

APPLICATIONS ON QUANTUM ANNEALERS AT FZJ

JUNIQ: Jülich Unified INfrastructure for Quantum Computing

DR. DENNIS WILLSCH

CONTENTS

JÜLICH JÜLICH **SUPERCOMPUTING** CENTRE

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability
- 5. Quantum Support Vector Machines
- 6. Quantum Boltzmann Machines

Prof. Dr. Kristel Michielsen

De Raedt

Dr. Dennis Willsch

Dr. Madita Willsch

Vrinda Mehta

Carlos Gonzalez Calaza

Manpreet Jattana

Tamás Nemes

Cameron **Perot**

Dr. Fengping Jin

Application: Airline scheduling

Find optimal flight schedule such that each flight is covered exactly once

Problem specification

Find optimal flight schedule such that each flight is covered exactly once

	Flight 0	Flight 1	Flight 2	Flight 3	Flight 4	Flight 5	 Flight 469	Flight 470	Flight 471
Route 0	0	1	0	0	0	0	0	0	0
Route 1	U	U	U	U	1	U	U	U	U
Route 10	0	0	0	0	0	1	0	0	1
Route 11	0	0	1	0	0	0	0	0	0
Route 12	0	0	Q	1	0	0	1	0	0
Route 13	Q	0	1	Q	Q	Q	Q	0	0
Route 14	0	0	0	1	0	0	0	0	0
Route 15	0	0	0	0	1	0	0	0	0
Route 16	0	1	0	0	0	0	0	1	0
;						_			
Route 37	0	0	0	0	0	1	0	0	0
Route 38	0	0	0	1	0	0	0	0	0
Route 39	0	0	0	1	0	0	0	0	0

Mathematical formulation

Mathematical formulation

➤ Linear assignment problem

Mathematical formulation

➤ Linear assignment problem

minimize
$$\vec{f}^T \vec{x}$$
 subject to $A\vec{x} = \vec{b}$

Mathematical formulation

➤ Linear assignment problem

minimize
$$\vec{f}^T \vec{x}$$
 subject to $A\vec{x} = \vec{b}$

encodes cost of assigning airplanes to routes

Mathematical formulation

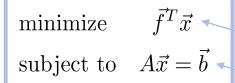
➤ Linear assignment problem

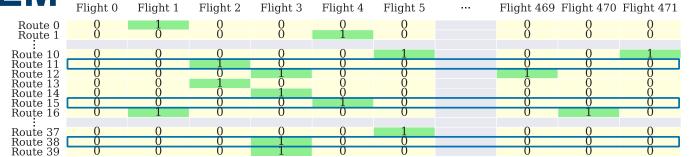
minimize	$ec{f}^T ec{x}$
subject to	$A\vec{x} = \vec{b}$

encodes cost of assigning airplanes to routes exact cover problem: each flight covered once

Mathematical formulation

➤ Linear assignment problem

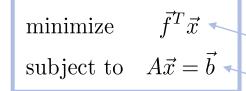




encodes cost of assigning airplanes to routes exact cover problem: each flight covered once

Mathematical formulation

➤ Linear assignment problem



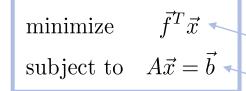
	Flight 0	Flight 1	Flight 2	Flight 3	Flight 4	Flight 5	•••	Flight 469	Flight 470	Flight 4/1
Route 0	0	1	0	0	0	0		0	0	0
Route 1	0	U	0	0	1	0		U	0	O
Route 10	0	0	0	0	0	1		0	0	1
Route 11	0	0	1	0	0	0		Q	0	0
Route 12	Ŏ	Ö	Ų	Ţ	Ŭ	Ŏ		Ţ	Q	Ŏ
Route 13	Ŏ	Ö	Ĭ	Ų	Ö	Ö		Ŏ	Ö	Ö
Route 14	Ü	0	Ü	<u> </u>	Ų	Ü		0	0	0
Route 15	0	Ų	0	0	1	0		0	Ų	0
Route 16	U	1	U	U	Ü	U		U	1	U
_ :	0	0	0	0	0			_	0	0
Route 37	Ü	0	0	Ų	0	Ţ		0	0	0
Route 38	0	0	0	1	0	0		0	0	0
Route 39	U	U	U	1	U	U		U	U	U

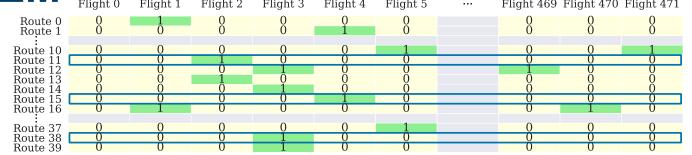
minimize $\vec{f}^T \vec{x}$ encodes cost of assigning airplanes to routes subject to $A\vec{x} = \vec{b}$ exact cover problem: each flight covered once

➤ Reformulation as Ising problem

Mathematical formulation

➤ Linear assignment problem





encodes cost of assigning airplanes to routes exact cover problem: each flight covered once

> Reformulation as Ising problem

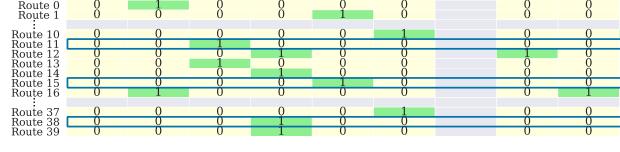
$$\min_{x_i=0,1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right)$$

IAIL AGGIGIANILIAI

Mathematical formulation

➤ Linear assignment problem

minimize $\vec{f}^T \vec{x}$ subject to $A\vec{x} = \vec{b}$

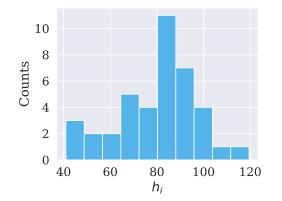


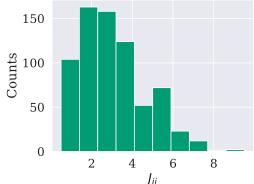
encodes cost of assigning airplanes to routes exact cover problem: each flight covered once

QUBO \leftrightarrow Ising: $x_i = (1 + s_i)/2$

➤ Reformulation as Ising problem

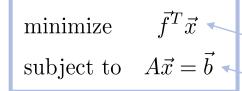
$$\min_{x_i=0,1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right) = \min_{s_i=\pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j + \text{const} \right)$$

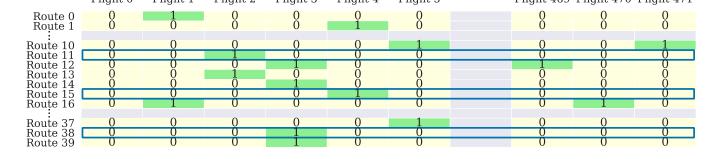




Mathematical formulation

➤ Linear assignment problem





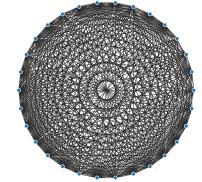
minimize $\vec{f}^T \vec{x}$ encodes cost of assigning airplanes to routes subject to $A\vec{x} = \vec{b}$ exact cover problem: each flight covered once

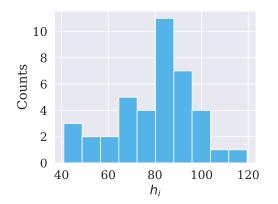
QUBO \leftrightarrow Ising: $x_i = (1 + s_i)/2$

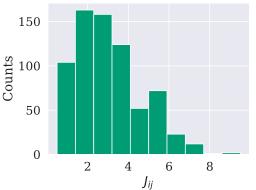
➤ Reformulation as Ising problem

$$\min_{x_i = 0, 1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right) = \min_{s_i = \pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j + \text{const} \right)$$

≥25 - 40 qubit almost fully-connected ("clique") Ising problems



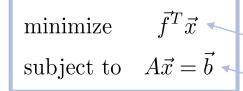




Flight 469 Flight 470 Flight 471

Mathematical formulation

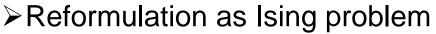
➤ Linear assignment problem



minimize $\vec{f}^T \vec{x}$ encodes cost of assigning airplanes to routes subject to $A\vec{x} = \vec{b}$ exact cover problem: each flight covered once

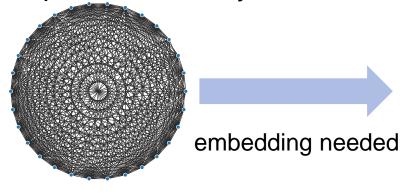
QUBO \leftrightarrow Ising: $x_i = (1 + s_i)/2$

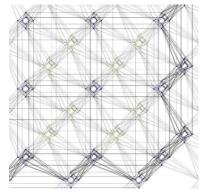
Route 1



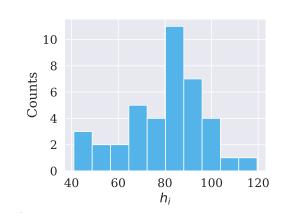
$$\min_{x_i = 0, 1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right) = \min_{s_i = \pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j + \text{const} \right)$$

>25 - 40 qubit almost fully-connected ("clique") Ising problems





Page 5 Dr. Dennis Willsch



150

30 - 40 qubit problems (90% nonzero couplers)

30 - 40 qubit problems (90% nonzero couplers)

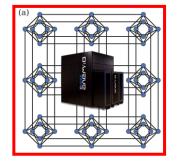
Scan of 10 different embeddings and 20 relative chain strengths:

30 - 40 qubit problems (90% nonzero couplers)

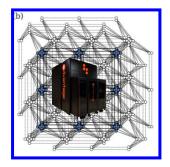
Scan of 10 different embeddings and 20 relative chain strengths:

DW2000Q

Advantage

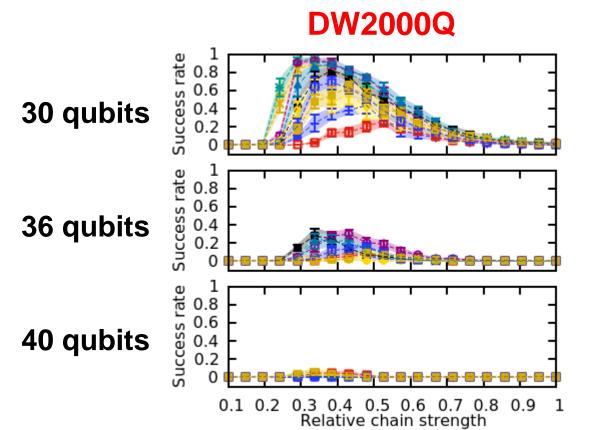


VS.

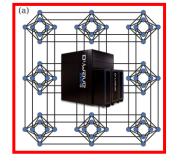


30 - 40 qubit problems (90% nonzero couplers)

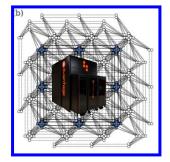
Scan of 10 different embeddings and 20 relative chain strengths:



Advantage



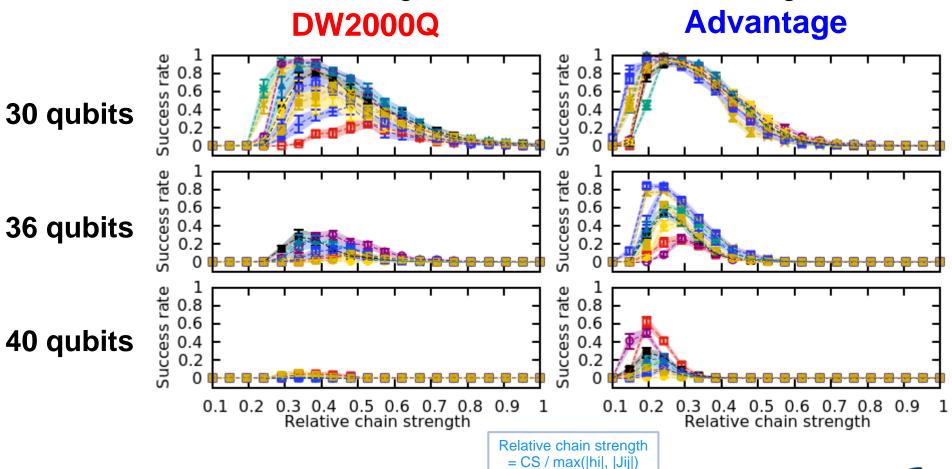
VS.

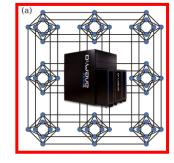


Relative chain strength = CS / max(|hi|, |Jij|)

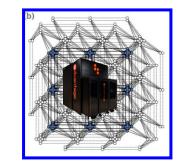
30 - 40 qubit problems (90% nonzero couplers)

Scan of 10 different embeddings and 20 relative chain strengths:





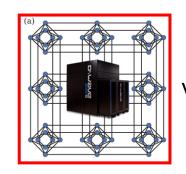
VS.



