Quantum annealing : Sampling efficiency for
2-SAT problems with multiple solutions
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2-Satisfiability (SAT) problems

A 2-SAT problem is specified by N binary variables x; and a conjunction of M clauses
defining a binary-valued cost function

C(x1, e, xn) = (L11VL12) A(Lyqg VLgo) Ao A(Lypq V Lago)
where the literal L, ; stands for either x;4 jy or its negation X;, jy fora = 1, ..., M and
j=1,2.
The corresponding formulation of Ising Hamiltonian is given by [1]

M
Hysar = z hZSAT(ga,lsi(a,l)» ga,ZSi(a,Z))
a=1

where g, ; = +1(—1) if L, ; stands for x; (x;) and hosar (51, S,) = (57 — 1)(S,,, — 1).

Chosen problem Hamiltonians :

1) Have four degenerate ground states.
2) Highly degenerated first excited states.
3) 1000 problems in each set with 6 < N < 20.

Standard quantum annealing :

System starts in the uniform superposition state and is annealed towards the
Hamiltonian encoding the problem to be solved.

Reverse annealing :

System is initialized in one of the low-lying classical states and is annealed backwards
up to a reversal distance s,.. From there the system is swept back to the problem
Hamiltonian, after an optional wait of Ty,.

Resources :
Simulations [2] and D-Wave quantum annealers [3]

Standard quantum annealing

Simulations
Result for N=14 problems with four ground states (\\yio) where i=1,2,3,4)
Example 1 Example 2
State T,=10 T ,=1000 State T,=10 T,=1000
w3 0.0357 0.2497 Wi 0.1233 0.4986
7 0.0320 0.2490 2 0.0742 0.2507
Vo 0.0419 | 0.2510 3 0.0648 | 9.56x10710
v 0.0384 0.2502 yi 0.0589 0.2506
Total 0.1471 0.9999 Total 0.3212 0.9909
Perturbation theory [4] : Vii= <\|;g H,‘\p{;>
0 -1 -1 0] 0 -1 0 -1
-1 0 0 -1 -1 0 0 O
V=11 0 0 -1 V=lo 0 0 o
0 -1 -1 0. -1 0 0 0.

|V1> = 1/2(1/ 1/ 1/ 1)
p=0.25, 0.25, 0.25, 0.25

lvi) =1/2(v2, 1, 0, 1)
p=0.5,0.25, 0, 0.25

=» Annealing results agree with perturbation theory predictions for long T 4

D-Wave Advantage 5.1 annealer

Almost equal sampling probabilities for all ground states for almost all problems
=» Temperature effects and noise play a significant role

Summary and outlook
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Reverse annealing .
Simulation results .
» Different annealing times & 7|
ST' — 0.7, TW — O, 0.1 i g’;a’éeig
initial state = |yj) s =
State TA =10 TA =90 TA =100 Fig. 1 : Overlap of the state of
U% 0.1891 | 0.9011 | 0.0296 the system with the lowest
> four states of the
Yo 0.4053 | 0.0435 | 0.4051 instantaneous Hamiltonian for
Ug 0.0001 [0.000003|0.000005 T,=100and s, = 0.7
We 0.4031 | 0.0493 | 0.4852
Total 0.9976 1.000 1.0000

Success probabilities corresponding to different
annealing times for the problem posed by
example 2 and s, = 0.7

e Different reversal distance
TA= 1000, TW — O,
initial state = |y3)

Energy

State s, =04 | s.=0.6 | s.=0.8
Vo 0.0703 | 0.8310 | 0.6147
5 0.2874 | 0.0566 | 0.1926
e 0.0012 | 0.000002 0
W 0.2739 | 0.0579 | 0.1926

Total 0.6396 | 0.9454 | 1.0000

Success probabilities corresponding to different
reversal distances for the problem posed by

example 2

D-Wave results
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Fig. 2 : (a) Energy spectrum
and (b) overlap of the state
with the low-lying states of
the instantaneous

Hamiltonian
 Different annealing times
s.= 0.7, Ty,= 0, initial state = \w%)

State To=0.5us | Tp =50us | Th =200us
vy 0.9991 0.6709 0.5405

v 0.0006 0.1470 0.2490

v 0 0 0

Ve 0.0003 0.0830 0.2105
Total 1.000 0.9009 1.0000

e Different reversal distances
Ty= 20 ps, Ty, = 0, initial state = |yg)

State s-=0.4 s, =0.6 s, =0.8
vy 0.4080 0.3120 1.000
5 0.3235 0.4075 0
v 0.0065 0 0
UFs 0.2556 0.2751 0

Total 0.9936 0.9946 1.0000

Our study focused on efficiently sampling all the degenerate ground states of a problem using quantum annealing. We observe that using the standard
guantum annealing Hamiltonian, the numerically obtained sampling probabilities, even if not fair, can, in the case of long annealing times, be explained
using perturbation theory. The sampling probabilities from the D-Wave quantum annealer remain comparable for almost all the problems. On the other
hand, the sampling probabilities for the reverse annealing protocol depends greatly on the choice of annealing times, reversal distance, waiting time, and

the initial state for both simulations and D-Wave results.
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