Quantum annealing: Sampling efficiency for 2-SAT problems with multiple solutions

V. Mehta^{1,2}, F. Jin¹, K. Michielsen^{1,2} and H. De Raedt^{1,3}

¹ Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany ² RWTH Aachen University, D-52056 Aachen, Germany

³ Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands

2-Satisfiability (SAT) problems

A 2-SAT problem is specified by N binary variables x_i and a conjunction of M clauses defining a binary-valued cost function

$$C(x_1, ..., x_N) = (L_{1,1} \lor L_{1,2}) \land (L_{2,1} \lor L_{2,2}) \land \cdots \land (L_{M,1} \lor L_{M,2})$$

where the literal $L_{\alpha,j}$ stands for either $x_{i(\alpha,j)}$ or its negation $\bar{x}_{i(\alpha,j)}$ for $\alpha=1,\ldots,M$ and f = 1, 2.

The corresponding formulation of Ising Hamiltonian is given by [1]

$$H_{2SAT} = \sum_{\alpha=1}^{M} h_{2SAT}(\varepsilon_{\alpha,1}S_{i(\alpha,1)}, \varepsilon_{\alpha,2}S_{i(\alpha,2)})$$
 where $\varepsilon_{\alpha,j} = +1(-1)$ if $L_{\alpha,j}$ stands for x_i (\bar{x}_i) and $h_{2SAT}(S_l, S_m) = (S_l - 1)(S_m - 1)$.

Chosen problem Hamiltonians:

- 1) Have four degenerate ground states.
- 2) Highly degenerated first excited states.
- 3) 1000 problems in each set with $6 \le N \le 20$.

Methods

Standard quantum annealing:

System starts in the uniform superposition state and is annealed towards the Hamiltonian encoding the problem to be solved.

Reverse annealing:

System is initialized in one of the low-lying classical states and is annealed backwards up to a reversal distance s_r . From there the system is swept back to the problem Hamiltonian, after an optional wait of T_W .

Resources:

Simulations [2] and D-Wave quantum annealers [3]

Standard quantum annealing

Simulations

Result for N=14 problems with four ground states ($|\psi_0^i\rangle$ where i=1,2,3,4)

Example 1				
State	$T_A = 10 \qquad T_A = 10$			
ψ_0^1	0.0357	0.2497		
ψ_0^2	0.0320	0.2490		
ψ_0^3	0.0419	0. 2510		
ψ_0^4	0.0384	0.2502		
Total	0.1471	0.9999		

Example 2			
State	$T_A = 10 \qquad T_A = 10$		
ψ_0^1	0.1233	0.4986	
ψ_0^2	0.0742	0.2507	
ψ_0^3	0.0648	9.56×10^{-10}	
ψ_0^4	0.0589	0.2506	
Total	0.3212	0.9909	

Perturbation theory [4]:

$$V = \begin{bmatrix} 0 & -1 & -1 & 0 \\ -1 & 0 & 0 & -1 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 \end{bmatrix}$$

$$|\nu_1\rangle = 1/2(1, 1, 1, 1)$$

p = 0.25, 0.25, 0.25, 0.25

$$V_{i,j} = \left\langle \psi_0^i \middle| H_I \middle| \psi_0^j \middle| \right\rangle$$

$$V = \begin{bmatrix} 0 & -1 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$|\nu_1\rangle = 1/2(\sqrt{2}, 1, 0, 1)$$

p = 0.5, 0.25, 0, 0.25

\rightarrow Annealing results agree with perturbation theory predictions for long T_A D-Wave Advantage_5.1 annealer

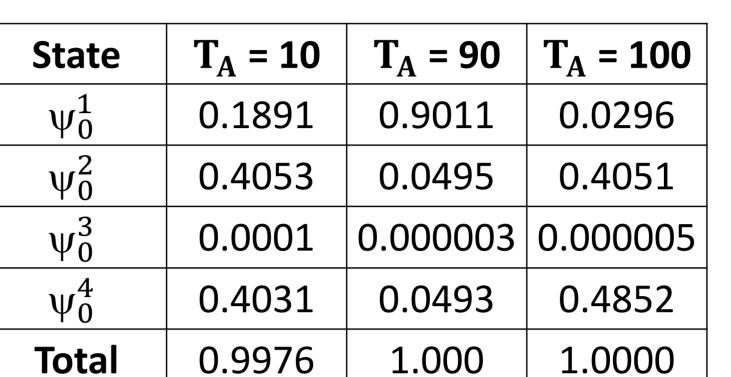
Almost equal sampling probabilities for all ground states for almost all problems

