm, unit: μmol/m2/s) to 412 

estimate photosynthesis according to a previous study (Liu et al., 2022): 413 

𝑆𝐼𝐹𝑓𝑢𝑙𝑙 = ∑ (𝑆𝐼𝐹𝑃𝑆𝐼𝐼_𝑝𝑠 × 𝑓𝑐(𝜆) ×
𝜆 × 106

ℎ × 𝑐 × 𝑁𝐴 × 103 × 109)

850

𝜆=640

 (20) 414 

where 𝑓𝑐(𝜆) is the conversion factor used for calculating SIF at the 𝜆 wavelength, ℎ is the 415 

Planck constant (6.63 × 10−34 J⋅s), c is the speed of light t (3 × 108 m/s), λ is the wavelength 416 

(nm), and 𝑁𝐴 is the Avogadro constant (6.02 × 1023 mol−1). The conversion factor 𝑓𝑐(𝜆) was 417 

determined by the first principal component of the PSII SIF spectrum simulations, as described 418 

by Liu (2022). 419 

Combing equation 17, 19, and 20, we completed the conversion of observed SIF (SIFobs) to full-420 

band PSII SIF (SIFfull). 421 

2.6 Determination of carbon-reaction-related parameters in GPP estimations 422 

The carbon-reaction-related parameters in our MLR-based model refer to the intercellular CO2 423 

concentration (Ci) and the photocompensation point of CO2 without dark respiration (Γ*). To 424 

estimate Γ*, we followed the previously described altitude-dependent temperature function 425 

(Bernacchi et al., 2001; G D Farquhar et al., 1980), and to estimate Ci, we used a method based 426 

on iteration.  427 

To estimate Ci, we first selected records with PAR higher than the 90th percentile for each day 428 

and regarded the photosynthesis at that time as Rubisco-limited (the photosynthetic apparatus 429 

should be light-saturated when there is abundant light; otherwise, it is wasting energy to develop 430 

a high photosynthetic capacity that can seldom be reached). At this time, the actual GPP equals 431 

the Rubisco-limited GPP: 432 

𝐽
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
= 𝑉𝑐𝑚𝑎𝑥

𝐶𝑖 − 𝛤∗

𝐶𝑖 + 𝐾
 (21) 433 
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Thus, we can calculate Vcmax (maximum carboxylation rate) using the actual electron transport 434 

rate (J) estimated using SIFfull and other biophysical properties of plants: 435 

𝑉𝑐𝑚𝑎𝑥 = J
𝐶𝑖 + 𝐾

4𝐶𝑖 + 8𝛤∗
=

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(𝐶𝑖 + 𝐾)

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(4𝐶𝑖 + 8𝛤∗)
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙  (22) 436 

where K is the effective Michaelis–Menten coefficient of Rubisco-limited photosynthesis, 437 

which can be estimated using the Michaelis–Menten constants for the carboxylation and 438 

oxygenation reactions (Farquhar et al., 1980). In this equation, K,  𝛤∗, and 𝐶𝑖 are daily values 439 

calculated based on the average of records above the 90th percentile PAR, and all of their units 440 

are Pa. During this process, we excluded observations with 90th percentile PAR below 500 441 

μmol/m2/s and observations obtained on cloudy days (CI < 0.5) to ensure the Rubisco-limited 442 

condition; further, linear interpolation was conducted for the gap-filling of Vcmax. Then, based 443 

on the instantaneous temperature response of Vcmax, we converted Vcmax to Vcmax25 (Kattge and 444 

Knorr, 2007), which will be used in the following iteration process to estimate the half-hourly 445 

real-time Ci. 446 

Notably, Ci in Equation 22 is a daily value calculated using a method based on the theory of 447 

optimal stomatal behavior (Harrison et al., 2021) and cannot capture the light response of 448 

stomata during diurnal cycles. Therefore, we used the following iteration to estimate the real-449 

time Ci for every half-hour record for comparison: 450 

Step 1: Set the initial Ci = 0.7 × Ca, where Ca stands for the ambient CO2 concentration; 451 

Step 2: Estimate the net assimilation rate Anet (the analog of GPP minus dark respiration at the 452 

leaf scale) using the following equation: 453 

𝐴𝑛𝑒𝑡 = J
𝐶𝑖 − 𝛤∗

4𝐶𝑖 + 8𝛤∗
− 𝑅𝑑 =

(1 + 𝑘𝑑𝑓)𝑞𝐿𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(𝐶𝑖 − 𝛤∗)

1 − 𝛷𝑃𝑆𝐼𝐼𝑚𝑎𝑥(4𝐶𝑖 + 8𝛤∗)
 𝑆𝐼𝐹𝑓𝑢𝑙𝑙  − 𝑅𝑑 (23) 454 

where Rd is the dark respiration derived from its temperature response and Rd25 (the dark 455 

respiration rate at 25 °C), and Rd25 equals 0.015 × Vcmax25. 456 

Step 3: Estimate the stomatal conductance for CO2 (Gc, unit: mol/m2/s) according to previous 457 

studies on stomatal behavior (Wang and Leuning, 1998): 458 

 459 
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𝐺𝑐 = 0.64 × (𝐺0 +
(𝑎 − 1)𝑓𝑤𝐴𝑛𝑒𝑡

𝐶𝑖 (1 +
𝑉𝑃𝐷
𝐷0

)
) (24)

