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GPU #0 (Node #0)

GPU #4 (Node #1)

GPU #2047

De Raedt et al., CPC 176, 121 (2007)

De Raedt et al., CPC 237, 47 (2019)

Willsch et al., CPC 278, 108411 (2022)

https://juniq.fz-juelich.de

➢ Video: Simulation of Quantum Computers on GPUs

➢JUNIQ: Possible to simulate around 40 qubits (45 with JUQCS)

https://youtu.be/JUSEYCkh2ac
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➢ Goal: Enhance this term!

➢ Look at p=1 QAOA step

➢ Will be a central topic of this School ☺

A very brief overview of the QAOA

Page 17 Dr. Dennis Willsch

Success probability

There are regions 
where the success 
probability is enhanced! 
How to find them?
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