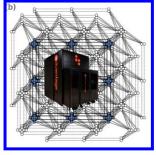
50-120 qubits: larger but sparser problems (20% nonzero couplers)

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:

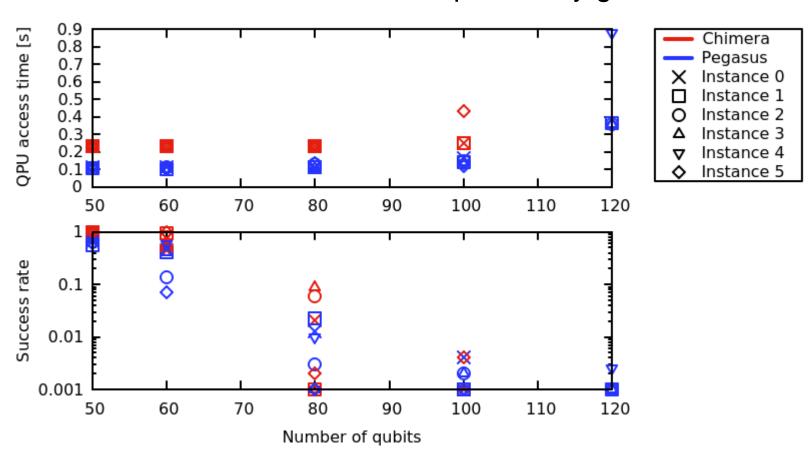


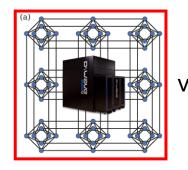
VS.

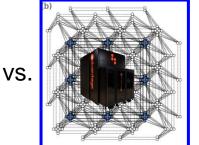


50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:

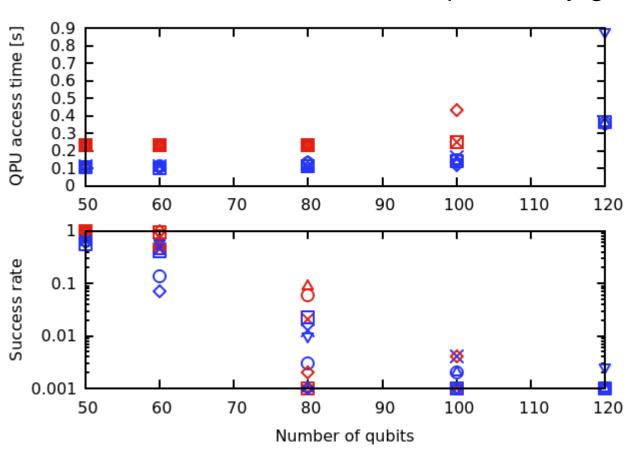


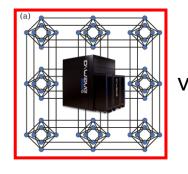


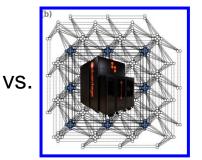


50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:







Observations:

Chimera

Pegasus

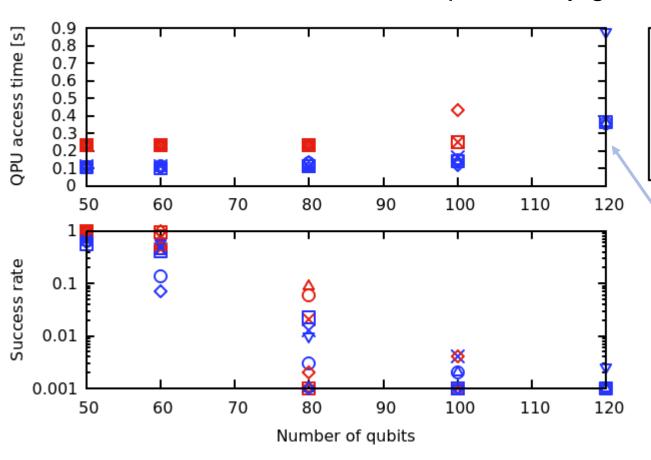
Instance 0

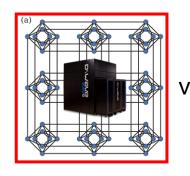
Instance 1

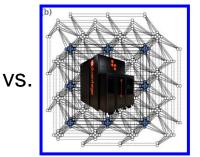
Instance 2 Instance 3

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:







Observations:

Advantage solves larger problems

Chimera

Pegasus

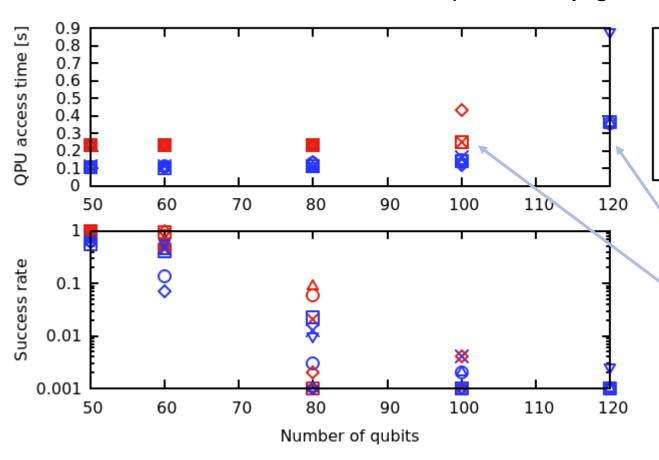
Instance 0

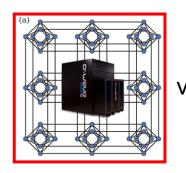
Instance 1

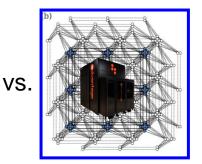
Instance 2 Instance 3

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:







Observations:

- Advantage solves larger problems
- Advantage solves problems faster

Chimera

Pegasus

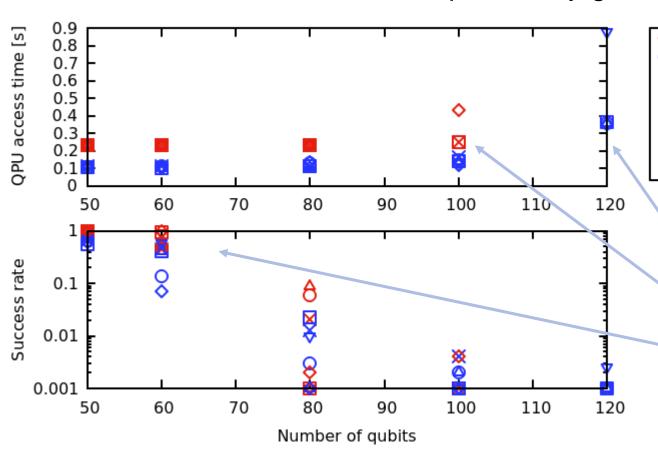
Instance 0

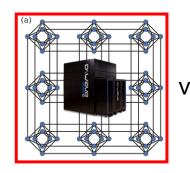
Instance 1

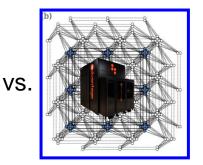
Instance 2 Instance 3

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:







Observations:

- Advantage solves larger problems
- Advantage solves problems faster
- If DW2000Q can solve a problem, the success rate is sometimes higher

Chimera

Pegasus

Instance 0

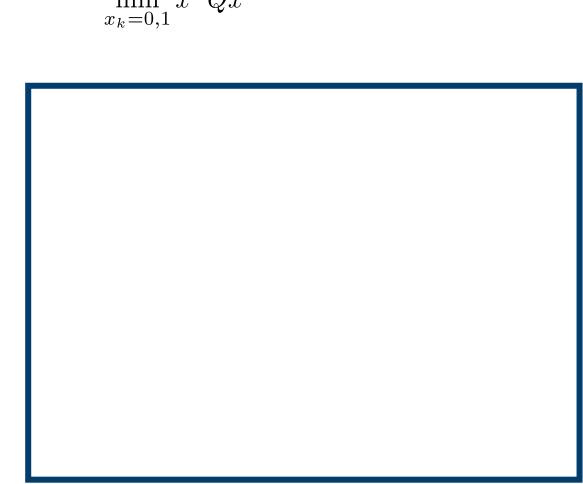
Instance 1

Instance 2

Instance 3

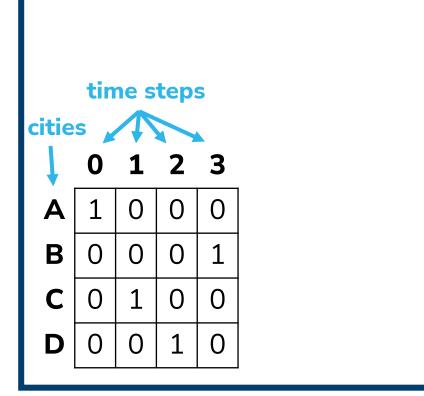
$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$



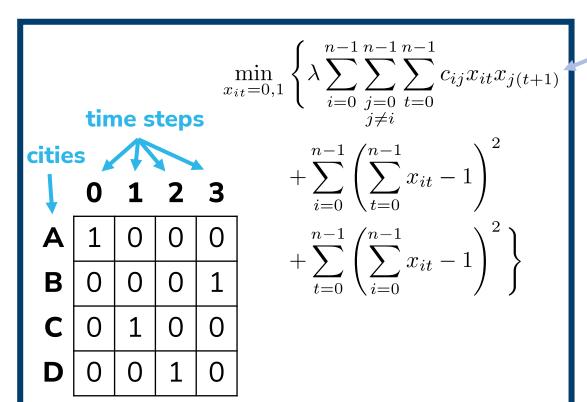
- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$



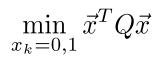
- Assign cities & times to qubits:
 - Qubit $x_{it}=1$ means the traveler is at city i at time t

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$



- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step

QUBO formulation



Cost to travel from city i to city j

- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

Cost to travel from city i to city j

- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step
 - ullet Traveler must pass city i only once

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

Cost to travel from city i to city j

- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step
 - ullet Traveler must pass city i only once
 - Traveler can only be at one city at each time step

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

Cost to travel from city i to city j

$$\min_{x_{it}=0,1} \left\{ \lambda \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} c_{ij} x_{it} x_{j(t+1)} \right.$$

$$\left. \begin{array}{c} \text{time steps} \\ \downarrow \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{3} \\ \mathbf{A} \quad 1 \quad 0 \quad 0 \quad 0 \\ \mathbf{B} \quad 0 \quad 0 \quad 1 \\ \mathbf{C} \quad 0 \quad 1 \quad 0 \quad 0 \\ \mathbf{D} \quad 0 \quad 0 \quad 1 \quad 0 \end{array} \right. \\ + \sum_{t=0}^{n-1} \left(\sum_{t=0}^{n-1} x_{it} - 1 \right)^{2} \right\}$$

- Assign cities & times to qubits:
 - Qubit $x_{it} = 1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step
 - ullet Traveler must pass city i only once
 - Traveler can only be at one city at each time step
- Not the DFJ formulation: linear but exp. many inequality constraints

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

Cost to travel from city i to city j

$$\min_{x_{it}=0,1} \left\{ \lambda \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} c_{ij} x_{it} x_{j(t+1)} \right.$$

$$\mathsf{time steps}$$

$$\mathsf{cities}$$

$$\downarrow \quad \mathsf{0} \quad \mathsf{1} \quad \mathsf{2} \quad \mathsf{3}$$

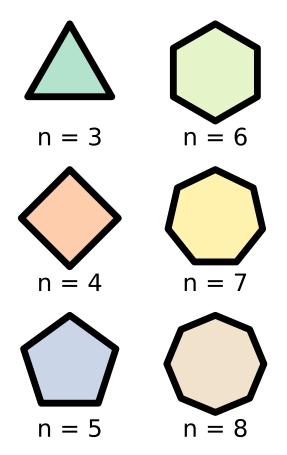
$$\mathsf{A} \quad \mathsf{1} \quad \mathsf{0} \quad \mathsf{0} \quad \mathsf{0}$$

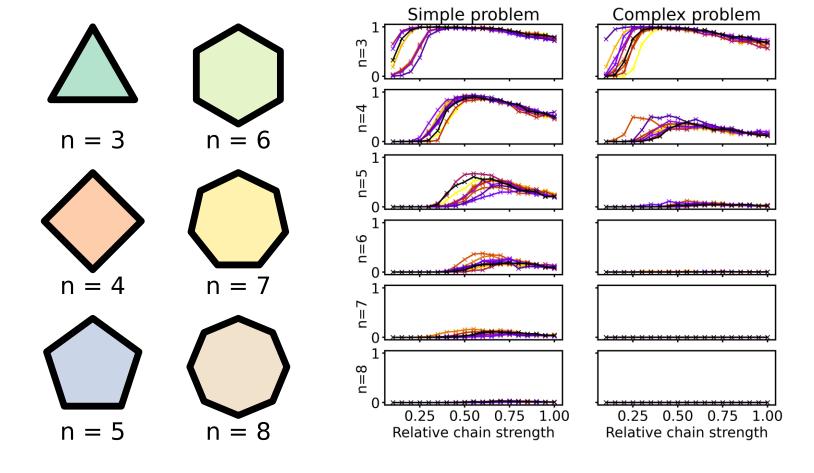
$$\mathsf{B} \quad \mathsf{0} \quad \mathsf{0} \quad \mathsf{1}$$