 460 

where G0 is the residual conductance (0.01, unit: mol/m2/s); a is a parameter related to CO2 461 

diffusion on the leaf surface, which is assumed to be 11; fw is related to the soil moisture and 462 

is taken as 1; VPD is the vapor pressure deficit (unit: kPa); and D0 is regarded as a constant 463 

showing the stomatal sensitivity to VPD (1.5, unit: kPa). 464 

Step 4: Update Ci using the diffusion model (Ju et al., 2006): 465 

𝐶𝑖 = 𝐶𝑎 −
𝐴𝑛𝑒𝑡

𝐺𝑐

(25) 466 

By repeating Steps 2–4 until Ci becomes stable, we can obtain the final half-hourly Ci. This 467 

iteration was performed for every leaf group (both sunlit and shaded leaves for the two-leaf 468 

model and all leaves at different canopy depths for the layered model) to consider the impact 469 

of light conditions on gas exchange. The estimations using this method to calculate Ci were 470 

labeled with the suffix “_iter”. 471 

In this study, we also used another simple method to estimate Ci for comparison (Shan et al., 472 

2021): 473 

𝐶𝑖 =
3𝐶𝑎𝛤∗ − 𝛤∗ 1.6𝑉𝑃𝐷

𝜆
− 𝐶𝑎√3𝛤∗ 1.6𝑉𝑃𝐷

𝜆

3𝛤∗ −
1.6𝑉𝑃𝐷

𝜆

 (26) 474 

where 𝜆 is a parameter describing the marginal water cost of plant carbon assimilation, and 475 

the unit of VPD in this equation is hPa. Because 𝜆 is almost constant for a specific vegetation 476 

type, we simply used 𝜆 = 900 in this study. Compared to the iterative method, this simple 477 

method does not consider the possible influence of light conditions on stomatal closure. The 478 

estimations using this simple λ-based method to calculate Ci were labeled with the suffix 479 

“_lambda”. 480 

Finally, for comparison, we also used two empirical SIF-based GPP models to estimate GPP: 481 

one of them used the linear regression to fit the SIF—GPP relationship, and the other used a 482 
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nonlinear function (quadratic function) to describe the SIF—GPP relationship. GPP estimates 483 

from the linear model are GPP_linear, and GPP estimates from the model are GPP_nonlinear. 484 

3. Results 485 

3.1 Performances of different SIF-based GPP estimation models 486 

In this study, we used different strategies to describe the interaction between light and canopy 487 

structure to estimate the half-hourly (or hourly) GPP from tower-based SIF observations at three 488 

ENFs. Here, we evaluated and compared the performances of these different models, and the 489 

results are shown in Figure 1. 490 



20 

 

 491 

Figure 1. The performance of different models in estimating the half-hourly (or hourly) GPP. 492 

Each row represents the results of different methods, and each column represents the results 493 

of different ENF sites. (a)-(c), (d)-(f), (g)-(i), and (j)-(l) show the performance of the two-leaf, 494 

layered, layered two-leaf, and big-leaf models, respectively. The figures in the first column show 495 

the GPP estimation tested at the CA-obs site, the figures in the second column show the results 496 

of the US-NR1 site, and those in the last column show the results of the KR-TCK site. All GPP 497 

estimations in this figure used the iterative method to estimate Ci. The color of the dots 498 
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represents the corresponding air temperature, the dashed black line is the regression line, and 499 

the solid red line is the 1:1 line. 500 

As displayed in the last row (Figure 1j-1l), the big-leaf model significantly underestimated GPP 501 

and had the lowest R2 among the tested models. For all three sites in this study, GPP estimations 502 

from the big-leaf model exhibited a nonlinear relationship with GPP observations, and the 503 

slopes of the regression lines indicated that the big-leaf assumption would lead to 504 

approximately 45% underestimation, especially when the GPP value was high. In contrast, the 505 

models with a better description of the vertical or horizontal light distribution (including the 506 

layered model, the two-leaf model, and the layered two-leaf model) showed better 507 

performances (Figure 1a-1i), and the GPP estimates showed more linear relationships with the 508 

observed values. For the CA-obs site, the two-leaf model (Figure 1a) showed the best 509 

performance, with R2 = 0.68, and a regression line close to the 1:1 line (slope:0.99); for the US-510 

NR1 and KR-TCK sites, although the two-leaf model had high R2, the layered model showed 511 

regression lines closest to the 1:1 line (for US-NR1, slope = 0.91; for KR-TCK, slope = 0.99). 512 

Compared with the results of the layered model, the GPP estimates from the two-leaf model 513 

were higher when the GPP and temperature were high (according to the distribution of scatters) 514 

and lower when the GPP and temperature were low (according to the interception of regression 515 

lines). Although the layered two-leaf model also avoided the underestimation problem and had 516 

a relatively high R2, it did not show better performance than the two-leaf model at the CA-obs 517 

and US-NR1 sites and even increased the overall RMSE at the US-NR1 and KR-TCK sites. We 518 

also tested the results of different models using the simple λ-based method for Ci estimation 519 

(Figure S3) and obtained similar results. In addition, we investigated the model’s performance 520 

under sunny (clearness index >0.5) and cloudy conditions (clearness index <0.5) and found that 521 

the results do not change significantly (Figures S4-S5). 522 

 523 
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 524 

Figure 2. Time series of GPP observations and GPP estimates from the (a) two-leaf, (b) layered, 525 

(c) layered two-leaf, (d) big-leaf, and (e) linear models using the empirical linear relationship 526 

between SIF and GPP and from the (f) nonlinear model based on the empirical relationship 527 

between SIF and GPP. The grey dots represent the half-hourly observations, and the pink dots 528 

represent the GPP estimates. Here, we only displayed the results from the CA-obs site using 529 

the iterative method for estimating Ci. 530 

Figure 2 shows the time series of the observed and estimated GPP of different models. Here, 
531 

we can see that the two-leaf, layered, and layered two-leaf models all managed to capture the 
532 

dynamics of GPP observations, and there was no significant difference among their 
533 

performances (Figure 2a-2c). However, the big-leaf model underestimated GPP, which was 
534 

especially significant during the middays of summer (Figure 2d). In addition, empirical models 
535 
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based on the empirical relationship between SIF and GPP also failed to track the dynamics of 
536 

half-hourly GPP. In Figure 2e, the linear model overestimated the low GPP values during the 
537 

entire study period. In Figure 3f, the nonlinear model showed truncation when the GPP 
538 

estimation reached a certain value (~ 15 μmol/m2/s) and thus underestimated the high GPP 
539 

values in summer. Furthermore, the nonlinear model also overestimated the low GPP values, 
540 

even though this overestimation problem in the nonlinear model was not as significant as that 
541 

in the linear model. 
542 

Further analysis of the difference between the big-leaf and two-leaf models showed that their 
543 

discrepancy was higher under conditions with high light intensity (and thereby higher GPP). 
544 

