001     1018604
005     20231128201907.0
024 7 _ |a 10.34734/FZJ-2023-04922
|2 datacite_doi
037 _ _ |a FZJ-2023-04922
041 _ _ |a English
100 1 _ |a Hilgers, Robin
|0 P:(DE-Juel1)179506
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Machine Learning-based estimation and explainable artificial intelligence-supported interpretation of the critical temperature from magnetic ab initio Heusler alloys data
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1701181826_4646
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a Non-exclusive perpetual license
520 _ _ |a Machine Learning (ML) has impacted numerous areas of materials science, most prominently improving molecular simulations, where force fields were trained on previously relaxed structures. One natural next step is to predict material properties beyond structure. In this work, we investigate the applicability and explainability of ML methods in the use case of estimating the critical temperature for magnetic Heusler alloys calculated using ab initio methods determined materials-specific magnetic interactions and a subsequent Monte Carlo (MC) approach. We compare the performance of regression and classification models to predict the range of the critical temperature of given compounds without performing the MC calculations. Since the MC calculation requires computational resources in the same order of magnitude as the density-functional theory (DFT) calculation, it would be advantageous to replace either step with a less computationally intensive method such as ML. We discuss the necessity to generate the magnetic ab initio results to make a quantitative prediction of the critical temperature. We used state-of-the-art explainable artificial intelligence (XAI) methods to extract physical relations and deepen our understanding of patterns learned by our models from the examined data.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 2
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 1
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
|u fzj
773 _ _ |y 2023
856 4 _ |u https://arxiv.org/abs/2311.15423
856 4 _ |u https://juser.fz-juelich.de/record/1018604/files/Paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018604/files/Paper.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018604/files/Paper.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018604/files/Paper.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1018604/files/Paper.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018604
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21