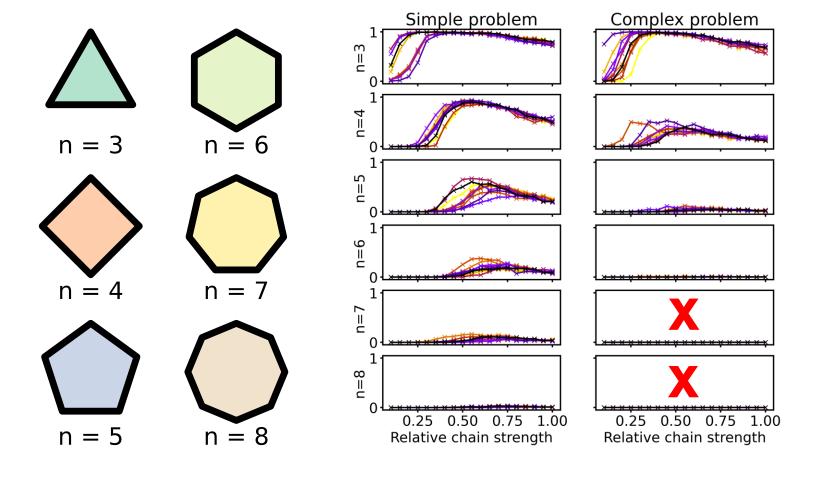
$$\mathsf{C} \quad \mathsf{0} \quad \mathsf{1} \quad \mathsf{0} \quad \mathsf{0}$$

$$\mathsf{D} \quad \mathsf{0} \quad \mathsf{0} \quad \mathsf{1} \quad \mathsf{0}$$

- Assign cities & times to qubits:
 - Qubit $x_{it}=1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step
 - ullet Traveler must pass city i only once
 - Traveler can only be at one city at each time step
- Not the DFJ formulation: linear but exp. many inequality constraints
- Could simplify by fixing starting point \rightarrow Number of qubits $(n-1)^2$

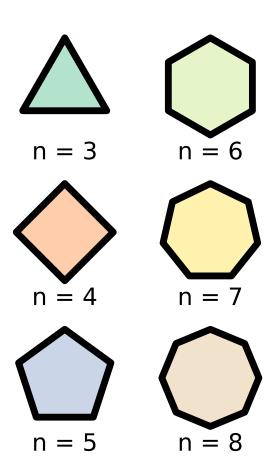


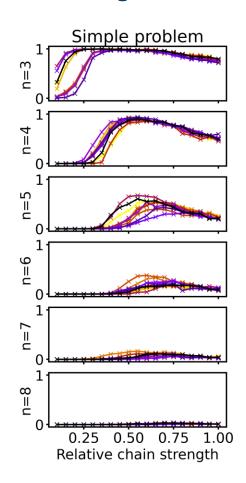


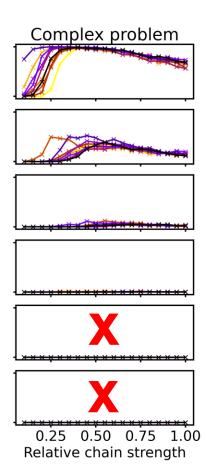


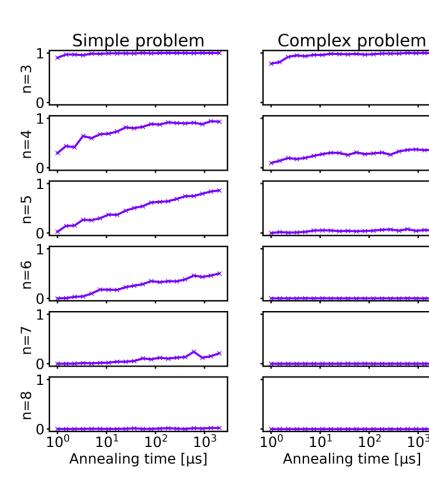
10³

TRAVELING SALESMAN PROBLEM



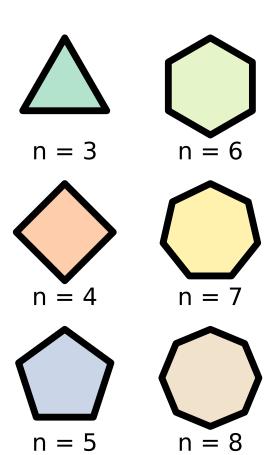


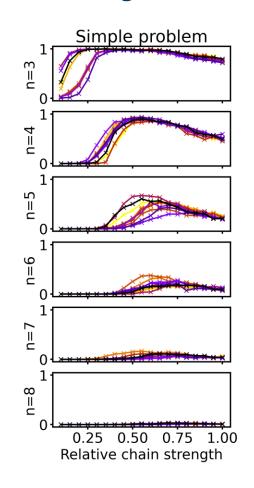


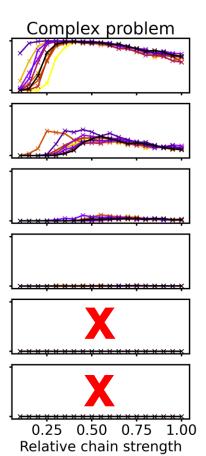


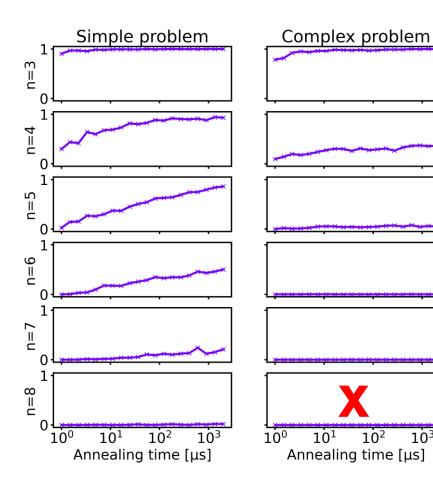
10³

TRAVELING SALESMAN PROBLEM



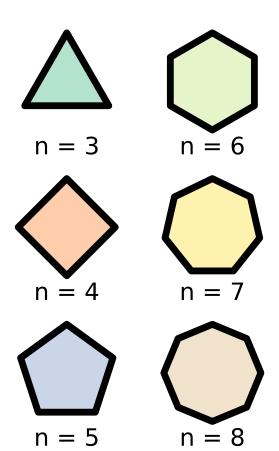


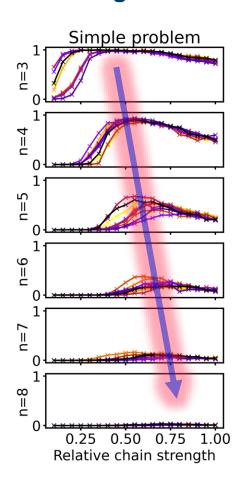


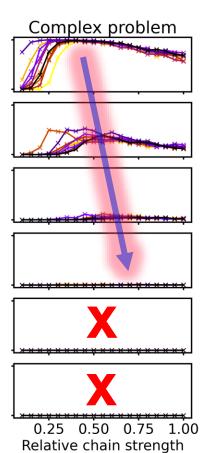


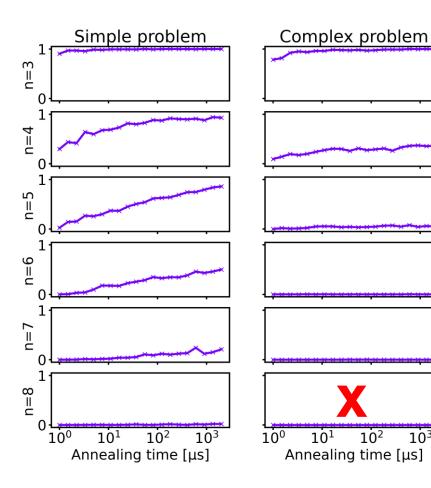
10³

TRAVELING SALESMAN PROBLEM

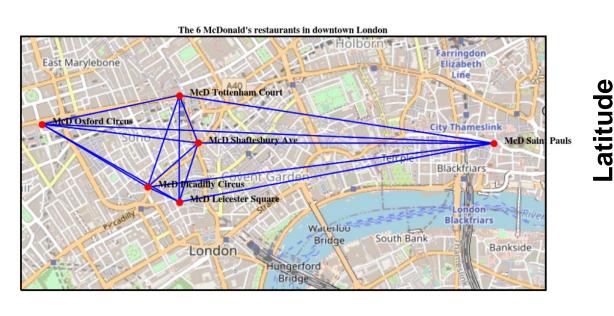


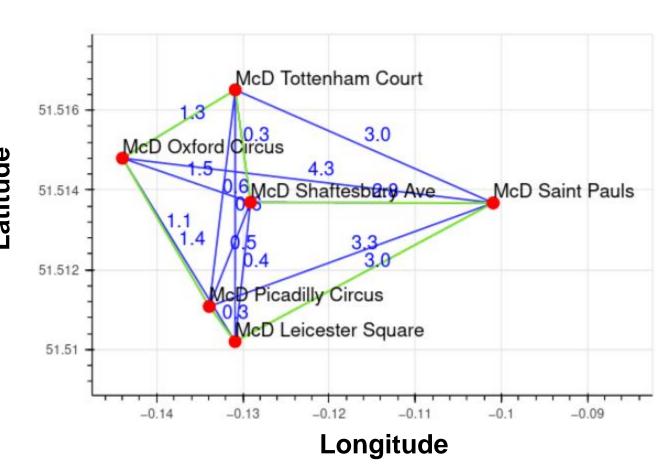






The 6 McDonald's restaurants in downtown London





Overview

Overview

➤ Problem: Companion planting in polyculture vegetable gardens

Overview

➤ Problem: Companion planting in polyculture vegetable gardens

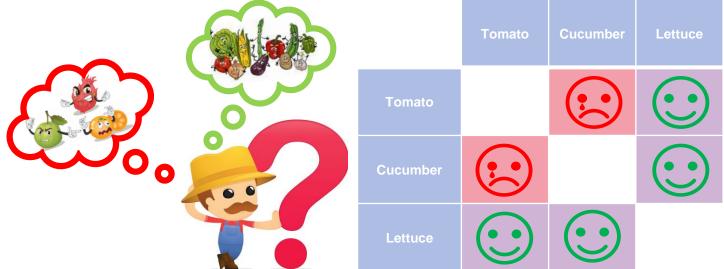
Overview

➤ Problem: Companion planting in polyculture vegetable gardens

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

Overview

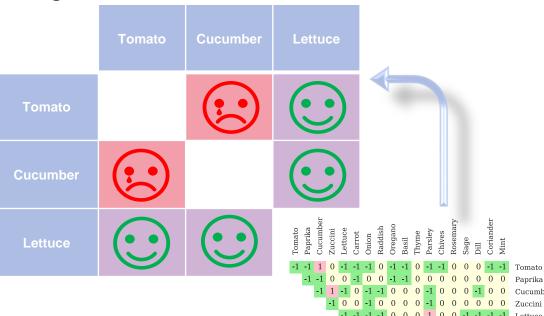
➤ Problem: Companion planting in polyculture vegetable gardens



Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

Overview

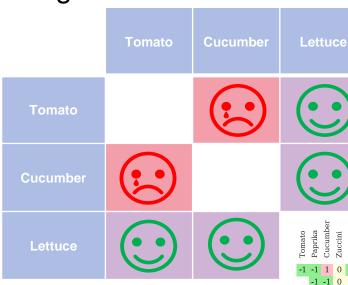
➤ Problem: Companion planting in polyculture vegetable gardens

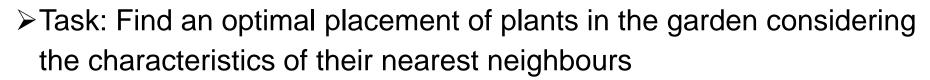


Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

Overview

➤ Problem: Companion planting in polyculture vegetable gardens





QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

- Assign plants to pots in the garden:
 - Qubit $x_{ij} = 1$ means species j is placed in pot i

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

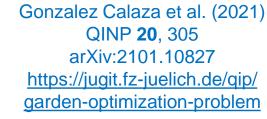
QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

- Assign plants to pots in the garden:
 - Qubit $x_{ij} = 1$ means species j is placed in pot i
 - All plants should have a good relationship with their neighbors

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

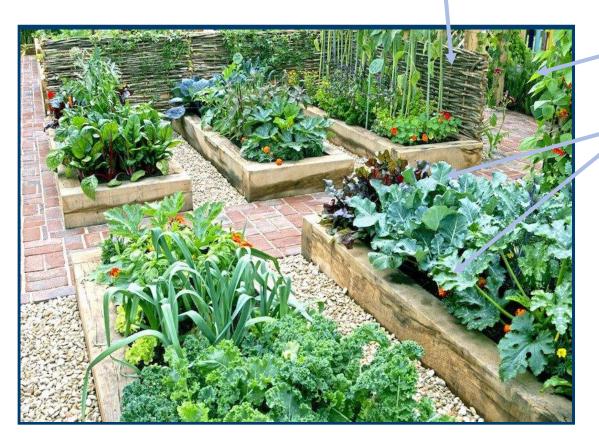


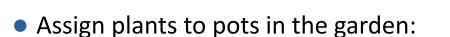
- Assign plants to pots in the garden:
 - Qubit $x_{ij} = 1$ means species j is placed in pot i
 - All plants should have a good relationship with their neighbors

n: nr. of pots in the garden
t. nr. of plant species to place
J: connectivity between pots
C: relationship between species
c_j: nr. of plants of species j
s_i: size of species j

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$





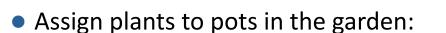
- Qubit $x_{ij} = 1$ means species j is placed in pot i
- All plants should have a good relationship with their neighbors
- Use all available plants and pots

Gonzalez Calaza et al. (2021) QINP **20**, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/garden-optimization-problem

n: nr. of pots in the garden
t: nr. of plant species to place
J: connectivity between pots
C: relationship between species
c_j: nr. of plants of species j
s_j: size of species j

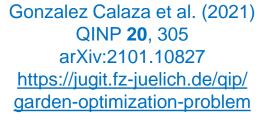
QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$



- Qubit $x_{ij} = 1$ means species j is placed in pot i
- All plants should have a good relationship with their neighbors
- Use all available plants and pots
- Big plants should not shadow small ones

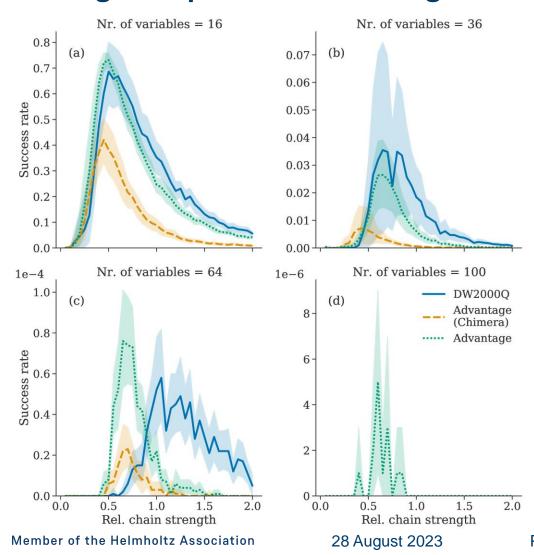
n: nr. of pots in the garden
t: nr. of plant species to place
J: connectivity between pots
C: relationship between species
c_j: nr. of plants of species j
s_j: size of species j



Happy gardening

Gonzalez Calaza et al. (2021) QINP 20, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/ garden-optimization-problem

Finding the optimal chain strength: Results

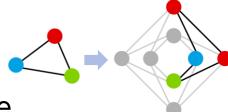


Experiment:

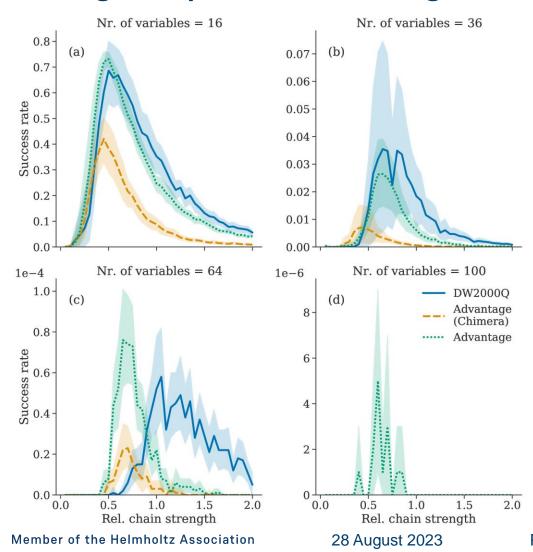
- 4 problems of increasing size
- Success = constraints weren't violated
- 10 different embeddings for each system
- Scanned 40 different values for: Rel. chain strength = CS / max(|ai|,|bij|)

Happy gardening!

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem



Finding the optimal chain strength: Results



Experiment:

- 4 problems of increasing size
- Success = constraints weren't violated
- 10 different embeddings for each system
- Scanned 40 different values for:
 Rel. chain strength = CS / max(|ai|,|bij|)

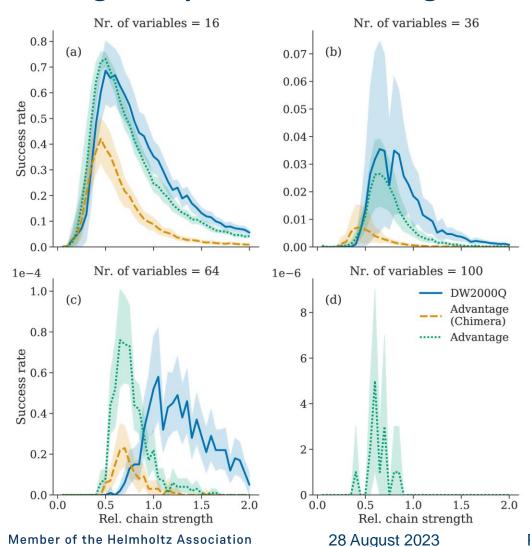
Conclusions:

Trying several embeddings is very important

Happy gardening!

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

Finding the optimal chain strength: Results



Experiment:

- 4 problems of increasing size
- Success = constraints weren't violated
- 10 different embeddings for each system
- Scanned 40 different values for:
 Rel. chain strength = CS / max(|ai|,|bij|)

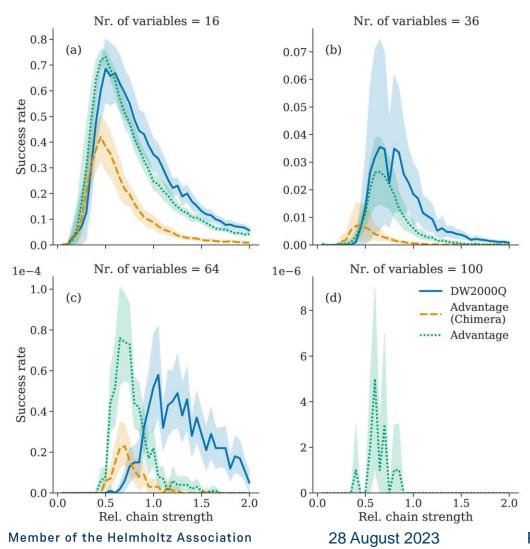
Conclusions:

- Trying several embeddings is very important
- Chain strength heavily affects success rate

Happy gardening

Gonzalez Calaza et al. (2021) QINP 20, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/ garden-optimization-problem

Finding the optimal chain strength: Results



Experiment:

- 4 problems of increasing size
- Success = constraints weren't violated
- 10 different embeddings for each system
- Scanned 40 different values for: Rel. chain strength = CS / max(|ai|,|bij|)

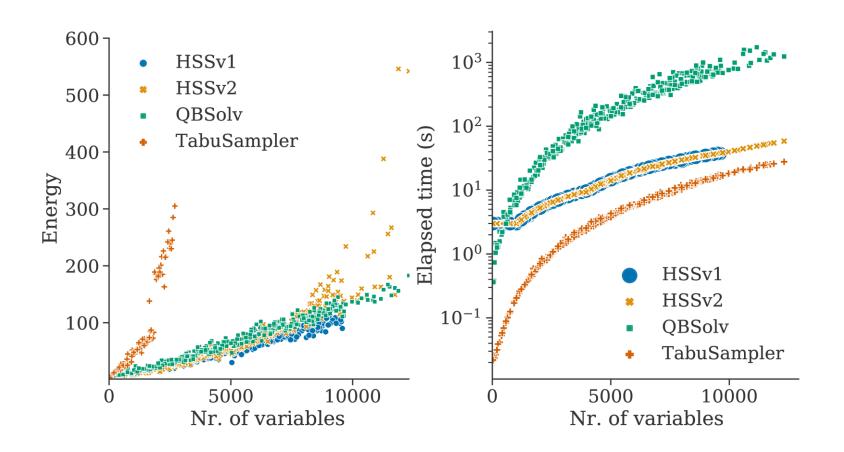
Conclusions:

- Trying several embeddings is very important
- Chain strength heavily affects success rate
- Longer chains require higher chain strengths

CLASSICAL AND HYBRID SOLVERS

Comparing energies and run times

Gonzalez Calaza et al. (2021) QINP **20**, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/garden-optimization-problem



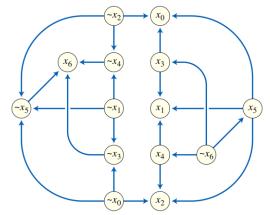
Results:

- HSSv1: best but only up to 10k vars.
- HSSv2: same as v1 up to 2k vars., worse later.
- QBSolv: good but very slow.
- <u>TabuSampler</u>: returns unusable results extremely fast.

Conclusion:

 Hybrid solvers outperform classical solvers.

Overview



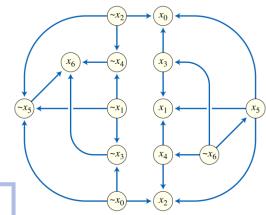
Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

Overview

➤ Mathematical formulation

$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$



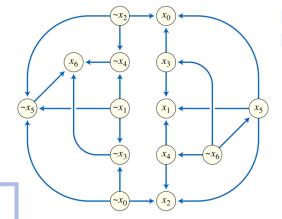
Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

Overview

➤ Mathematical formulation

$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$



Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

find assignment to x_i that makes F true

Overview

➤ Mathematical formulation

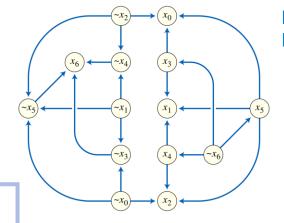
$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$

➤ Reformulation as Ising Problem

$$H_{2SAT} = \sum_{\alpha=1}^{M} h_{2SAT}(\epsilon_{\alpha,1} s_{i[\alpha,1]}, \epsilon_{\alpha,2} s_{i[\alpha,2]})$$

Example for clause $x_1 \vee x_2 : h_{2SAT} = s_1 s_2 - (s_1 + s_2) + 1$



Mehta et al., PRA 105, 062406 (2022) Mehta et al., PRA 104, 032421 (2021)

find assignment to x_i that makes F true

 $\min_{s_i = \pm 1} \left(\sum_{i} h_i s_i + \sum_{i < j} J_{ij} s_i s_j \right)$ Ising:

$$x_i = 0 \Leftrightarrow s_i = -1$$
 $\epsilon_{\alpha} = 1 \text{ for } x_i$
 $x_i = 1 \Leftrightarrow s_i = +1$ $\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$

$$\epsilon_{\alpha} = 1 \text{ for } x_i$$
 $\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$

Overview

➤ Mathematical formulation

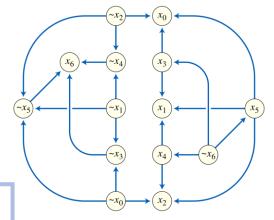
$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$

➤ Reformulation as Ising Problem

$$H_{2SAT} = \sum_{\alpha=1}^{M} h_{2SAT}(\epsilon_{\alpha,1} s_{i[\alpha,1]}, \epsilon_{\alpha,2} s_{i[\alpha,2]})$$

- **Example for clause** $x_1 \vee x_2 : h_{2SAT} = s_1 s_2 (s_1 + s_2) + 1$
- "Hard 2-SAT problems": The purpose is benchmarking



Mehta et al., PRA 105, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

find assignment to x_i that makes F true

 $\min_{s_i = \pm 1} \left(\sum_{i} h_i s_i + \sum_{i < i} J_{ij} s_i s_j \right)$ Ising:

$$x_i = 0 \Leftrightarrow s_i = -1$$
 $\epsilon_{\alpha} = 1 \text{ for } x_i$
 $x_i = 1 \Leftrightarrow s_i = +1$ $\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$

$$\epsilon_{\alpha} = 1 \text{ for } x_i$$

$$\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$$

Overview

➤ Mathematical formulation

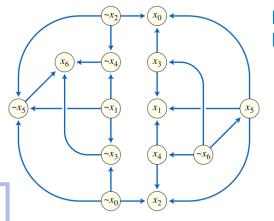
$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$

➤ Reformulation as Ising Problem

$$H_{2SAT} = \sum_{\alpha=1}^{M} h_{2SAT}(\epsilon_{\alpha,1} s_{i[\alpha,1]}, \epsilon_{\alpha,2} s_{i[\alpha,2]})$$

- **Example for clause** $x_1 \vee x_2 : h_{2SAT} = s_1 s_2 (s_1 + s_2) + 1$
- ➤ "Hard 2-SAT problems": The purpose is benchmarking
 - > Chosen to be "hard" for quantum annealers (not for digital computers)



Mehta et al., PRA 105, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

find assignment to x_i that makes F true

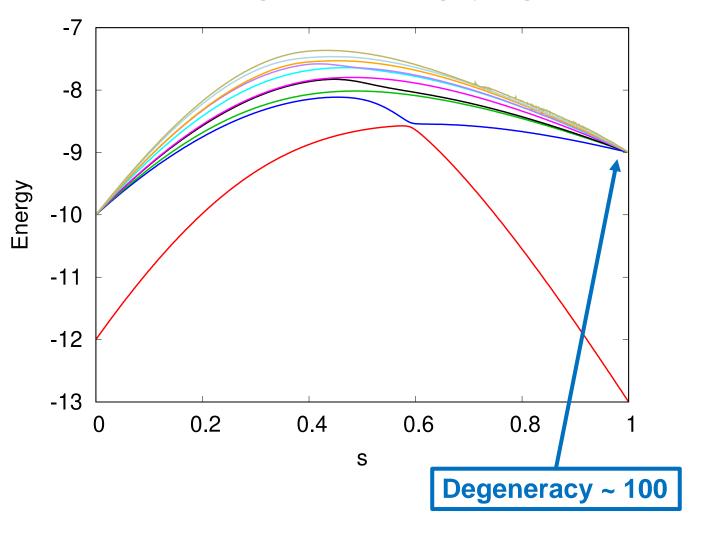
Ising:
$$\min_{s_i = \pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j \right)$$

$$x_i = 0 \Leftrightarrow s_i = -1$$
 $\epsilon_{\alpha} = 1 \text{ for } x_i$
 $x_i = 1 \Leftrightarrow s_i = +1$ $\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$

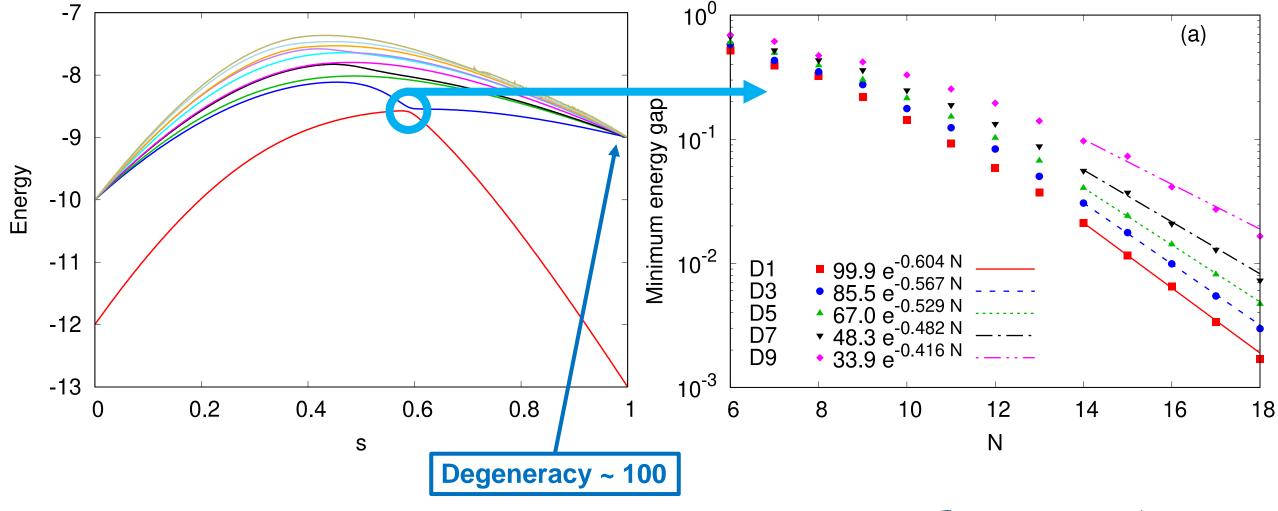
$$\epsilon_{\alpha} = 1 \text{ for } x_i$$

$$\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$$

Properties: unique ground state, highly degenerate first excited level, small gaps

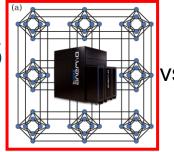


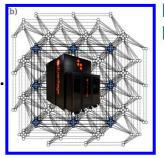
Properties: unique ground state, highly degenerate first excited level, small gaps



2-SATISFIABILITY: RESULTS

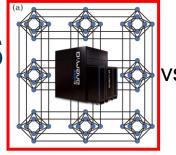
Success rate for 1000 2-SAT problems

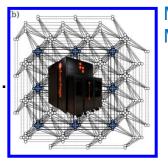




Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

Success rate for 1000 2-SAT problems

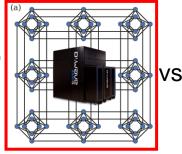


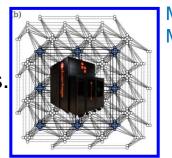


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

- > Direct mapping:
 - ~50% on DW2000Q
 - ~90% on Advantage

Success rate for 1000 2-SAT problems



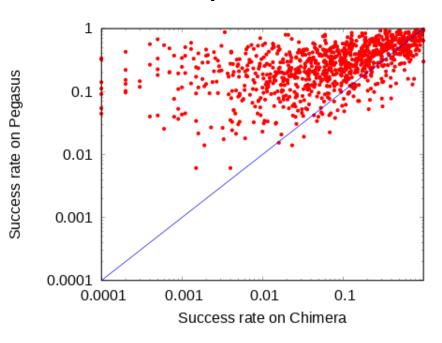


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

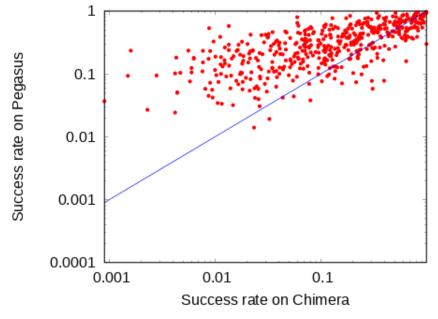
> Direct mapping:

- ~50% on DW2000Q
- ~90% on Advantage
- Advantage performs better for a majority of the problems, especially the difficult problems

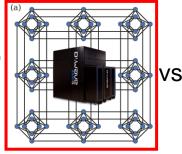
All problems

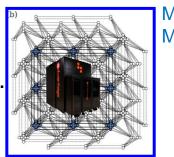


Problems with direct mapping



Success rate for 1000 2-SAT problems



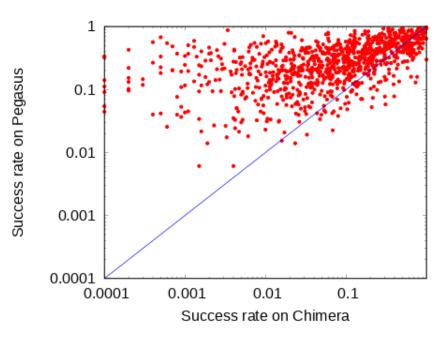


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

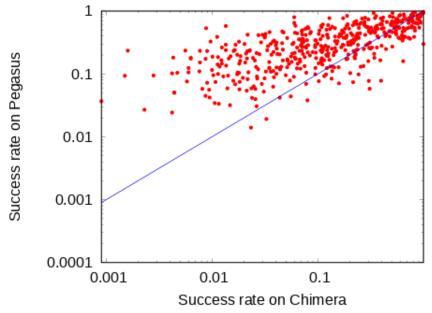
> Direct mapping:

- ~50% on DW2000Q
- ~90% on Advantage
- Advantage performs better for a majority of the problems, especially the difficult problems

All problems

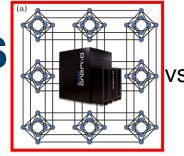


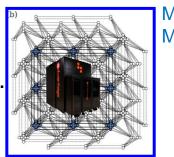
Problems with direct mapping



Largest enhancement for cases that require embedding only on Chimera

Success rate for 1000 2-SAT problems



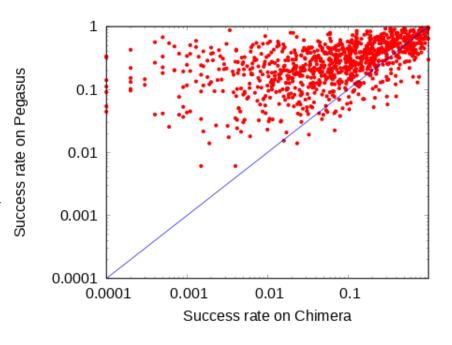


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

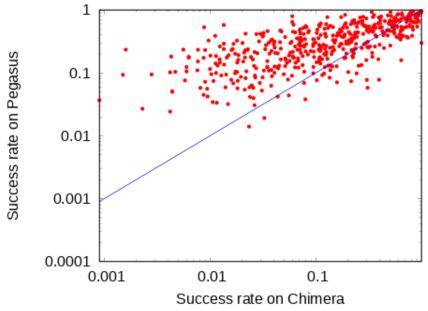
> Direct mapping:

- ~50% on DW2000Q
- ~90% on Advantage
- Advantage performs better for a majority of the problems, especially the difficult problems

All problems

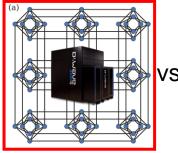


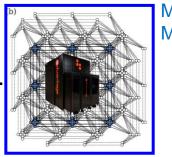
Problems with direct mapping



- Largest enhancement for cases that require embedding only on Chimera
 - → Improvement due to increased connectivity

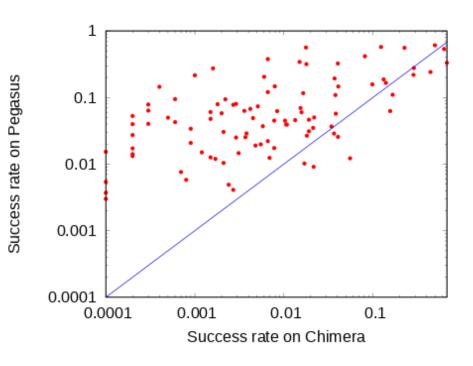
Success rate for 2 particular 2-SAT problems



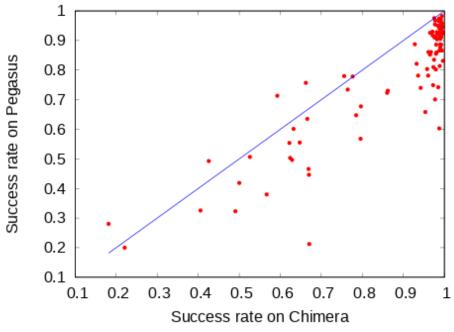


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

Hard Problem

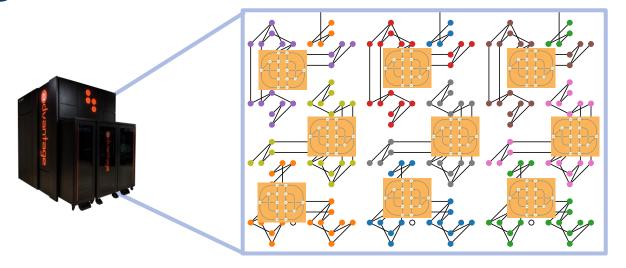


Easy problem

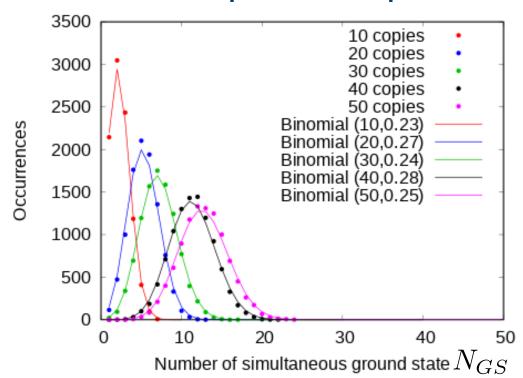


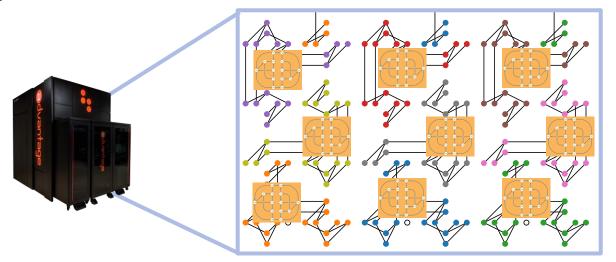
- For a hard problem,
 Advantage performs
 better
- However, for an easy problem,
 DW2000Q performs better

Embed the same problem multiple times

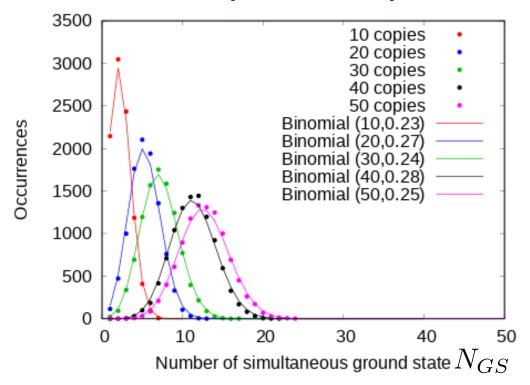


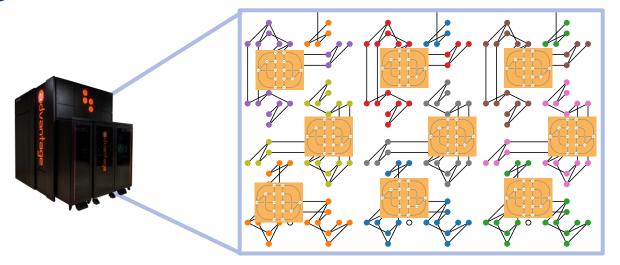
Embed the same problem multiple times





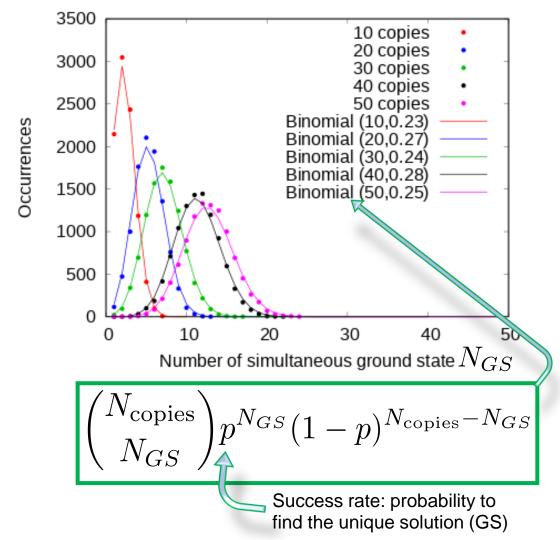
Embed the same problem multiple times

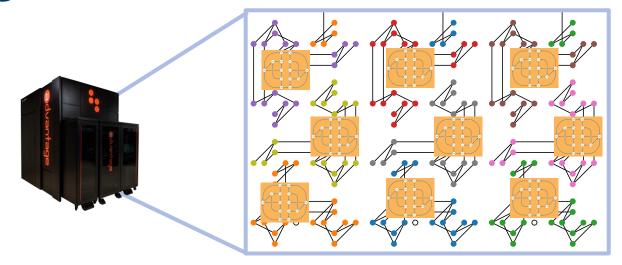




The occurrence of optimal solutions follows a binomial distribution

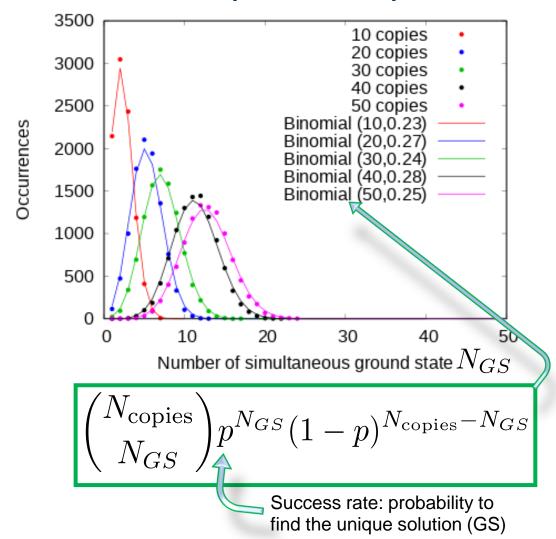
Embed the same problem multiple times

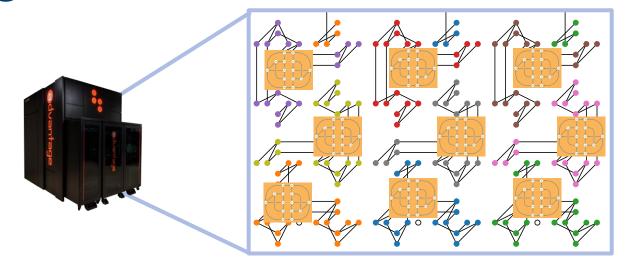




The occurrence of optimal solutions follows a binomial distribution

Embed the same problem multiple times



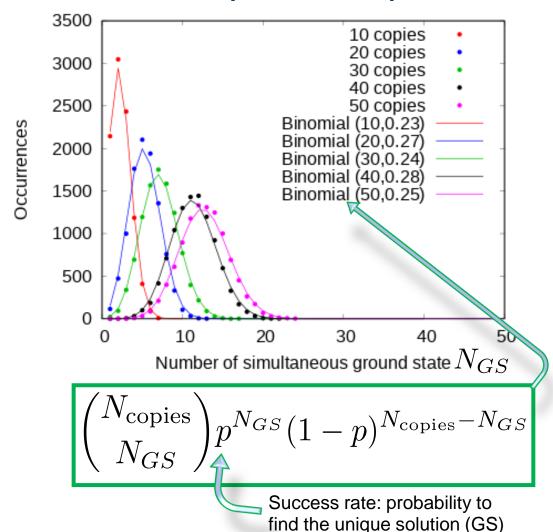


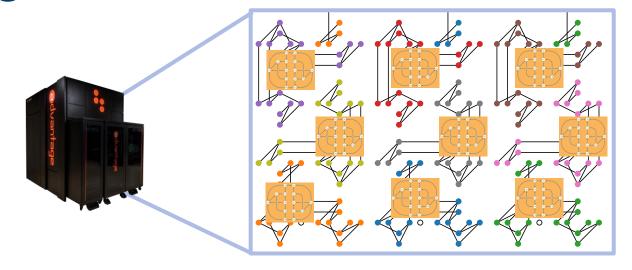
The occurrence of optimal solutions follows a binomial distribution

Dr. Dennis Willsch

> Parts of the solver corresponding to each copy work almost independently

Embed the same problem multiple times





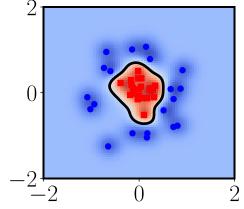
- The occurrence of optimal solutions follows a binomial distribution
- Parts of the solver corresponding to each copy work almost independently
- Note that in no run could all ground states be found simultaneously

From classical SVM to quantum SVM

Willsch et al., CPC 248, 107006 (2020) Cavallaro et al., IGARSS 2020, 1973 (2020) Delilbasic et al., IGARSS 2021, 2608 (2021)

From classical SVM to quantum SVM

> An SVM is a supervised machine-learning method for binary classification

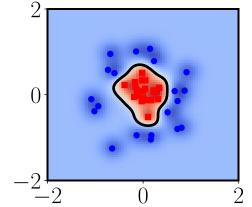


Willsch et al., CPC 248, 107006 (2020) Cavallaro et al., IGARSS 2020, 1973 (2020) Delilbasic et al., IGARSS 2021, 2608 (2021)

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification

Feature vector Label
$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$



Willsch et al., CPC 248, 107006 (2020) Cavallaro et al., IGARSS 2020, 1973 (2020) Delilbasic et al., IGARSS 2021, 2608 (2021)

From classical SVM to quantum SVM

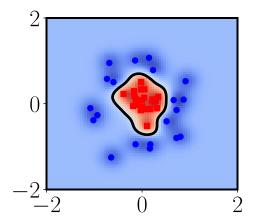
- > An SVM is a supervised machine-learning method for binary classification

Feature vector Label
$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$

subject to
$$0 \le \alpha_n \le C$$
 and $\sum_{n=0}^{\infty} \alpha_n t_n = 0$



Willsch et al., CPC 248, 107006 (2020) Cavallaro et al., IGARSS 2020, 1973 (2020) Delilbasic et al., IGARSS 2021, 2608 (2021)

From classical SVM to quantum SVM

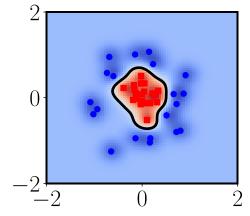
- > An SVM is a supervised machine-learning method for binary classification

Feature vector Label
$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$

subject to
$$0 \le \alpha_n \le C$$
 and $\sum \alpha_n t_n = 0$



Continuous problem variables

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- ➤ Given a training set

$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$
subject to
$$0 \le \alpha_n \le C \quad \text{and} \quad \sum_n \alpha_n t_n = 0$$
 Kerner

$$\leq \alpha_n \leq C$$
 and $\sum \alpha_n t_n =$

Continuous problem variables

Kernel function (nonlinear SVM)

Continuous problem variables

QUANTUM SUPPORT VECTOR MACHINES

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- ➤ Given a training set

g set
$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N - 1\}$$

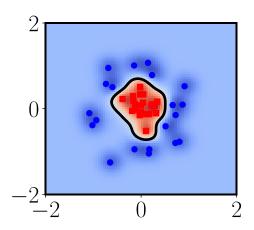
Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$
Continuous problem subject to
$$0 \le \alpha_n \le C \quad \text{and} \quad \sum_n \alpha_n t_n = 0$$
Kernel function (nonlinear SVM)

$$\leq \alpha_n \leq C$$
 and $\sum \alpha_n t_n =$

> QUBO problems are also quadratic, but for binary variables



From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification

$$D = \{ (\mathbf{d}_n, t_n) : n = 0, \dots, N - 1 \}$$

> Given a training set $D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$ an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$
Continuous problem subject to
$$0 \le \alpha_n \le C \quad \text{and} \quad \sum_n \alpha_n t_n = 0$$
Kernel function (nonlinear SVM)

Continuous problem variables

> QUBO problems are also quadratic, but for binary variables

$$\rightarrow$$
 Use encoding: $\alpha_n = \sum_{k=0}^{K-1} B^{k-P} x_{[n,k]}$

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- ➤ Given a training set

$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$
Continuous problem subject to
$$0 \le \alpha_n \le C \quad \text{and} \quad \sum_n \alpha_n t_n = 0$$
Kernel function (nonlinear SVM)

Continuous problem variables

> QUBO problems are also quadratic, but for binary variables

$$\rightarrow$$
 Use encoding: $\alpha_n = \sum_{k=0}^{K-1} B^{k-P} x_{[n,k]}$

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification

Feature vector Label
$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$
 Continuous problem subject to
$$0 \le \alpha_n \le C \quad \text{and} \quad \sum_n \alpha_n t_n = 0$$
 Kernel function (nonlinear SVM)

Continuous problem variables

> QUBO problems are also quadratic, but for binary variables

$$\rightarrow$$
 Use encoding: $\alpha_n = \sum_{k=0}^{K-1} B^{k-P} x_{[n,k]}$

Base & Exponent

Dr. Dennis Willsch

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- Given a training set

$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N-1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$

$$0 \le \alpha_n \le C$$
 and

$$\sum \alpha_n t_n = 0$$

Continuous problem variables

subject to $0 \le \alpha_n \le C$ and $\sum \alpha_n t_n = 0$ Kernel function (nonlinear SVM)

> QUBO problems are also quadratic, but for binary variables

Number of qubits per problem variab<mark>le</mark>

$$\rightarrow$$
 Use encoding: $\alpha_n = \sum_{k=0}^{K-1} B^{k-P} x_{[n,k]}$

Base & Exponent

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- ➤ Given a training set

$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N - 1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n$$

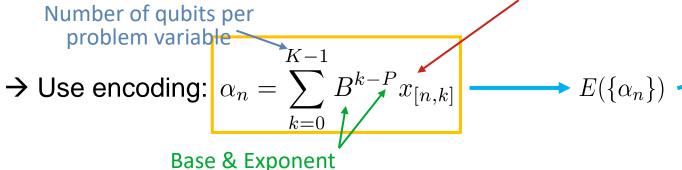
subject to
$$0 \le \alpha_n \le C$$
 and $\sum \alpha_n t_n = 0$

$$\sum \alpha_n t_n = 0$$

Continuous problem variables

Kernel function (nonlinear SVM)

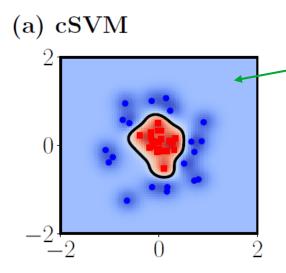
> QUBO problems are also quadratic, but for binary variables



QUBO formulation

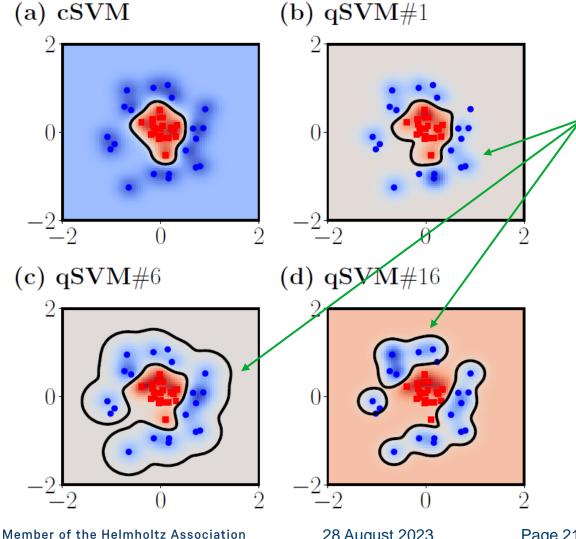
$$\min_{x_i=0,1} \left(\sum_{i,j} x_i Q_{ij} x_j \right)$$

Results



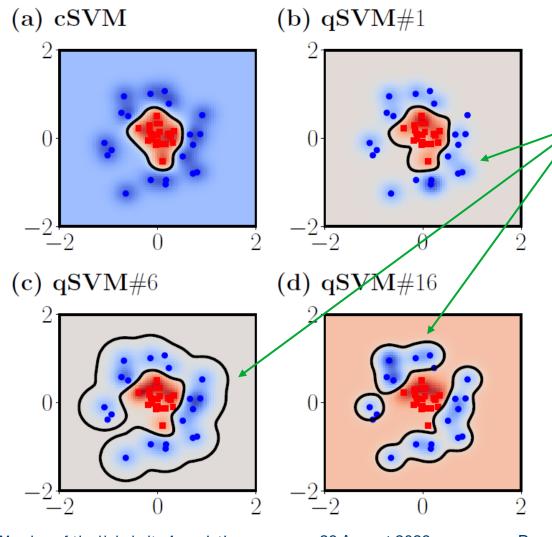
Classical SVM (cSVM) yields the global minimum, but only for the training data

Results



- > Classical SVM (cSVM) yields the global minimum, but only for the training data
 - Quantum SVM (qSVM) yields additional low-energy classifiers from ensemble of solutions

Results



- Classical SVM (cSVM) yields the global minimum, but only for the training data
- Quantum SVM (qSVM) yields additional low-energy classifiers from ensemble of solutions

Combination of multiple low-energy qSVM classifiers generalizes better to unseen data

Application to remote sensing

Willsch et al., CPC 248, 107006 (2020)
Cavallaro et al., IGARSS 2020, 1973 (2020)
Delilbasic et al., IGARSS 2021, 2608 (2021)
Pasetto et al., IGARSS 2022, 4903 (2022)
Delilbasic et al., arXiv:2303.11705 (2023)
Pasetto et al., TechRxiv:22794146 (2023)

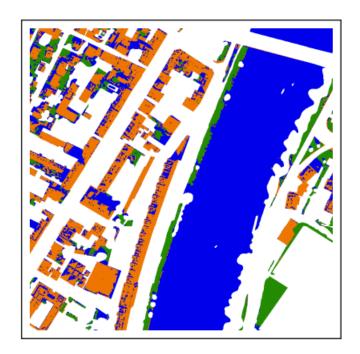
Application to remote sensing: Results

Willsch et al., CPC 248, 107006 (2020) Cavallaro et al., IGARSS 2020, 1973 (2020) Delilbasic et al., IGARSS 2021, 2608 (2021) Pasetto et al., IGARSS 2022, 4903 (2022) Delilbasic et al., arXiv:2303.11705 (2023) Pasetto et al., TechRxiv:22794146 (2023)