Compared to environmental factors such as VPD and temperature, PAR showed the highest 
545 

correlation with GPP bias (GPP estimation from the two-leaf model minus GPP estimations 
546 

from the big-leaf model; R2 = 0.15; Figure S6a), whereas the GPP relative bias (obtained by 
547 

dividing GPP bias by GPP values) showed a much lower correlation with PAR (R2 = 0.001, 
548 

Figure S6b). Similarly, the difference between the big-leaf and layered models was also highly 
549 

related to incident light. In addition, while a better description of the light–structure–physiology 
550 

interaction within the canopy improved the accuracy of GPP estimation (Figure 1, 2), we found 
551 

that the estimation of Ci did not influence the results significantly (Figure 1 vs. Figure S3). 
552 

Indeed, there was a difference in the GPP estimations using different Ci estimations, and it 
553 

showed a high correlation with VPD, but this difference was very small. Therefore, the 
554 

uncertainties caused by the change in stomatal behavior under different light conditions (which 
555 

influences Ci) were not the most important factor influencing GPP estimation at the half-hourly 
556 

scale. 
557 

3.2 Diurnal dynamics of GPP estimations from different models  558 

As the intensity and angle of incident light change significantly during the day, the within-559 

canopy illumination and its distribution vary with time, which may thereby modify the diurnal 560 

dynamics of the whole-canopy GPP and its estimation. Figure 3 shows the dynamics of the 561 

observed and estimated GPP from different models during the day (composited using all 562 

observations during the study period). Although the GPP estimations using iterative methods 563 
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to calculate Ci were slightly higher than those obtained using the simple λ-based method at 564 

midday, there was high consistency in GPP estimations using different Ci calculation methods 565 

(Figure 3a-d, GPP_lambda vs. GPP_iter). In contrast, the diurnal dynamics of GPP estimates 566 

from models assuming different light–structure–physiology interactions varied significantly. 567 

GPP estimations from both the two-leaf and layered two-leaf models tracked the bell-shaped 568 

dynamics of GPP observations (Figure 3a, 3c), but the layered model underestimated GPP at 569 

midday and overestimated GPP in the early morning and late afternoon (Figure 3b). As depicted 570 

in Figure 3d, the big-leaf model showed the most significant underestimation at midday but 571 

performed well when the light was relatively weak (before 8:00 and after 18:00). In contrast to 572 

their poor performance in Figure 2, both the empirical linear and nonlinear models tracked the 573 

diurnal dynamics of GPP well (Figure 3e, 3f), probably because they were based on the 574 

statistical relationship and were thus able to capture the “overall” pattern. 575 

 576 

Figure 3. Diurnal dynamics of GPP observation and GPP estimates from (a) the two-leaf, (b) 577 

layered, (c) layered two-leaf, (d) big-leaf, (e) linear, and (f) nonlinear models. Variables with the 578 

suffix “_iter” refer to GPP estimation with Ci estimated using the iterative method, and variables 579 

with the suffix “_lambda” refer to GPP estimation with Ci estimated via the simple λ-based 580 

method. This figure shows the results from the CA-obs site using all of the half-hourly data 581 

obtained during the entire study period. The solid lines represent the average dynamics, and 582 



25 

 

the shaded areas represent 95% confidence intervals. Similar results were obtained at the other 583 

sites. 584 

In Figure 4, we selected two sunny days during summer to further examine the differences in 585 

GPP estimations using the big-leaf model and other models. On those two days, PAR, SIF, and 586 

GPP showed “bell-shaped” patterns (Figure 4d, 4f, 4g), even though GPP had higher 587 

uncertainty and exhibited a less-smooth curve. Similar to the results in Figure 3, the layered, 588 

two-leaf, and layered two-leaf models all capture the midday increase in GPP, whereas the big-589 

leaf model underestimated the GPP from 8:00 to 17:00 (Figure 4a-4c). This underestimation 590 

was more significant when the PAR was higher and was not significantly related to temperature 591 

changes, as exhibited in Figure 4e (because the temperature kept increasing in the afternoon, 592 

but the underestimation was weaker at that time). We further investigated the daily cycles of 593 

the estimated J/SIF ratio and J using the big-leaf model to understand the reasons for its poor 594 

performance. Figure 4h shows a significant midday reduction in the J/SIF ratio estimated by 595 

the big-leaf model, and Figure 4e indicates that the big-leaf assumption “suppressed” the ratio 596 

so strongly that even the estimated J (which equals J/SIF ratio times SIF) cannot capture the 597 

midday increase in photosynthesis.  598 

 599 

Figure 4. Comparison between the diurnal dynamics of GPP estimations from the big-leaf 600 
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model and the (a) layered, (b) two-leaf, and (c) layered two-leaf models and the corresponding 601 

(d) incident PAR, (e) temperature, (f) SIF, and (g) GPP on July 29, 2019, and August 2, 2019. 602 

