001018613 001__ 1018613
001018613 005__ 20240213111709.0
001018613 0247_ $$2doi$$a10.1103/PhysRevB.108.L201119
001018613 0247_ $$2ISSN$$a2469-9950
001018613 0247_ $$2ISSN$$a2469-9977
001018613 0247_ $$2ISSN$$a0163-1829
001018613 0247_ $$2ISSN$$a0556-2805
001018613 0247_ $$2ISSN$$a1095-3795
001018613 0247_ $$2ISSN$$a1098-0121
001018613 0247_ $$2ISSN$$a1538-4489
001018613 0247_ $$2ISSN$$a1550-235X
001018613 0247_ $$2ISSN$$a2469-9969
001018613 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04928
001018613 0247_ $$2WOS$$aWOS:001141809600007
001018613 037__ $$aFZJ-2023-04928
001018613 082__ $$a530
001018613 1001_ $$0P:(DE-HGF)0$$aHeitmann, Tjark$$b0
001018613 245__ $$aSpin- 1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states from equilibrium correlation functions
001018613 260__ $$aWoodbury, NY$$bInst.$$c2023
001018613 3367_ $$2DRIVER$$aarticle
001018613 3367_ $$2DataCite$$aOutput Types/Journal article
001018613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702554696_9695
001018613 3367_ $$2BibTeX$$aARTICLE
001018613 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018613 3367_ $$00$$2EndNote$$aJournal Article
001018613 520__ $$aState-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the system at its boundaries. While quantitative agreement between (i) and (ii) has been found for selected model and parameter choices, also disagreement has been pointed out in the literature. Studying magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at weak driving, the nonequilibrium steady state in an open system, including its buildup in time, can remarkably be constructed just on the basis of correlation functions in the closed system. We numerically illustrate this direct correspondence of closed-system and open-system dynamics, and show that it allows the treatment of comparatively large open systems, usually only accessible to matrix product state simulations. We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems.
001018613 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001018613 536__ $$0G:(GEPRIS)397107022$$aDFG project 397107022 - Kombinationen gedämpfter harmonischen Oszillationen als stabile Bausteine von Autokorrelationsfunktionen in Quantenvielteilchensystemen (397107022)$$c397107022$$x1
001018613 536__ $$0G:(GEPRIS)397300368$$aDFG project 397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)$$c397300368$$x2
001018613 536__ $$0G:(GEPRIS)397067869$$aDFG project 397067869 - Nichtgleichgewichtsdynamik in 2D Clustern aus der Perspektive von Quantentypikalität und Eigenzustandsthermalisierung (397067869)$$c397067869$$x3
001018613 536__ $$0G:(GEPRIS)456666331$$aDFG project 456666331 - Massiv-paralleles CPU/GPU-Rechnersystem (456666331)$$c456666331$$x4
001018613 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018613 7001_ $$0P:(DE-HGF)0$$aRichter, Jonas$$b1
001018613 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2$$ufzj
001018613 7001_ $$0P:(DE-HGF)0$$aNandy, Sourav$$b3
001018613 7001_ $$0P:(DE-HGF)0$$aLenarčič, Zala$$b4
001018613 7001_ $$0P:(DE-HGF)0$$aHerbrych, Jacek$$b5
001018613 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b6
001018613 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b7$$ufzj
001018613 7001_ $$0P:(DE-HGF)0$$aGemmer, Jochen$$b8
001018613 7001_ $$0P:(DE-HGF)0$$aSteinigeweg, Robin$$b9$$eCorresponding author
001018613 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.108.L201119$$gVol. 108, no. 20, p. L201119$$n20$$pL201119$$tPhysical review / B$$v108$$x2469-9950$$y2023
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.pdf$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/paper_RESUB.pdf$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/paper_RESUB.gif?subformat=icon$$xicon$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.gif?subformat=icon$$xicon$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018613 8564_ $$uhttps://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018613 909CO $$ooai:juser.fz-juelich.de:1018613$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ
001018613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b6$$kFZJ
001018613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b7$$kFZJ
001018613 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001018613 9141_ $$y2023
001018613 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001018613 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001018613 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018613 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001018613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001018613 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001018613 980__ $$ajournal
001018613 980__ $$aVDB
001018613 980__ $$aUNRESTRICTED
001018613 980__ $$aI:(DE-Juel1)JSC-20090406
001018613 9801_ $$aFullTexts