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Spin-1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states
from equilibrium correlation functions
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State-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into
two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the
closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where
a nonequilibrium steady state emerges from driving the system at its boundaries. While quantitative agreement
between (i) and (ii) has been found for selected model and parameter choices, also disagreement has been pointed
out in the literature. Studying magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at
weak driving, the nonequilibrium steady state in an open system, including its buildup in time, can remarkably
be constructed just on the basis of correlation functions in the closed system. We numerically illustrate this
direct correspondence of closed-system and open-system dynamics, and show that it allows the treatment of
comparatively large open systems, usually only accessible to matrix product state simulations. We also point out
potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems.
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Introduction. Our understanding of the properties of many-
body quantum systems out of equilibrium has seen remarkable
advances in the last decades thanks to various experimental
and theoretical breakthroughs [1-5]. Central questions are
concerned with the emergence of particular (thermal or non-
thermal) steady states in the long-time limit, but also with
the (universal) properties of the actual nonequilibrium pro-
cess towards such states in the course of time [2-5]. Broadly
speaking, these and related questions are usually studied in
two different scenarios: (i) the system of interest is perfectly
isolated from its environment and evolves unitarily in time;
(ii) the system’s time evolution is nonunitary due to an explicit
coupling to an external bath which can affect the dynamics
(see, e.g., Refs. [6-8]).

In systems with a global conservation law, a fundamental
role is played by transport processes [9]. Quantum transport
is also a prime example of a research question that is explored
both from a closed-system and an open-system perspective.
In closed systems, a widely used approach is linear response
theory, where the Kubo formula allows for the extraction of
transport coefficients from equilibrium correlation functions,
which can be studied in the time or frequency domain and
in real or momentum space [9]. While nonintegrable systems
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are expected to exhibit normal diffusion [10-12], the concrete
calculation of diffusion constants for specific models turns out
to be a hard task in practice. This difficulty has been one of
the motivations for the development of sophisticated numeri-
cal methods [13-27]. Moreover, some classes of models can
generically feature anomalous subdiffusion or superdiffusion
in certain parameter regimes [2,28—41].

In contrast, when studying transport in an open-system
setting, the model of interest is often coupled at its edges
to two reservoirs, e.g., at different temperatures or chemical
potentials, leading to a nonequilibrium steady state in the
long-time limit. Then, the profile and current of this steady
state yield information on the transport behavior [42-45]. A
popular description of such an open system is provided by
the Lindblad quantum master equation [6], not least since it
allows for efficient numerical simulations based on matrix
product states, giving access to comparatively large system
sizes [39,46-51]. While quantitative agreement of transport
coefficients according to the Lindblad description with those
from closed-system approaches has been found for selected
models and parameter regimes [52—-54], also disagreement has
been pointed out in the literature [55], and there is no proof
that both approaches have to agree [9,55-58].

From a physical perspective, computed transport coeffi-
cients for a given system should of course be independent
of the method employed. In fact, some of us have recently
shown that the dynamics of closed and open systems can be
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FIG. 1. (a) Infinite-temperature correlation function

(S;’(t)S;’\,/Z(O))eq for N =36 and A =1.5. The dashed curves
indicate Gaussians, see also Ref. [59]. (b) Diffusive growth of
root-mean-squared displacement %(z) o< /7. A diffusion constant
D/J = 0.6 can be extracted from the approximately constant plateau
of 2D(t) = %Ez(z‘) at tJ < 10. For longer times, finite-size effects
become relevant.

connected with each other in a certain simple setting. Specif-
ically, Ref. [54] considered an initially homogeneous system
coupled locally to a single Lindblad bath, which induces a net
magnetization into the system. Remarkably, it was shown that
if the Lindblad driving is weak, the flow of the magnetization
in the open system, i.e., the broadening of the nonequilibrium
density profile, can be described by an appropriate superposi-
tion of equilibrium correlation functions in the closed system.
Building on this result, we here go beyond Ref. [54] in a
crucial point and explore the more common situation of two
Lindblad baths inducing a nonequilibrium steady state. Con-
sidering magnetization transport in the paradigmatic spin-1/2
XXZ chain as an example, we demonstrate that the steady
state in the open system can be constructed on the basis of
correlation functions in the closed system. We support our
analytical results by large-scale numerical simulations and
show that our scheme enables efficient unravelings of Lind-
blad equations for systems with up to 36 sites, which are
usually only accessible with matrix product state techniques.