(h) shows the changes in estimated J/SIF ratio, and (i) shows the dynamics of estimated J using 603 

the big-leaf model. The shaded areas represent the 95% interval. All the data used in this figure 604 

were obtained from the CA-obs half-hourly dataset. 605 

3.3 Diurnal dynamics of GPP in different canopy layers (under different light conditions) 606 

Due to the changing illumination and its distribution in the canopy, photosynthesis from 607 

different leaf groups (specifically, in different layers or under different light conditions) varies 608 

during the day, leading to the heterogeneity of GPP within the canopy. In Figure 5, we 609 

investigated the vertical variation in the diurnal dynamics of GPP estimations in each layer 610 

(depth) of the canopy to determine the reason for the midday underestimation and early morning 611 

overestimation in the layered model (as indicated in Figure 3b and 4a). Figure 5a and 5b display 612 

the estimated GPP dynamics derived from the layered model on July 29, 2019, and August 2, 613 

2019, respectively. The results showed that the layered model successfully captured the 614 

increased GPP at noon in the bottom layers but showed a significant reduction in midday GPP 615 

in the top layers. Therefore, the discrepancy between GPP estimation from the layered model 616 

and GPP observations (Figure 3b) was mainly related to its unsatisfactory estimation in the top 617 

layers. The underestimation problem in the top layers (the top 5) was so severe that the GPP 618 

estimations even exhibited a reduction trend at noon and became smaller than the GPP 619 

estimations in the bottom layers. However, the results derived from the layered two-leaf model 620 

showed an increase in GPP at noon in both the bottom and top layers (Figure 5c and 5d). As the 621 

only difference between these two models was their assumption of light distribution, the 622 

different results in Figure 5a and 5c, 5b, and 5d indicated that the description of light–canopy–623 

physiological interaction was important in the half-hourly GPP estimations, especially when 624 

considering the diurnal patterns of photosynthesis. The layered model assumes that all the 625 

leaves were not shaded and received direct light (even though the light decayed when it 626 
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penetrated the canopy); thus, this model may have overestimated the overall high light stress 627 

on the top leaves and “over-penalized” their qL at midday; simultaneously, because it does not 628 

consider that gaps among leaves could cause light spots in the deep canopy and high light 629 

conditions for some leaves, it might have underestimated the overall light condition in the 630 

bottom layers and thus slightly overestimated the qL and thereby GPP in the bottom layers at 631 

noon.    632 

 633 

Figure 5. Diurnal dynamics of GPP estimation in different layers. The GPP estimations in (a) 634 

and (b) came from the layered model, and the GPP estimations in (c) and (d) came from the 635 

layered two-leaf model. The color of the dots represents the layer index, and a larger number 636 

represents a deeper location within the canopy. The LAI of each layer in this figure can be 637 

calculated as total LAI/10. 638 

To investigate the dynamic distribution of GPP within the canopy, we further studied the depths 639 

of the layer above which the leaves contributed 80% of the total GPP during two sunny days 640 

(Figure 6). Using the vertical GPP estimations displayed in Figure 5, we found that both the 641 

layered and layered two-leaf models indicated that the GPP contribution at midday came from 642 

deeper layers than that in the morning or afternoon, which led to the “bell-shaped” curve in 643 
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Figure 6a and 6b. That is, the incident PAR (including direct and diffused fractions) can 644 

penetrate deeper into the canopy at noon and trigger increased photosynthesis in the bottom 645 

layer leaves. The deepest 80% GPP contribution depth estimated from the layered model is 8, 646 

which is slightly deeper than the depth of 7 from the layered two-leaf model; meanwhile, the 647 

80% GPP contribution depths before 8:00 and after 18:00 estimated by the layered model were 648 

shallower than those estimated by the layered two-leaf model, which may relate to the lack of 649 

consideration of diffused light in the layered model. 650 

 651 

Figure 6. Depths of the layer above which the leaves contributed 80% of the total GPP on July 652 

29, 2019, and August 2, 2019. Data used for depth estimation and plotting were half-hourly 653 

estimations from (a) the layered model and (b) the layered two-leaf model at the CA-obs site.  654 

 655 
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Figure 7. (a) Diurnal variation in the GPP contribution of shaded leaves; (b) seasonal variation 656 

in the GPP contribution of shaded leaves; (c) diurnal variation in the LAI fraction of shaded 657 

leaves; (d) seasonal variation in the LAI fraction of shaded leaves. The cross-marks in the plots 658 

represent the outliers, the black dots represent the mean values of each box, and the green 659 

lines represent the median values of each box. 660 

In Figure 7a and 7b, we investigated the diurnal change in the GPP contribution of the shaded 661 

leaves and compared it with their seasonal dynamics. Here, we found that the GPP fraction 662 

from shaded leaves decreased in the morning and increased in the afternoon, while it increased 663 

from spring to summer and decreased from autumn to winter. These dynamics were consistent 664 

with the dynamics of the shaded LAI fraction at the diurnal and seasonal scales displayed in 665 

Figure 7c and 7d, respectively. These results indicate that the contribution of shaded leaves was 666 

more important in the morning and afternoon, when there was an apparent change in the solar 667 

zenith angle during the day; however, at the seasonal scale, the denser canopy led to a higher 668 

shaded LAI fraction and thus made GPP from shaded leaves (which used diffused light for 669 

photosynthesis) more crucial in summer. According to the result in Figure 7a, we deduced that 670 

the reason for the higher contribution of the bottom layers at noon in Figure 6b (compared to 671 

the morning and evening) should not only be attributed to the increase in the total intensity of 672 

diffused light but also to the direct light penetrating to the deeper layers through the gaps among 673 

leaves (indicated by the increase in the sunlit leaf fraction and reduction in the shaded leaf 674 

fraction) at midday.  675 

3.4 Comparison of single-leaf qL and “canopy-scale qL”  676 

To clarify the possible differences between single-leaf qL and canopy-scale qL, we used the 677 

framework of the big-leaf model but GPP estimations from the layered model or layered two-678 

leaf model as input to calculate the canopy-scale qL. Figure 8 shows the different light 679 

responses of single-leaf qL (red dots), canopy-scale qL calculated from the results of the two-680 

leaf model (pink dots), and canopy-scale qL calculated from the results of the layered model 681 
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(gray dots). Compared to the canopy-scale qL, the single-leaf qL (directly estimated using 682 