Temperature effects and noise play a significant role

Reverse annealing

Simulation results

Different annealing times $s_r = 0.7, T_W = 0,$ initial state = $|\psi_0^1\rangle$



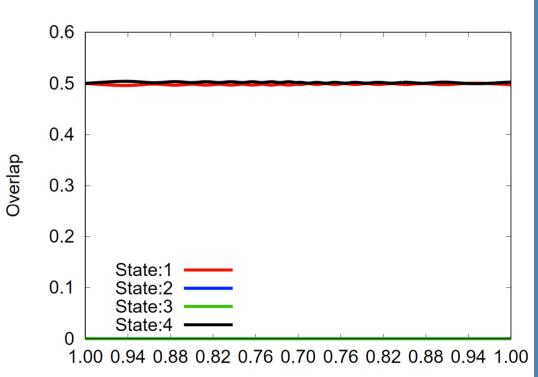


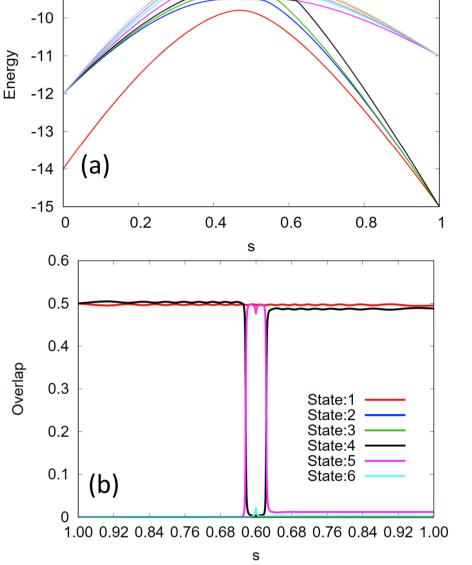
Fig. 1: Overlap of the state of the system with the lowest four states of the instantaneous Hamiltonian for T_A =100 and $s_r = 0.7$

Success probabilities corresponding to different annealing times for the problem posed by

Different reversal distance $T_A = 1000, T_W = 0,$ initial state = $|\psi_0^1\rangle$

example 2 and $s_r = 0.7$

1 + 0/				
State	$s_r = 0.4$	$s_r = 0.6$	$s_r = 0.8$	
ψ^1_0	0.0703	0.8310	0.6147	
ψ_0^2	0.2874	0.0566	0.1926	
ψ_0^3	0.0012	0.000002	0	
ψ_0^4	0.2739	0.0579	0.1926	
Total	0.6396	0.9454	1.0000	



Success probabilities corresponding to different reversal distances for the problem posed by example 2

Fig. 2: (a) Energy spectrum and (b) overlap of the state with the low-lying states of the instantaneous Hamiltonian

D-Wave results

Different annealing times $s_r = 0.7$, $T_W = 0$, initial state = $|\psi_0^1\rangle$

State	$T_A = 0.5 \mu s$	T _A = 50μs	$T_A = 200 \mu s$
ψ^1_0	0.9991	0.6709	0.5405
ψ_0^2	0.0006	0.1470	0.2490
ψ_0^3	0	0	0
ψ_0^4	0.0003	0.0830	0.2105
Total	1.000	0.9009	1.0000

Different reversal distances $T_A = 20 \ \mu s$, $T_W = 0$, initial state = $|\psi_0^1\rangle$

State	$s_r = 0.4$	$s_r = 0.6$	$s_r = 0.8$
ψ_0^1	0.4080	0.3120	1.000
ψ_0^2	0.3235	0.4075	0
ψ_0^3	0.0065	0	0
ψ_0^4	0.2556	0.2751	0
Total	0.9936	0.9946	1.0000

Summary and outlook

Our study focused on efficiently sampling all the degenerate ground states of a problem using quantum annealing. We observe that using the standard quantum annealing Hamiltonian, the numerically obtained sampling probabilities, even if not fair, can, in the case of long annealing times, be explained using perturbation theory. The sampling probabilities from the D-Wave quantum annealer remain comparable for almost all the problems. On the other hand, the sampling probabilities for the reverse annealing protocol depends greatly on the choice of annealing times, reversal distance, waiting time, and the initial state for both simulations and D-Wave results.

References:

- [1] T. Neuhaus, arXiv:1412.5361 (2014)
- [2] V. Mehta, Phys. Rev. A 104 (2020)
- [3] JUNIQ, https://juniq.fz-juelich.de/
- [4] M. S. Könz et al, Phys. Rev. A 100 (2019)

Acknowledgements

The authors gratefully acknowledge support from the project JUNIQ which has received funding from the German Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science of the state of North Rhine-Westphalia and from the Gauss Centre for Supercomputing eV for funding this project by providing computing time on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre.