Home > Publications database > Spin- 1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states from equilibrium correlation functions > print |
001 | 1018613 | ||
005 | 20240213111709.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.108.L201119 |2 doi |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-04928 |2 datacite_doi |
024 | 7 | _ | |a WOS:001141809600007 |2 WOS |
037 | _ | _ | |a FZJ-2023-04928 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Heitmann, Tjark |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Spin- 1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states from equilibrium correlation functions |
260 | _ | _ | |a Woodbury, NY |c 2023 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1702554696_9695 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a State-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the system at its boundaries. While quantitative agreement between (i) and (ii) has been found for selected model and parameter choices, also disagreement has been pointed out in the literature. Studying magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at weak driving, the nonequilibrium steady state in an open system, including its buildup in time, can remarkably be constructed just on the basis of correlation functions in the closed system. We numerically illustrate this direct correspondence of closed-system and open-system dynamics, and show that it allows the treatment of comparatively large open systems, usually only accessible to matrix product state simulations. We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 397107022 - Kombinationen gedämpfter harmonischen Oszillationen als stabile Bausteine von Autokorrelationsfunktionen in Quantenvielteilchensystemen (397107022) |0 G:(GEPRIS)397107022 |c 397107022 |x 1 |
536 | _ | _ | |a DFG project 397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368) |0 G:(GEPRIS)397300368 |c 397300368 |x 2 |
536 | _ | _ | |a DFG project 397067869 - Nichtgleichgewichtsdynamik in 2D Clustern aus der Perspektive von Quantentypikalität und Eigenzustandsthermalisierung (397067869) |0 G:(GEPRIS)397067869 |c 397067869 |x 3 |
536 | _ | _ | |a DFG project 456666331 - Massiv-paralleles CPU/GPU-Rechnersystem (456666331) |0 G:(GEPRIS)456666331 |c 456666331 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Richter, Jonas |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Jin, Fengping |0 P:(DE-Juel1)144355 |b 2 |u fzj |
700 | 1 | _ | |a Nandy, Sourav |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lenarčič, Zala |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Herbrych, Jacek |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 6 |
700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-Juel1)179169 |b 7 |u fzj |
700 | 1 | _ | |a Gemmer, Jochen |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Steinigeweg, Robin |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevB.108.L201119 |g Vol. 108, no. 20, p. L201119 |0 PERI:(DE-600)2844160-6 |n 20 |p L201119 |t Physical review / B |v 108 |y 2023 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018613/files/paper_RESUB.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1018613/files/paper_RESUB.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1018613/files/paper_RESUB.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1018613/files/PhysRevB.108.L201119.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1018613 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144355 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)179169 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2022 |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|