Equation 4) was more sensitive to the change in illumination and showed a faster decrease as 683 

the incident light increased. The scatterplot also showed that the distribution of canopy-scale 684 

qL from the two-leaf model was more dispersed than that of the canopy-scale qL from the 685 

layered model, which should be attributed to their different description of light–structure–686 

physiology interactions because both of them used the same function (Equation 4) to estimate 687 

the qL of individual leaf groups.  688 

 689 

 690 

Figure 8. The light response of single-leaf qL (in red), canopy-scale qL obtained from the 691 

layered model (in gray), and canopy-scale qL from the two-leaf model (in pink). The PAR label 692 

of the x-axis refers to the incident PAR obtained at the top of the canopy. 693 

We further investigated how LAI impacts the light response of canopy-scale qL estimated from 694 

the two-leaf model in Figure 9a (and the canopy-scale qL estimated from the layered model in 695 

Figure S7). We found that the LAI largely explained the variation in the light response of canopy 696 

qL and that a higher LAI corresponded to a less-sensitive light response of canopy qL (a less- 697 

steep slope in the relationship between qL and PAR) (Figure 9 and S5). We further compared 698 

the canopy-scale qL of sunlit leaves (using GPP of sunlit leaves) and that of shaded leaves 699 

(Figure 9b, 9c) and found that the qL of the shaded leaves showed a less-sensitive response to 700 

changes in light than sunlit leaves and that the impact of LAI on the light response of canopy-701 

scale qL was more significant for sunlit leaves. 702 
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 703 

Figure 9. The impact of LAI on the light response of the (a) canopy-scale qL from the two-leaf 704 

model; (b) canopy-scale qL of sunlit leaves; (c) canopy-scale qL of shaded leaves. The color of 705 

the dots represents the corresponding LAI. The PAR label of the x-axis refers to the incident 706 

PAR obtained at the top of the canopy. 707 

 708 

Figure 10. The diurnal patterns of single-leaf qL (red lines), canopy qL from the layered model 709 

(black lines), canopy-scale qL from the two-leaf model (green lines), and the qL in different 710 

layers of the canopy (colored scatters). The color of the dots represents the layer index, and 711 

the larger number represents the deeper location within the canopy. The LAI of each layer in 712 

this figure can be calculated as total LAI/10. 713 

Using the observations from two sunny days, we compared the diurnal patterns of single-leaf 714 

qL, canopy qL from the layered model, canopy-scale qL from the two-leaf model, and qL in 715 

different canopy layers in Figure 10. Here, we found that the single leaf showed the same pattern 716 
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as the qL in the first layer of the canopy, with lower values than those in the other layers due to 717 

their higher light exposure (the incident PAR at the top of the canopy). The qL values in the top 718 

layers were higher than those in the bottom layers, and the difference was greater at noon. The 719 

canopy-scale qL from the layered model showed moderate qL dynamics (compared to the qL 720 

in the top and bottom layers) and was lower than the canopy-scale qL from the two-leaf model 721 

at noon. The differences in these qL dynamics indicated that the interaction between light and 722 

canopy structure (which leads to light redistribution within the canopy) could influence the 723 

dynamics of canopy-scale qL (the “overall qL”) and that underestimation of GPP in big-leaf 724 

models could be mainly attributed to the utility of single-leaf qL rather than the canopy-scale 725 

qL during calculation. 726 

4. Discussion 727 

In this study, we found that employing the big-leaf assumption in the SIF-based GPP estimation 728 

would lead to significant underestimation at the half-hourly scale (Figure 1j-1l, Figure 2d), and 729 

this underestimation mainly appeared under intense light conditions (at noon), which thereby 730 

distorted the diurnal patterns of estimated GPP (Figure 3d, Figure 4a-4c). However, when the 731 

interaction of light, canopy structure, and plants’ physiological factors was considered to 732 

provide a more accurate description of the light redistribution within the canopy, the accuracy 733 

of half-hourly GPP estimation could be significantly improved, and the estimation results could 734 

better capture the diurnal pattern of GPP (Figure 1a-1i, Figure 2a-2c, and Figure 3a-3c). The 735 

success of our attempt demonstrated that the unsuitable description of light–structure–736 

physiologica interactions in the big-leaf model is responsible for the poor estimation of the 737 

J/SIF ratio (Figure 4h-4i), thereby influencing the half-hourly GPP estimation. 738 

Due to the shading and absorption effects in the radiation transmission process, incident light 739 

is attenuated from the top to the bottom of the canopy layers and causes vertical gradients of 740 

the light condition and photosynthesis within the canopy (Chen et al., 1999; Yang et al., 2021). 741 

During diurnal cycles, variation in the combination of light intensity and incident angle leads 742 

to the redistribution of light and changes the vertical gradients, which affects the dynamics of 743 
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qL at different canopy depths (Chang et al., 2021). This can be proved by the simulated diurnal 744 

patterns of PAR and qL (a crucial parameter in MLR-based GPP estimation models) in different 745 

layers under clear sky conditions (Figures S8 and S9). To clarify the impacts of the light 746 

intensity and incident angle (solar zenith angle) on the variation patterns of qL in different 747 

layers, we further controlled the variation in light intensity and incident angle by fixing them 748 

before the simulation and found that the dynamics of light and qL in the upper layers of the 749 

canopy were mainly influenced by the daily variation pattern of light intensity, whereas those 750 

in the lower layer were mainly influenced by the change in the incident angle (Figures S8 and 751 

S9). We also found that the difference in qL at different depths was greater at midday (smaller 752 

SZA) than in the morning and evening (larger SZA), which partly explained the more 753 

significant GPP underestimation at noon (Figure S9). Therefore, the pattern of qL results from 754 

interactions among light, canopy structure, and leaf physiology, which explains why 755 

considering this interaction improved the GPP estimation accuracy in our research. 756 

Our study demonstrated that it is important to select a proper light-canopy interaction 757 

assumption when SIF is used to estimate the half-hourly GPP. The widely used big-leaf model 758 

assumes that the canopy is a big foliage, and thus, all of the leaves in the canopy are considered 759 

sunlit leaves and have the same physiological properties (Gu et al., 2019; Liu et al., 2022). 760 

Therefore, all the leaves in the canopy are considered to be under high-light conditions and 761 

even in a photoinhibition state at midday in summer. As there is a monotonical negative 762 

correlation between qL and light intensity (Han et al., 2022a; Liu et al., 2021), this assumption 763 

would make the qL “over-penalized” at noon, which causes underestimation of the high GPP 764 

values. In comparison, the layered model determines the light levels at different depths so that 765 

not all leaves are assumed to be in a high-light intensity state; thus, it improves the estimation 766 

accuracy and is more consistent with reality. The two-leaf model further counts the effects of 767 

direct light, diffused light, and the clumping condition of leaves to improve the model’s 768 

accuracy. As the model assumes that only a fraction of leaves receives high-intensity direct 769 

light and that many other leaves are under milder diffused light, it describes the real condition 770 

well and can avoid significant underestimation under high-light conditions. 771 

The two-leaf model and layered two-leaf model should be attributed to the merit of two-leaf 772 
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assumptions; however, we used this assumption here differently from that in previous studies. 773 

The two-leaf assumption has been applied in light use efficiency (LUE) photosynthetic modules 774 

integrated into terrestrial ecosystem models (e.g., BEPS models) or SIF simulation models in 775 

previous studies (Cui et al., 2020; Liu et al., 1997) and has been demonstrated to perform well 776 

(Zheng et al., 2020). Previous LUE models used different LUEs to describe the different 777 

physiological characteristics of sunlit and shaded leaves, and the LUE values (LUEshade and 778 

LUEsun) were mostly obtained from calibration or empirical results. As the variations in the 779 

angle and intensity of incident light during the day alter the amount of light penetrating the 780 

lower canopy and lead to highly dynamic overall light conditions, the determination of LUEshade 781 

and LUEsun (which respond to the light condition) without the support of clear mechanisms will 782 

introduce uncertainty in the results. In contrast, our method contains a clear mechanistic 783 

expression of the SIF-GPP relationship. Except for the physiological information included in 784 

the SIF signal, we mainly used qL to capture the differences in the physiological properties of 785 

shaded and sunlit leaves. Because the difference in qL between shaded and sunlit leaves can be 786 

calculated directly using their incident light, our model can show the difference in the 787 

physiological characteristics of shaded and sunlit leaves more clearly and directly; thus, it can 788 

consider the fertilization effect of diffused light without the need for calibration. We 789 

acknowledge that other physiological factors may also contribute to the different photosynthetic 790 

capacities between sunlit and shaded leaves, but we do not consider these contributions in this 791 

study. Nevertheless, recent studies have proven the importance of considering the impact of 792 

light on LUE (Guan et al., 2022, 2021), and the good performance of their modified LUE model 793 

with radiation scalar confirmed that the differences in LUE between sunlit and shaded leaves 794 

are mainly caused by the differences in light conditions, which means that consideration of light 795 

impacts should be good enough to provide relatively accurate estimations.  796 

Even though physiological differences remain between sunlit and shaded leaves that were not 797 

considered in this study, they may influence the performance of two-leaf models. As the 798 

different micro-environments and long-term adaptation may cause differences in physiological 799 

properties (such as the light response) of sunlit and shaded leaves, we evaluated this effect by 800 

using different qL light response curves in sunlit and shaded leaves (Chang et al., 2021) and 801 
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found that it did not significantly influence our results (Figure S10a,b vs. Figure 1a). In addition, 802 

we tried to assign SIF using APAR without considering the different physiological signals of 803 

sunlit and shaded leaves (sunlit ΦF vs. shaded ΦF), and we found that the effect was not 804 

significant (Figure S10c vs. Figure 1a). This result suggests that the differences or estimation 805 

uncertainty in the physiological signals in SIF (ΦF) do not significantly affect the GPP 806 

estimation from the two-leaf model, whereas the difference in qL matters.  807 

Unlike other models proposed in this study, the big-leaf model directly uses the single-leaf qL 808 

to estimate GPP. However, the canopy-scale qL obtained from the relatively accurate GPP 809 

estimations in our study showed a lower sensitivity to incident light than the single-leaf qL 810 

(Figures 8 and 10). The light response of canopy-scale qL is influenced by LAI, but when the 811 

canopy density decreases (with low LAI), it is closer to the single-leaf pattern (Figures 8, 9a). 812 

Therefore, we deduce that the big-leaf assumption might be more acceptable for sparser 813 

canopies with simple structures but not for dense canopies with complex structures. In addition, 814 

as the light response of canopy-scale qL is too complicated to be described by merely one 815 

function (Figures 8 and 9), it might be inefficient to simply correct the leaf-scale response 816 

function (or even use another function type) and then apply it at the canopy scale. This result is 817 

echoed by a previous study showing depression in fluorescence at the leaf level but not in the 818 

canopy of a pine forest (Louis et al., 2006). In that study, the canopy structure also impacts the 819 

canopy-scale pattern by modulating the light penetrating into deeper canopy layers. 820 