Original Ground truth Classical SVM Quantum SVM

Extension to multiple classes

Ground truth



Classical SVM

Quantum SVM

$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

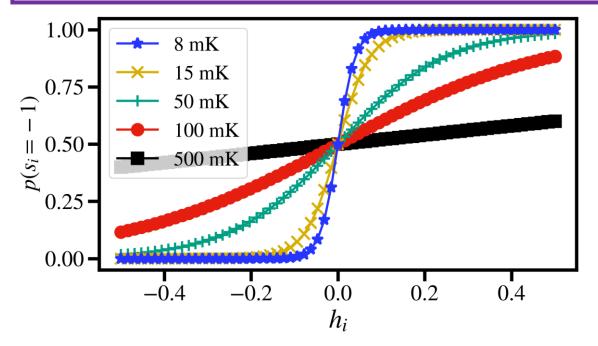
$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

$$p(s_i = \pm 1) = \langle s_i | \frac{1}{Z} e^{-\beta H(1)} | s_i \rangle = \frac{1}{2} \left(1 + \tanh \left(-\frac{B(1)h_i}{2k_B T} s_i \right) \right)$$

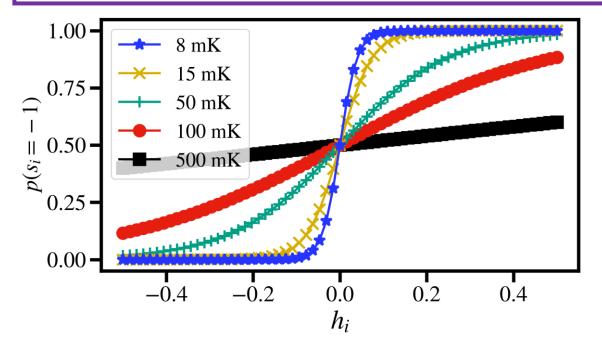
$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

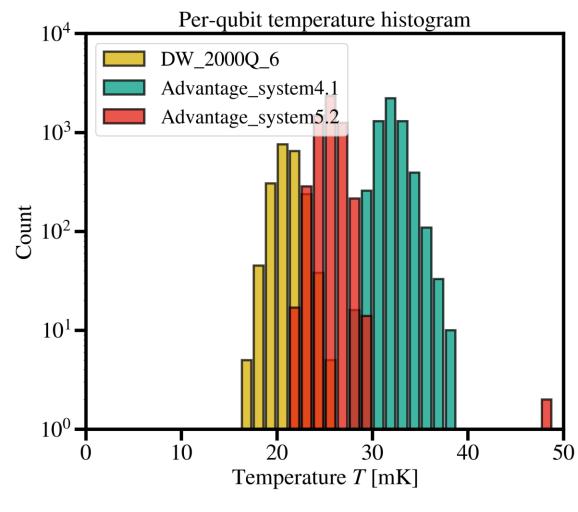
$$p(s_i = \pm 1) = \langle s_i | \frac{1}{Z} e^{-\beta H(1)} | s_i \rangle = \frac{1}{2} \left(1 + \tanh \left(-\frac{B(1)h_i}{2k_B T} s_i \right) \right)$$



$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{i} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

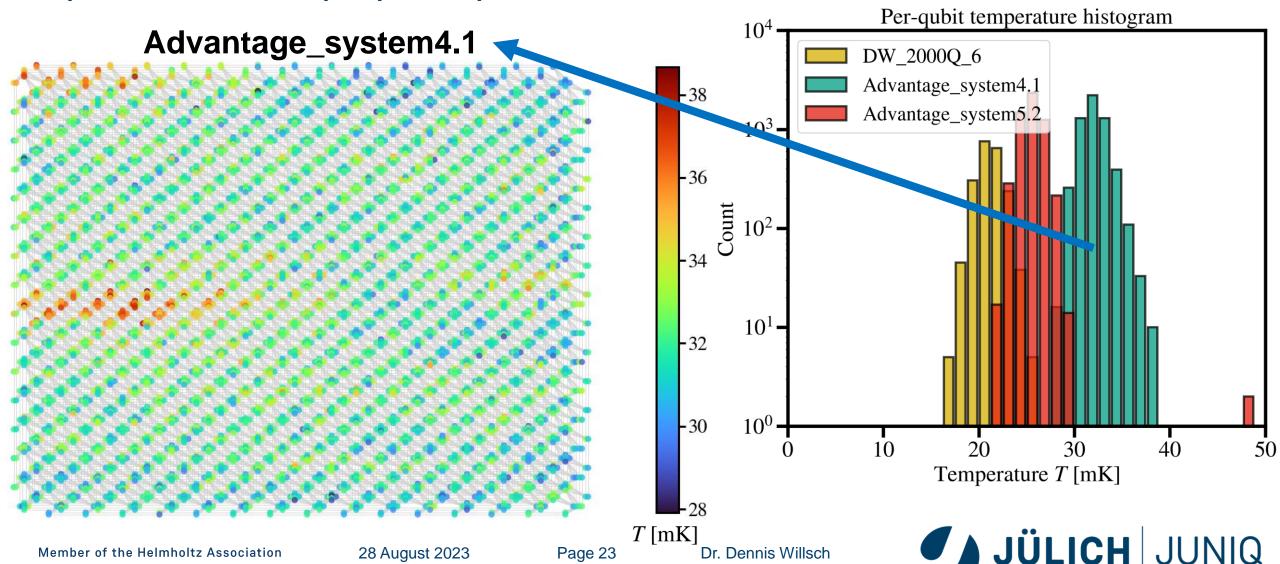
$$p(s_i = \pm 1) = \langle s_i | \frac{1}{Z} e^{-\beta H(1)} | s_i \rangle = \frac{1}{2} \left(1 + \tanh \left(-\frac{B(1)h_i}{2k_B T} s_i \right) \right)$$





Forschungszentrum

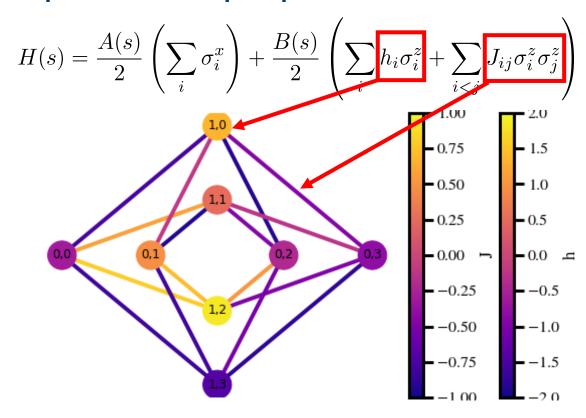
QUANTUM BOLTZMANN MACHINES



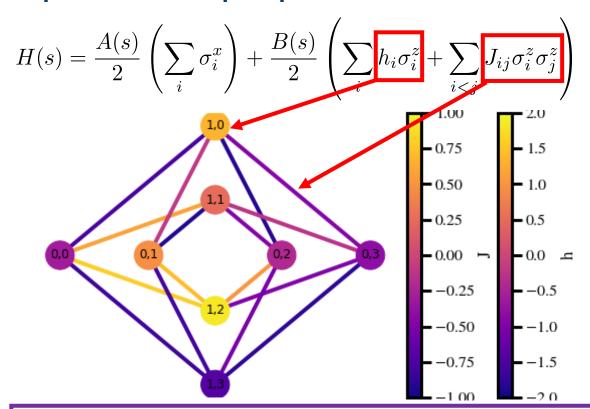
Experiment #2: 8-qubit problem on each Chimera cell of the Pegasus graph

$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

Experiment #2: 8-qubit problem on each Chimera cell of the Pegasus graph



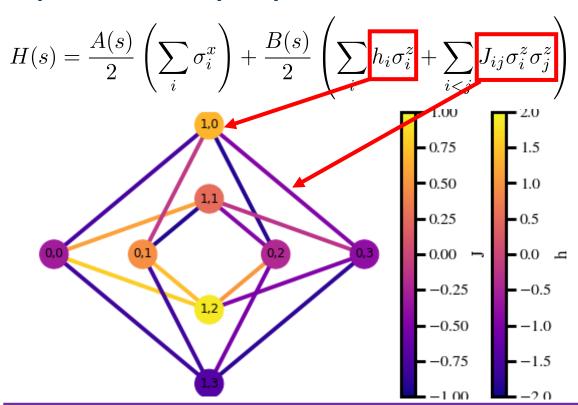
Experiment #2: 8-qubit problem on each Chimera cell of the Pegasus graph



Fit Boltzmann distribution to observed samples at s=1 to infer $\beta=1/k_BT$:

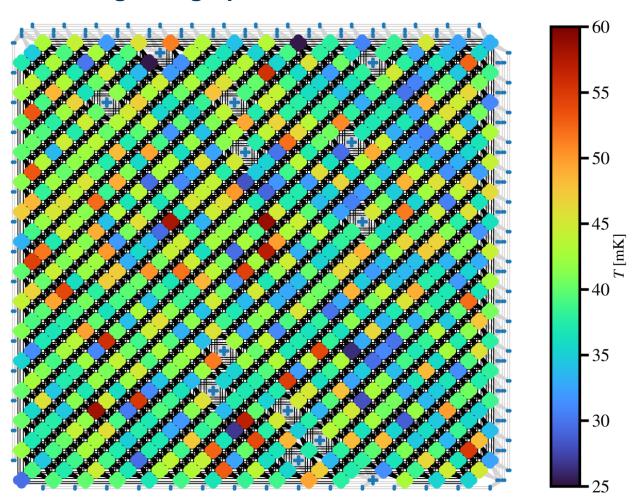
$$p(\{s_i = \pm 1\} \mid \beta, s) = \langle \{s_i = \pm 1\} \mid \frac{1}{Z} e^{-\beta H(s)} \mid \{s_i = \pm 1\} \rangle$$

Experiment #2: 8-qubit problem on each Chimera cell of the Pegasus graph



Fit Boltzmann distribution to observed samples at s=1 to infer $\beta=1/k_BT$:

$$p({s_i = \pm 1} \mid \beta, s) = \langle {s_i = \pm 1} \mid \frac{1}{Z} e^{-\beta H(s)} \mid {s_i = \pm 1} \rangle$$

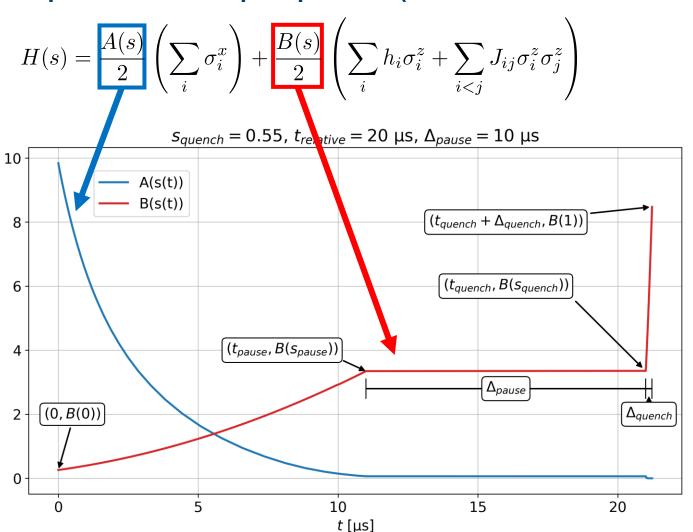


$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$



Experiment #3: 12-qubit problem (also for intermediate times s != 1)

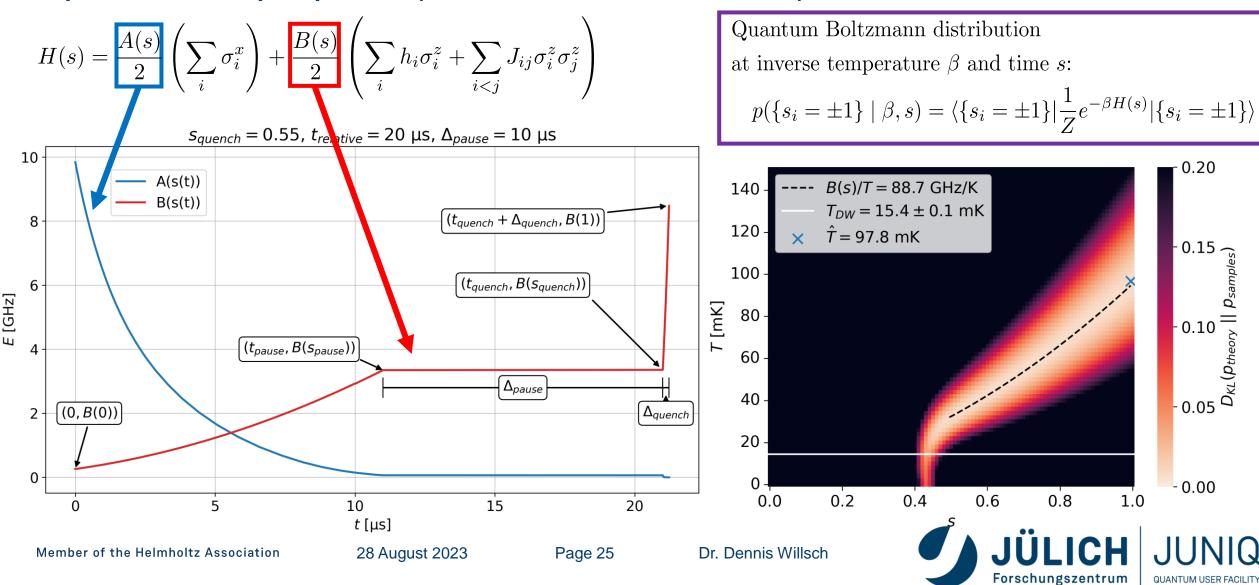


Quantum Boltzmann distribution

at inverse temperature β and time s:

