001     1018603
005     20231128201907.0
024 7 _ |a 10.34734/FZJ-2023-04921
|2 datacite_doi
037 _ _ |a FZJ-2023-04921
041 _ _ |a English
100 1 _ |a Hilgers, Robin
|0 P:(DE-Juel1)179506
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Application of batch learning for boosting high-throughput ab initio success rates and reducing computational effort required using data-driven processes
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1701183883_28677
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a Non-exclusive perpetual license
520 _ _ |a The increased availability of computing time, in recent years, allows for systematic high-throughput studies of material classes with the purpose of both screening for materials with remarkable properties and understanding how structural configuration and material composition affect macroscopic attributes manifestation. However, when conducting systematic high-throughput studies, the individual ab initio calculations' success depends on the quality of the chosen input quantities. On a large scale, improving input parameters by trial and error is neither efficient nor systematic. We present a systematic, high-throughput compatible, and machine learning-based approach to improve the input parameters optimized during a DFT computation or workflow. This approach of integrating machine learning into a typical high-throughput workflow demonstrates the advantages and necessary considerations for a systematic study of magnetic multilayers of 3d transition metal layers on FCC noble metal substrates. For 6660 film systems, we were able to improve the overall success rate of our high-throughput FLAPW-based structural relaxations from 64.8% to 94.3 % while at the same time requiring 17 % less computational time for each successful relaxation.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to DataCite
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 1
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 2
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 1
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
|u fzj
856 4 _ |u https://arxiv.org/abs/2311.15430
856 4 _ |u https://juser.fz-juelich.de/record/1018603/files/Paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018603/files/Paper.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018603/files/Paper.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018603/files/Paper.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018603/files/Paper.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018603
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21