Although models with an improved description of the light–structure–physiology interactions 821 

in our study performed well in capturing the diurnal dynamics of GPP, we have to admit that 822 

there are still some uncertainties. First, we used satellite-based LAI rather than ground 823 

observations collected at each site in our study. The possible mismatch or error in these satellite 824 

data may affect the accuracy of GPP estimation. To clarify these problems, we replaced the 825 

GLASS LAI with the ground LAI measurement at the KR-TCK site (only this site had ground 826 

observation of LAI) and found that this did not significantly influence GPP estimation (Figure 827 

S11). Second, there were uncertainties in the satellite-based Ω dataset. Therefore, we also tested 828 

another satellite clumping index dataset at the CA-obs site and found that although there were 829 

differences in the clumping index results, this discrepancy was not passed down to the model 830 
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outputs (Figure S10d vs. Figure 1a). Third, although the comparison between Figure 1 and 831 

Figure S3 demonstrated that the methods used to estimate Ci and the consideration of light 832 

response of stomatal behaviors do not introduce much difference in GPP estimation, and the 833 

iterative method still slightly increased the accuracy. Third, for the layered model, the number 834 

of layers (n) also influences the model performance, and we found that the increase in layer 835 

numbers increased the R2, RMSE, and regression slope but reduced the regression interception 836 

of the relationship between the observed and estimated GPP (Figure S12). However, when the 837 

number of layers was greater than 320, it no longer impacted the accuracy of GPP estimation. 838 

For the layered model using the interactive method to estimate Ci, R2 dropped significantly as 839 

the number of layers continued to increase after reaching 80, but this phenomenon was not 840 

found in the layered model using the simple λ-based method. This result indicated that using 841 

the interactive method makes the model more sensitive to uncertainties in SIF (SIF in each layer 842 

has larger uncertainty as the number of layers increases), even though it had a higher R2 843 

compared to the simple λ-based method. Finally, although we employed the widely accepted 844 

Lambert–Beer’s law and the method proposed by Chen et al. (1999), uncertainty remains in the 845 

description of vertical variation in light. For the quantification of such uncertainty, we employed 846 

the 3-D Discrete Anisotropic Radiative Transfer Model (DART) to validate the PAR estimation 847 

in each layer for three different scenes (Appendix A). The results demonstrated the 848 

effectiveness of Lambert–Beer’s law in describing the vertical profile of PAR for ENF sites (R2 849 

higher than 0.9; Figures A1, A2). However, the results also indicated that violating the canopy 850 

homogenous assumption in the real world would undermine the effectiveness of Lambert–851 

Beer’s law, leading to a less-credible estimation of light distribution in relatively sparse and 852 

highly heterogeneous canopies. Nevertheless, the key point of this study is to highlight the 853 

importance of considering vertical light distribution when using SIF to estimate GPP. Although 854 

we only used the 1-D radioactive transfer models and highly simplified the canopy structure in 855 

this study, the GPP estimates still showed high consistency with the GPP observation. In the 856 

future, combining 3-D models and Lidar measurements would enable a more accurate 857 

estimation of the PAR profile, thereby assisting in a more accurate estimation of GPP via SIF. 858 

There are also some limitations in our study. Although the layered model and two-leaf model 859 
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considered the vertical and horizontal heterogeneity of light conditions and leaf biophysical 860 

properties (mainly the redox state of PSII reaction centers indicated by qL), they do not indicate 861 

that we thoroughly considered the variations in leaf biophysical properties. The inherent 862 

differences in leaves (for example, age, status, and nutrient conditions) were not considered. In 863 

this study, we used the empirical relationship between PAR and qL; however, previous studies 864 

have shown that temperature could also influence qL (Han et al., 2021). We could not consider 865 

the impacts of temperature heterogeneity or other environmental factors within the canopy, 866 

mainly because of the lack of a modeled relationship between qL and temperature and the 867 

difficulty in obtaining the temperature distribution in canopies. This might make the models 868 

incapable of reproducing photoinhibition under high temperatures, which probably explains the 869 

decreased GPP in the afternoon of August 2, 2019, at the CA-obs site (Figure 4g). In addition, 870 

none of the models in our study considered the contribution of understory species, but they are 871 

important for the total photosynthesis of the whole ecosystem (Nunes et al., 2022). As there are 872 

many non-photosynthetic organisms (such as branches and trunks) that block light transmission 873 

within the canopy, the woody fraction, the space among trees, and the orientation of the terrain 874 

slope are also issues that need further consideration (Chang et al., 2021). 875 

5. Conclusion 876 

In this study, we developed SIF-based GPP estimation models with different descriptions of 877 

light–structure–physiological interactions, including a layered model, a two-leaf model, and a 878 

layered two-leaf model. We compared their performances with the big-leaf model on a half-879 

hourly scale at three ENF sites. The results showed that the big-leaf model significantly 880 

underestimated the half-hourly GPP. The underestimation mainly occurred at midday, which 881 

distorted the diurnal dynamics of the estimated GPP. In contrast, the layered model, two-leaf 882 

model, and layered two-leaf model all improved the estimation accuracy. Compared with the 883 

layered model, both the two-leaf model and the layered two-leaf model showed daily patterns 884 

closer to reality, with no significant differences between them. We further investigated the 885 

diurnal dynamics of GPP and qL in different layers and found that the big-leaf and layered 886 

assumptions overestimated the overall light stress at noon and thus “over-penalized” qL, 887 
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leading to the underestimation of GPP. In the morning and afternoon, the leaves on the top 888 

layers of the canopy contributed significantly to the total GPP, but as the solar zenith angle 889 

decreased at noon, leaves from the deeper layers also played an important role. Finally, by 890 

comparing the single-leaf scale qL with the canopy-scale qL (obtained from relatively accurate 891 

GPP estimations), we demonstrated that the canopy-scale qL was less sensitive to light than the 892 

single-leaf scale qL and that the difference was larger for the shaded leaf group or when the 893 

