001018615 001__ 1018615
001018615 005__ 20250204113739.0
001018615 0247_ $$2doi$$a10.1016/j.apenergy.2023.122351
001018615 0247_ $$2ISSN$$a0306-2619
001018615 0247_ $$2ISSN$$a1872-9118
001018615 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04930
001018615 0247_ $$2WOS$$aWOS:001127131000001
001018615 037__ $$aFZJ-2023-04930
001018615 082__ $$a620
001018615 1001_ $$0P:(DE-Juel1)184782$$aTitz, Maurizio$$b0$$eCorresponding author
001018615 245__ $$aIdentifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI
001018615 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001018615 3367_ $$2DRIVER$$aarticle
001018615 3367_ $$2DataCite$$aOutput Types/Journal article
001018615 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706507255_21779
001018615 3367_ $$2BibTeX$$aARTICLE
001018615 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018615 3367_ $$00$$2EndNote$$aJournal Article
001018615 520__ $$aThe transition to a sustainable energy supply challenges the operation of electric power systems in various ways. Transmission grid loads increase as wind and solar power is often installed far away from the consumers. System operators resolve grid congestion via countertrading or redispatch to ensure grid stability. While some drivers of congestion are known, the magnitude of their impact is unclear, and other factors might still be unidentified.In this study, we conduct a data-driven investigation of congestion in the German transmission grid that reveals drivers and mitigators and quantifies their impact ex-post. Specifically, we used Gradient Boosted Trees and SHAP values to develop an explainable machine learning model for the hourly volume of redispatch and countertrade. As expected, wind power generation in northern Germany emerged as the main driver. Cross-border electricity trading, especially with Denmark, also plays an important role. German solar power has very little effect. Furthermore, our results suggest that run-of-river generation in the alpine region has a strong mitigating effect. Our results support the idea that market design changes, e.g., a bidding zone split, could contribute to congestion prevention.
001018615 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001018615 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
001018615 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018615 7001_ $$0P:(DE-Juel1)190862$$aPütz, Sebastian$$b1
001018615 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2
001018615 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2023.122351$$gVol. 356, p. 122351 -$$p122351$$tApplied energy$$v356$$x0306-2619$$y2024
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/1-s2.0-S0306261923017154-main.pdf$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/Redispatch_Paper.pdf$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/Redispatch_Paper.gif?subformat=icon$$xicon$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/Redispatch_Paper.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/Redispatch_Paper.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/Redispatch_Paper.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/1-s2.0-S0306261923017154-main.gif?subformat=icon$$xicon$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/1-s2.0-S0306261923017154-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/1-s2.0-S0306261923017154-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018615 8564_ $$uhttps://juser.fz-juelich.de/record/1018615/files/1-s2.0-S0306261923017154-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018615 8767_ $$d2023-11-28$$eHybrid-OA$$jDEAL
001018615 909CO $$ooai:juser.fz-juelich.de:1018615$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001018615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184782$$aForschungszentrum Jülich$$b0$$kFZJ
001018615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
001018615 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001018615 9141_ $$y2024
001018615 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001018615 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001018615 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001018615 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001018615 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001018615 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018615 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2022$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001018615 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL ENERG : 2022$$d2025-01-02
001018615 920__ $$lyes
001018615 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001018615 9801_ $$aAPC
001018615 9801_ $$aFullTexts
001018615 980__ $$ajournal
001018615 980__ $$aVDB
001018615 980__ $$aUNRESTRICTED
001018615 980__ $$aI:(DE-Juel1)IEK-10-20170217
001018615 980__ $$aAPC
001018615 981__ $$aI:(DE-Juel1)ICE-1-20170217