Closed System. We consider the one-dimensional XXZ
model, which is described by the Hamiltonian

N
H =17 (SIS5, +8S, +ASS,), (0

r=1

where S} (j = x, y, z) are spin-1/2 operators at site r, J > 0
is the antiferromagnetic coupling constant, and A denotes
the anisotropy in the z direction. Moreover, N is the num-
ber of sites and we employ periodic boundary conditions,
Slj\', = S{ . The XXZ chain conserves the global magnetiza-
tion, [H, Zr SZ] =0, and we will particularly focus on the
regime A > 1, where it is well-established that spin trans-
port is diffusive [9]. This diffusive transport behavior can,
for instance, be seen in the Gaussian shape of the infinite-
temperature spin-spin correlation function at A = 1.5 [59],

see Fig. 1(a),

tr[eiH’Sfe_thSf,]

(Sf (t )S)z"(o)>eq = N (2)
The root-mean-squared displacement of the above
grows  as S(t) x A/, see Fig. 1(b),  where

220) = ), (r = ' PCor(t) = [, (r = )Crp (1)) and
Cpr(t) = 4(Si(1)S%)eq. Moreover, a diffusion coefficient
can be defined as 2D(t) = %Ez(t) [60]. As shown in
Fig. 1(b), D(t) takes on a constant value D/J ~ 0.6 for
tJ < 10, which is approximately independent of time (and
system size [59,61]) and consistent with other results in the
literature [51,62—-64].

In the following, we will show that the equilibrium cor-
relation function (SZ(¢)S%(0))cq in Eq. (2) is not only central
to transport in the closed system, but can remarkably be used
to predict the buildup of a nonequilibrium steady state in an
open-system situation where the spin chain is weakly driven
by two Lindblad baths. While we focus on the integrable XXZ
chain as a concrete example due to its interesting transport
properties, we expect our conceptual findings to apply to a
wider range of models. In particular, while our derivation
[54,65] is largely model-independent, it implicitly assumes
sufficiently fast local equilibration, which should be even bet-
ter fulfilled in nonintegrable chaotic systems.

Open System. Let us consider a scenario, where the XXZ
chain is explicitly coupled to an environment. We describe this
setting with a Lindblad equation,

p@) = Lp@) =ilp@), H1 + D p(1), 3)

which consists of a coherent time evolution of the density
matrix p with respect to H and an incoherent damping term,

1 .
Do)=Y« (Ljp(r)L} = 51, L}Lj}), )
J

with non-negative rates o, Lindblad operators L;, and the
anticommutator {e, e}. While the derivation of this equation
can be a subtle task for a given microscopic model [43,66], it
is the most general form of a time-local quantum master equa-
tion, which maps any density matrix to a density matrix, i.e.,
which preserves trace, hermiticity, and positivity [6]. Here, we
choose [9]

Li=S§, ar=y(l+p), )
L=L =5, a=y(-p) (6)
Ly =583, as=y(l—p), )
Ly=L{=S;, as=y(l+p), (8)

where y is the system-bath coupling and p is the driving
strength. L; and L, are local Lindblad operators at site B;
and flip a spin up and down, respectively. L3 and L4 act
similarly on another site B,. In the following, we set B; =1
and B, = N/2 + 1. Note that we still consider periodic bound-
ary conditions. However, our approach can also generally be
applied to open boundaries with the two baths at the system’s
edges B; =1 and B, = N, and we present results for this
setting in [65]. For u > 0, the first (second) bath induces a
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net polarization of ©/2 (—u/2), leading to a steady state in
the long-time limit with a characteristic density profile and
a constant current. Note that, while the Lindblad modeling
(3)-(8) is standard in the context of transport in quantum
lattice models [9], there exist other approaches to open-system
dynamics which can also address potential non-Markovian
effects [67].

In addition to the long-time limit, we are interested in the
temporal buildup of the steady state. Thus, we study the time
evolution of local densities

(S5 (0)) = u[p®)S7]. ©)

which depends on the parameters of the system H, but also
on the bath parameters y and p. As an initial state, we here
consider a homogeneous situation with p(0) o< 1 being the
infinite-temperature ensemble.

Quantum-trajectory approach. One possibility to solve the
Lindblad equation is given by the concept of stochastic un-
raveling, which relies on pure states |¢) rather than density
matrices [68,69]. It consists of an alternating sequence of
stochastic jumps with one of the Lindblad operators and de-
terministic evolutions governed by an effective Hamiltonian
Hys =H — é > L7 L;L ;- For our choice of Lindblad opera-
tors,

Heif = H — iy + iy pu(n, — ns,), (10)

with n, =SS =S¢ + 1/2. For weak driving u < 1, the
time scale on which the last term in Eq. (10) affects the
dynamics is much longer than the typical time scale between
jumps. Thus, the effective Hamiltonian can be approximated
as

Het ~ H — iy (11
and the time evolution of a pure state reads

Y @) ~ e e M Y (0)), 12)

i.e., apart from the scalar damping term, the dynamics is
generated by the closed system H only. The approximation
in Eq. (12) is one of the main ingredients to establish a
correspondence between the dynamics of the isolated and the
weakly driven XXZ chain below. For larger values of p, the
effective Hamiltonian generating the dynamics of |y (¢)) also
involves the two operators ng, and ng,, cf. Eq. (10).

Naturally, since H.s is a non-Hermitian operator, the norm
of a pure state is not conserved as a function of time. As
a consequence, for a given ¢ drawn at random from a uni-
form distribution ]0, 1], there is a time, where the condition
1w (£))]|> > € is first violated. At this time, a jump with one
of the Lindblad operators occurs and the new and normalized
pure state reads

Lily@))

(1) = D) 13
VO =L o (13

where the specific jump is chosen with probability
b= o ILj1y ()
ST

jump, the next deterministic evolution
This sequence of stochastic jumps and

(14)

After this
takes place.

deterministic evolutions leads to a particular trajectory
[Yrr(t)). The time-dependent density matrix according to the
Lindblad equation can eventually be approximated by the
average over different trajectories T. Thus, expectation values
read

T

1 (@IS 1Y @)

Iy @)?

where T« 1s the number of trajectories.

In order to mimic the homogeneous state p(0) o< 1, we
use random pure states as initial condition for the stochastic
unraveling,

(Sp(n) ~ , s)

T
max T=1

W (0) o< Y cjley). (16)
J

where the real and imaginary parts of the coefficients c;
in some given basis |¢;) are drawn at random accord-
ing to a Gaussian probability distribution with zero mean.
Crucially, by exploiting the concept of quantum typicality
[59,70-75], expectation values (1| ® |1/) of local observables
evaluated within such random states can be related to infinite-
temperature averages tr[e]/2". This is used in the following to
connect the equilibrium correlation functions (S%(#)S%(0))eq
[Eq. (2)] to the dynamics (SZ(¢)) in the open system [Eq. (9)].

Constructing steady states from correlation functions. In
Ref. [54], it was demonstrated that individual quantum trajec-
tories of the open system can be described by closed-system
equilibrium correlation functions if the driving by the Lind-
blad bath is weak. We here build on this result and apply it
to the case of two Lindblad baths leading to a nonequilib-
rium steady state. While we relegate details of the derivation
to the Supplemental Material [65], we find that for small
coupling y and weak driving u, the local magnetization dy-
namics within a single trajectory T can be approximated as

dyr(t) & (YOI SE 1Y (@) /|1 (@)) 17, where

d.r(t) =2 ZAj Ot —1;)C(t — 1)) 17)
j
with  C,(t) = (S:() S§1(0)>eq - (Sf(t)Sf_,,z(O))eq. Here,
(®)eq = tr[e] /2N denotes the infinite-temperature ensemble,
®(t) is the Heavyside function, and the sum runs over the
jump times 7; of the particular trajectory T. Moreover, the
amplitudes A; in Eq. (17) read

4 ot
A = aj —dg, 1(17; ) (18)
‘ 1
w—2dg, (r; — 0%)
2 —dpdg, 7(r; - 0F)’

where A; — 1/2 for dg, 1(7; — 0") — 0. Note that, due to
the symmetry dg, 1(t; — 07) = —dg, r(r; — 0%), only B, en-
ters the above expressions. Equation (17) is the main result
of this Letter. It predicts the magnetization dynamics in the
open system by suitably superimposing equilibrium correla-
tion functions of the closed system involving the two bath sites
B and B,. In particular, from Eq. (17), the trajectory-averaged
magnetization dynamics follows as

with a; = (19)

Z N 1 Tmax
(S:0) ~ 71— T; dr1(1), (20)
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FIG. 2. Open-system dynamics for the spin-1/2 XXZ chain cou-
pled to two Lindblad baths, as obtained for anisotropy A = 1.5,
N = 20 sites (with periodic boundary conditions), small coupling
y/J = 0.1, and weak driving © = 0.1. Numerical results from the
full stochastic unraveling (data) are compared to the prediction based
on closed-system correlation functions [cf. Eq. (20)]. (a) Time evo-
lution of the local magnetization (S%(¢)) for different sites r. (b) Site
dependence of the steady state at rJ = 50.

where each d,.r(f) is evaluated for a different sequence
(t1, 72, ...) of T;. Given the exponential damping in Eq. (12),
the 7; can be generatedas 7,1 = 7; — Ing; /2y, where ¢4
are random numbers drawn from a box distribution ]0, 1].
If the correlation functions (S7(#)S§ (0))eq and (S7(#)Sg (0))eq
are known, it is thus straightforward to evaluate Eq. (20) for a
large number of sequences.

Numerical Illustration. We now test our theoretical pre-
diction and its accuracy for a specific example, namely the
spin-1/2 XXZ chain with A = 1.5, N =20, and periodic
boundary conditions. The baths are located at By = 1 and
B; = 11 and we focus on small coupling y /J = 0.1 and weak
driving 4 = 0.1. Additional data for other values of A, y, and
wu, as well as for open boundary conditions can be found in
Ref. [65].

Our theoretical prediction (20) is carried out numerically
for O(10* — 10°) different sequences of jump times, which
turns out to be sufficient to obtain negligibly small statistical
errors. For comparison, we simulate the exact dynamics of
the open system by performing a stochastic unraveling of the
Lindblad equation. We stress that while Eq. (20) is derived in
the limit of weak driving, cf. Eq. (12), the stochastic unravel-
ing is here performed for the full H. in Eq. (10).

In Fig. 2, we depict the outcome of the comparison. In
Fig. 2(a), we show the time evolution of the local magne-
tization (S%(¢)) for different sites r. The site dependence of
the steady-state profile is depicted in Fig. 2(b) and is well
described by a linear function, except for the sites located
exactly at the bath contacts. Importantly, we observe a re-
markably good agreement between our prediction (20) and
the exact open-system dynamics for all times up to tJ = 50,

(v/J=p=0.1)
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FIG. 3. [(a) and (b)] Analogous data as in Fig. 2, but now for
N = 36 sites, for which stochastic unraveling is unfeasible. (c) Mag-
netization injected by the first bath as a function of time, see also
[65]. A diffusion constant D/J =~ 0.99 [76] can be extracted from
the slopes in (b) and (c).

where the steady-state profile is already established. This
confirms our main result (17). We also note that for larger
values of y and u, deviations are expected to become more
pronounced, see Ref. [65].

For N > 20, stochastic unraveling cannot be carried out,
since the required average over many trajectories becomes
unfeasible. In contrast, our theoretical prediction (20) can be
evaluated for larger system sizes, since only the equilibrium
correlation functions are needed in Eq. (17). In particular,
by relying on quantum typicality [24,26], we simulate these
correlation functions for up to N = 36 lattice sites on Jiilich’s
“JUWELS” supercomputer. As shown in Figs. 3(a) and 3(b),
we are thus able to describe the buildup of a nonequilib-
rium steady state in a N = 36 XXZ chain weakly driven by
Lindblad baths at sites B; = 1 and B, = 19. Open-system
simulations for such system sizes are typically only accessible
with matrix product state techniques, which are in turn usually
restricted to open boundary conditions.

On the extraction of transport coefficients. In the nonequi-
librium steady state, the diffusion constant can be calculated
as D = —(j,)/V(S,) for some site r in the bulk away from
the bath sites. Here, j, is the local spin-current operator. Its
expectation value can be expressed as (j,) = %(8S§](t)) /2,
where (35 (1)) is the magnetization injected by the first bath
(see Ref. [65] for more details), and the factor 1/2 takes into
account that magnetization can flow to the left and to the right
of this bath, due to periodic boundary conditions. As shown
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FIG. 4. Diffusion coefficient D(t) = o; (Sﬁ(t))/Vz(S;’(t)) based
on our prediction for the dynamics of the weakly driven open system
in Fig. 3. Data is obtained at lattice site r = 12 and the approximately
constant plateau for tJ < 25 is consistent with the transport behavior
of the isolated XXZ chain in Fig. 1. Similar data for predictions in
smaller systems with N = 20 and N = 28 are shown for comparison.

in Fig. 3(c), (8S§1(t)) grows linearly in time (i.e., a constant
(j-)) and we can thus evaluate the diffusion constant in the
steady state as the ratio of the slopes in Figs. 3(b) and 3(c). In
this way, we obtain a value D/J ~ 0.99 which differs notably
from what we found earlier in the context of Fig. 1.

This discrepancy may be explained by finite-size effects.
Specifically, as also apparent in Fig. 1(a), the equilibrium
correlation function (S%()S%(0))¢q is affected by finite-size
effects already at tJ ~ 20, where the broadening of the den-
sity profile has explored the full system. These effects then
likely translate into the steady state in the weakly driven
open system and its finite-N estimate of the diffusion con-
stant. Such finite-size effects demonstrate that care must be
taken when extracting transport properties both in closed and
open systems. Importantly, we stress that the main conceptual
result of our work, i.e., establishing a connection between
weakly-driven Lindblad dynamics and closed quantum sys-
tems, remains unabated. In the Supplemental Material [65],
we provide more details on this issue: Specifically, one can
assume an ideal situation where the closed system behaves
perfectly diffusive without finite-size corrections (in contrast
to Fig. 1), in which case the equilibrium correlation functions
(SZ(1)S%(0))q follow analytically as damped modified Bessel
functions [65]. Using this idealized Ansatz, we find that the
nonequilibrium steady state indeed yields the same diffusion
constant as the closed system.

We note that one can extract a diffusion coefficient also
from the finite-time dynamics of the open system, even before
the steady state is established, via D(t) = o; (Sf(t))/V2 (St(2)),
where VZ(Si(1)) = (S*_, (1)) — 2(S3(1)) + (S5, (@)). We are
able to find a D(¢) in Fig. 4 that exhibits an approximately
constant plateau D/J =~ 0.6 for rJ < 25 (while at longer ¢
the behavior becomes uncontrolled due to dividing two small

numbers), consistent with our analysis of the closed system in
Fig. 1.

Conclusion. Considering the example of magnetization
transport in the spin-1/2 XXZ chain, we have connected
linear response theory to the dynamics in an open quantum
system driven by two Lindblad baths. Specifically, building on
Ref. [54], we have shown that, at weak driving, the nonequi-
librium steady state and its buildup in time can be constructed
by suitably superimposing equilibrium correlation functions
of the closed system.

Conceptually, our results for a specific model might reflect
the natural expectation that transport coefficients obtained
from closed-system and open-system approaches should
agree with each other, at least if the driving is sufficiently
weak. While we have presented data for systems with pe-
riodic boundary conditions, we provide additional results in
Ref. [65], where we consider the more common case of open
boundaries with Lindblad driving at the edge spins. In par-
ticular, we find that our main result (20) works convincingly
also in this case and is in good agreement with state-of-the-art
simulations based on time-evolving block decimation [47,48].
From a practical perspective, our results enable the treatment
of quite large open systems, which are usually not accessible
by full stochastic unraveling. It would be an interesting at-
tempt to generalize our setting to other jump operators, e.g.,
dephasing noise with L; = Sj, and other questions beyond
quantum transport.
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