LAI was high.  894 

Appendix 895 

 896 

Figure A1. The nadir view (a, d) and the side view (b, e) of the 3-D scene, and the accuracy of PARi 897 

estimated using Lambert–Beer’s law (c, f). The method was examined in canopies with different densities. 898 

Canopies were divided into 16 layers, and the PAR in each layer (PARi for layer i) was calculated when 899 

SZA =0°, 9°, 18°, 27°, 36°, 45°, 54°, 63°, 81°. (a-c) shows the condition in a relatively sparse canopy, 900 

and (d-f) shows the condition in a dense canopy. 901 
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 902 

Figure A2. The accuracy of PARi estimated using Lambert–Beer’s law in a turbid canopy (more 903 

homogenous; LAI=2). PAR in each layer (PARi for layer i) was calculated when SZA =0°, 9°, 18°, 27°, 904 

36°, 45°, 54°, 63°, 81°.  905 
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List of Figure Captions 1264 

Figure 1. The performance of different models in estimating the half-hourly (or hourly) GPP. 1265 

Each row represents the results of different methods, and each column represents the results of 1266 

different ENF sites. (a)-(c), (d)-(f), (g)-(i), and (j)-(l) show the performance of the two-leaf, 1267 

layered, layered two-leaf, and big-leaf models, respectively. The figures in the first column 1268 

show the GPP estimation tested at the CA-obs site, the figures in the second column show the 1269 
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results of the US-NR1 site, and those in the last column show the results of the KR-TCK site. 1270 

All GPP estimations in this figure used the iterative method to estimate Ci. The color of the 1271 

dots represents the corresponding air temperature, the dashed black line is the regression line, 1272 

and the solid red line is the 1:1 line. 1273 

Figure 2. Time series of GPP observations and GPP estimates from the (a) two-leaf, (b) layered, 1274 

(c) layered two-leaf, (d) big-leaf, and (e) linear models using the empirical linear relationship 1275 

between SIF and GPP and from the (f) nonlinear model based on the empirical relationship 1276 

between SIF and GPP. The grey dots represent the half-hourly observations, and the pink dots 1277 

represent the GPP estimates. Here, we only displayed the results from the CA-obs site using the 1278 

iterative method for estimating Ci. 1279 

Figure 3. Diurnal dynamics of GPP observation and GPP estimates from (a) the two-leaf, (b) 1280 

layered, (c) layered two-leaf, (d) big-leaf, (e) linear, and (f) nonlinear models. Variables with 1281 

the suffix “_iter” refer to GPP estimation with Ci estimated using the iterative method, and 1282 

variables with the suffix “_lambda” refer to GPP estimation with Ci estimated via the simple λ-1283 

based method. This figure shows the results from the CA-obs site using all of the half-hourly 1284 

data obtained during the entire study period. The solid lines represent the average dynamics, 1285 

and the shaded areas represent 95% confidence intervals. Similar results were obtained at the 1286 

other sites. 1287 

Figure 4. Comparison between the diurnal dynamics of GPP estimations from the big-leaf 1288 

model and the (a) layered, (b) two-leaf, and (c) layered two-leaf models and the corresponding 1289 

(d) incident PAR, (e) temperature, (f) SIF, and (g) GPP on July 29, 2019, and August 2, 2019. 1290 

(h) shows the changes in estimated J/SIF ratio, and (i) shows the dynamics of estimated J using 1291 

the big-leaf model. The shaded areas represent the 95% interval. All the data used in this figure 1292 

were obtained from the CA-obs half-hourly dataset. 1293 

Figure 5. Diurnal dynamics of GPP estimation in different layers. The GPP estimations in (a) 1294 

and (b) came from the layered model, and the GPP estimations in (c) and (d) came from the 1295 

layered two-leaf model. The color of the dots represents the layer index, and a larger number 1296 

represents a deeper location within the canopy. The LAI of each layer in this figure can be 1297 
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calculated as total LAI/10. 1298 

Figure 6. Depths of the layer above which the leaves contributed 80% of the total GPP on July 1299 

29, 2019, and August 2, 2019. Data used for depth estimation and plotting were half-hourly 1300 

estimations from (a) the layered model and (b) the layered two-leaf model at the CA-obs site.  1301 

Figure 7. (a) Diurnal variation in the GPP contribution of shaded leaves; (b) seasonal variation 1302 

in the GPP contribution of shaded leaves; (c) diurnal variation in the LAI fraction of shaded 1303 

leaves; (d) seasonal variation in the LAI fraction of shaded leaves. The cross-marks in the plots 1304 

represent the outliers, the black dots represent the mean values of each box, and the green lines 1305 

represent the median values of each box. 1306 

Figure 8. The light response of single-leaf qL (in red), canopy-scale qL obtained from the 1307 

layered model (in gray), and canopy-scale qL from the two-leaf model (in pink). The PAR label 1308 

of the x-axis refers to the incident PAR obtained at the top of the canopy. 1309 

Figure 9. The impact of LAI on the light response of the (a) canopy-scale qL from the two-leaf 1310 

model; (b) canopy-scale qL of sunlit leaves; (c) canopy-scale qL of shaded leaves. The color of 1311 

the dots represents the corresponding LAI. The PAR label of the x-axis refers to the incident 1312 

PAR obtained at the top of the canopy. 1313 

Figure 10. The diurnal patterns of single-leaf qL (red lines), canopy qL from the layered model 1314 

(black lines), canopy-scale qL from the two-leaf model (green lines), and the qL in different 1315 

layers of the canopy (colored scatters). The color of the dots represents the layer index, and the 1316 

larger number represents the deeper location within the canopy. The LAI of each layer in this 1317 

figure can be calculated as total LAI/10. 1318 
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