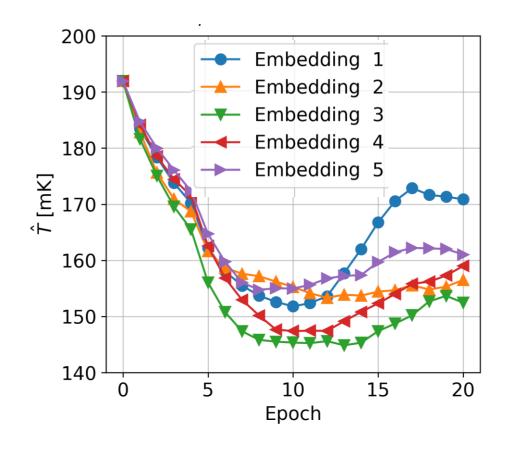
$$p(\{s_i = \pm 1\} \mid \beta, s) = \langle \{s_i = \pm 1\} \mid \frac{1}{Z} e^{-\beta H(s)} \mid \{s_i = \pm 1\} \rangle$$

E [GHz]

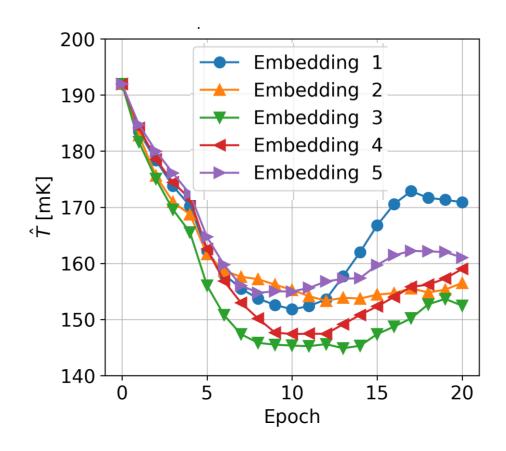


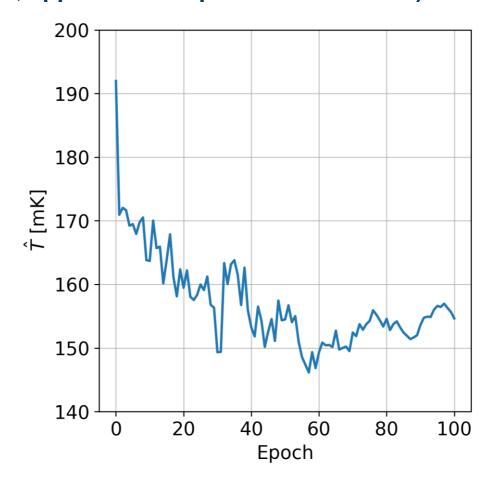
Experiment #4: 96-qubit problem (~400 physical qubits, application in quantitative finance)

Experiment #4: 96-qubit problem (~400 physical qubits, application in quantitative finance)

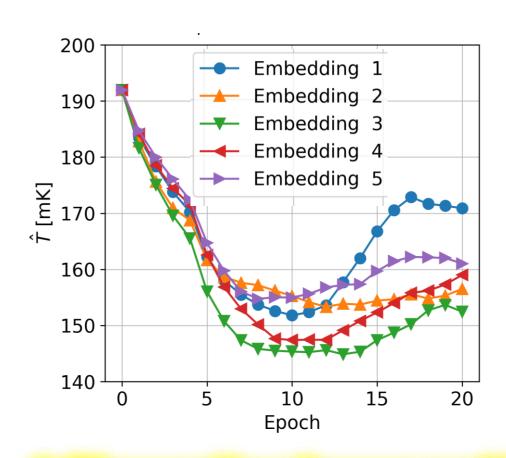


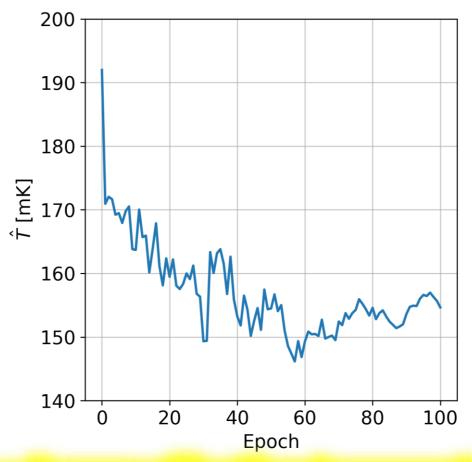
Experiment #4: 96-qubit problem (~400 physical qubits, application in quantitative finance)





Experiment #4: 96-qubit problem (~400 physical qubits, application in quantitative finance)





→ Observation: Larger problems ~ larger effective temperature

JUNIQ Rolling Call:

1. Airline Scheduling

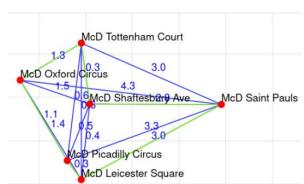


JUNIQ Rolling Call:

or search for "FZJ JUNIQ ACCESS"

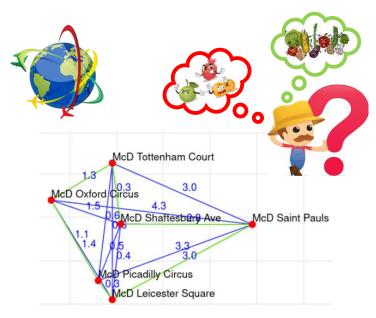
Page 27

- 1. Airline Scheduling
- 2. Traveling Salesman



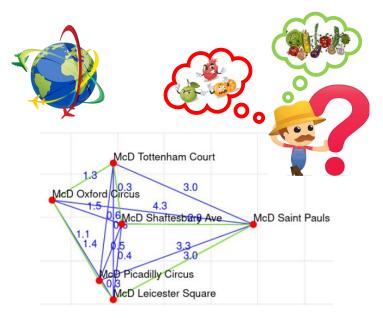
JUNIQ Rolling Call:

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization



- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization

optimization problem with constraints [increasing complexity]



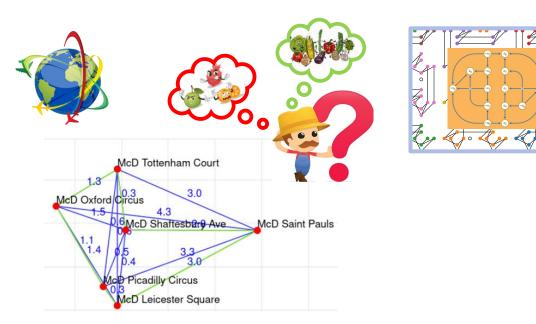
JUNIQ Rolling Call:

or search for "FZJ JUNIQ ACCESS"

Page 27

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability

optimization problem with constraints [increasing complexity]

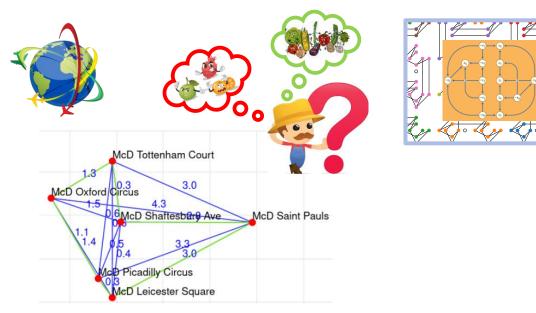


JUNIQ Rolling Call:

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability

optimization problem with constraints [increasing complexity]

constraints only

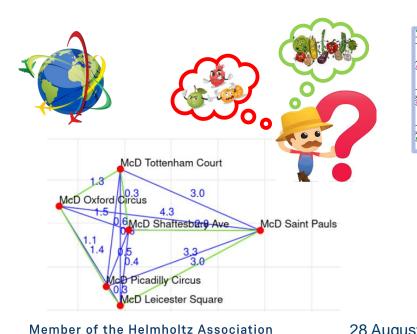


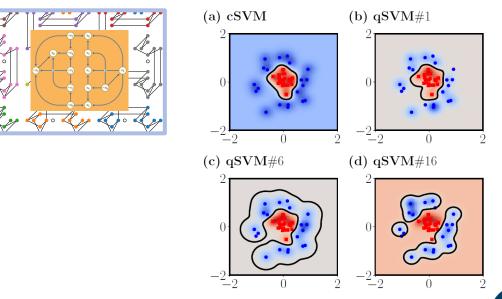
JUNIQ Rolling Call:

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability
- 5. QSVM

optimization problem with constraints [increasing complexity]

constraints only





JUNIQ Rolling Call:

Dr. Dennis Willsch

1. Airline Scheduling

2. Traveling Salesman

3. Garden Optimization

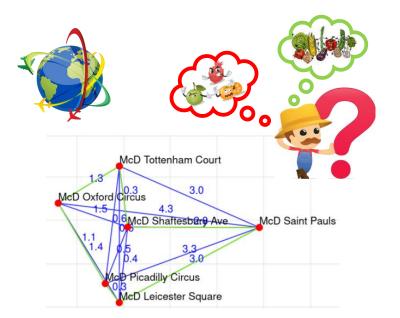
4. 2-Satisfiability

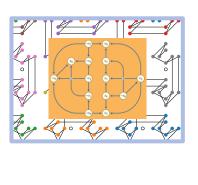
5. QSVM

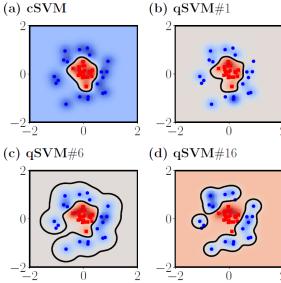
optimization problem with constraints [increasing complexity]

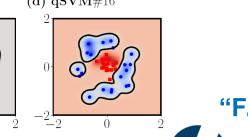
constraints only

optimization only [basically]









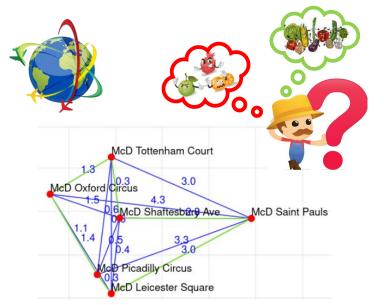
Dr. Dennis Willsch

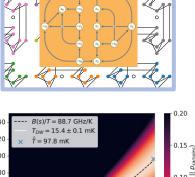
JUNIQ Rolling Call:

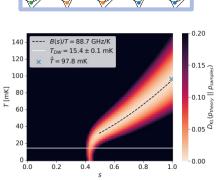
- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability
- 5. QSVM
- 6. QBM

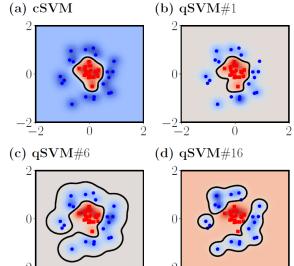
optimization problem with constraints [increasing complexity]

constraints only optimization only [basically]









Dr. Dennis Willsch

JUNIQ Rolling Call:

Member of the Helmholtz Association

28 August 2023

Page 27

1. Airline Scheduling

2. Traveling Salesman

3. Garden Optimization

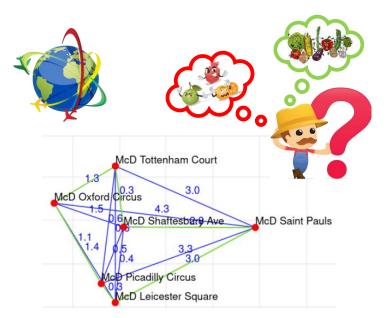
4. 2-Satisfiability

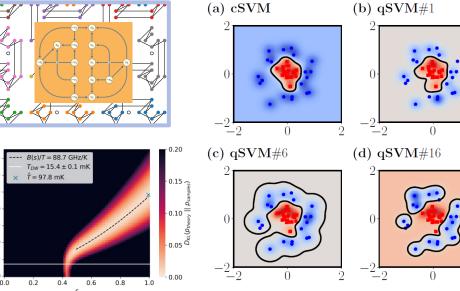
5. QSVM

6. QBM

optimization problem with constraints [increasing complexity]

constraints only optimization only [basically] sampling problem





JUNIQ Rolling Call:

Page 27

Dr. Dennis Willsch

1. Airline Scheduling

2. Traveling Salesman

3. Garden Optimization

4. 2-Satisfiability

5. QSVM

6. QBM

optimization problem with constraints [increasing complexity]

constraints only optimization only [basically] sampling problem



ATOS QLM **Devices**

QC and QA **Emulators**

@JSC

✓ OpenSuperQ QUANTUM FLAGSHIP

SOLID

JUNIQ Modular Supercomputer

Commercial NISQ **Devices**

Pasqal Quantum **Simulator**

JUNIQ Rolling Call:

