001018648 001__ 1018648
001018648 005__ 20240304061314.0
001018648 0247_ $$2doi$$a10.48550/arXiv.2203.08379
001018648 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04951
001018648 037__ $$aFZJ-2023-04951
001018648 1001_ $$0P:(DE-HGF)0$$aFuchs, M.$$b0$$eCorresponding author
001018648 245__ $$aSnowmass Whitepaper AF6: Plasma-Based Particle Sources
001018648 260__ $$barXiv$$c2022
001018648 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1701337640_8565
001018648 3367_ $$2ORCID$$aWORKING_PAPER
001018648 3367_ $$028$$2EndNote$$aElectronic Article
001018648 3367_ $$2DRIVER$$apreprint
001018648 3367_ $$2BibTeX$$aARTICLE
001018648 3367_ $$2DataCite$$aOutput Types/Working Paper
001018648 520__ $$aHigh-brightness beams generated by particle sources based on advanced accelerator concepts have the potential to become an essential part of future accelerator technology. High-gradient accelerators can generate and rapidly accelerate particle beams to relativistic energies while minimizing irreversible detrimental effects to the beam brightness that occur at low beam energies. Due to the high accelerating gradients, these novel accelerators are also significantly more compact than conventional technology. The beam parameters of these particle sources are largely determined by the injection and subsequent acceleration processes. While there has been significant progress crucial parameters that are required for a future collider or more near-term applications, including X-ray free-electron lasers (XFELs), such as a sufficiently small energy spread and small emittance for bunches with a high charge and at high pulse repetition rate. Major research and development efforts are required to realize these approaches for a front-end injector for a future collider in order to address these limitations. In particular, this includes methods to control and manipulate the phase-space and spin degrees-of-freedom of ultrashort LWFA electron bunches with high accuracy, methods that increase the laser-to-electron beam efficiency and increased repetition rate. This also includes the development of high-resolution diagnostics, such as full 6D phase-space measurements, beam polarimetry and high-fidelity simulation tools. A further increase in beam luminosity can be achieve through emittance damping. For future colliders, the damping rings might be replaced by a substantially more compact plasma-based approach. Here, plasma wigglers are used to achieve similar damping performance but over a two orders of magnitude reduced length.
001018648 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
001018648 588__ $$aDataset connected to DataCite
001018648 650_7 $$2Other$$aAccelerator Physics (physics.acc-ph)
001018648 650_7 $$2Other$$aPlasma Physics (physics.plasm-ph)
001018648 650_7 $$2Other$$aFOS: Physical sciences
001018648 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0
001018648 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001018648 7001_ $$0P:(DE-HGF)0$$aShadwick, B. A.$$b1
001018648 7001_ $$0P:(DE-HGF)0$$aVafaei-Najafabadi, N.$$b2
001018648 7001_ $$0P:(DE-HGF)0$$aThomas, A. G. R.$$b3
001018648 7001_ $$0P:(DE-HGF)0$$aAndonian, G.$$b4
001018648 7001_ $$0P:(DE-Juel1)131108$$aBüscher, M.$$b5$$ufzj
001018648 7001_ $$0P:(DE-Juel1)131234$$aLehrach, A.$$b6$$ufzj
001018648 7001_ $$0P:(DE-HGF)0$$aApsimon, O.$$b7
001018648 7001_ $$0P:(DE-HGF)0$$aXia, G.$$b8
001018648 7001_ $$0P:(DE-HGF)0$$aFilippetto, D.$$b9
001018648 7001_ $$0P:(DE-HGF)0$$aSchroeder, C. B.$$b10
001018648 7001_ $$0P:(DE-HGF)0$$aDowner, M. C.$$b11
001018648 773__ $$a10.48550/arXiv.2203.08379$$tContribution to Snowmass 2021$$y2022
001018648 8564_ $$uhttps://juser.fz-juelich.de/record/1018648/files/2203.08379.pdf$$yOpenAccess
001018648 8564_ $$uhttps://juser.fz-juelich.de/record/1018648/files/2203.08379.gif?subformat=icon$$xicon$$yOpenAccess
001018648 8564_ $$uhttps://juser.fz-juelich.de/record/1018648/files/2203.08379.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018648 8564_ $$uhttps://juser.fz-juelich.de/record/1018648/files/2203.08379.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018648 8564_ $$uhttps://juser.fz-juelich.de/record/1018648/files/2203.08379.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018648 909CO $$ooai:juser.fz-juelich.de:1018648$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018648 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018648 9141_ $$y2023
001018648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b5$$kFZJ
001018648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b6$$kFZJ
001018648 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
001018648 920__ $$lyes
001018648 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x0
001018648 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
001018648 980__ $$apreprint
001018648 980__ $$aVDB
001018648 980__ $$aUNRESTRICTED
001018648 980__ $$aI:(DE-Juel1)IKP-4-20111104
001018648 980__ $$aI:(DE-Juel1)PGI-6-20110106
001018648 9801_ $$aFullTexts