001018651 001__ 1018651
001018651 005__ 20231130201846.0
001018651 0247_ $$2doi$$a10.48550/ARXIV.2306.04312
001018651 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04954
001018651 037__ $$aFZJ-2023-04954
001018651 1001_ $$0P:(DE-Juel1)171236$$aWang, Xiao$$b0
001018651 245__ $$aFlat band-engineered spin-density wave and the emergent multi-$k$ magnetic state in the topological kagome metal Mn$_{3}$Sn
001018651 260__ $$barXiv$$c2023
001018651 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1701349029_2440
001018651 3367_ $$2ORCID$$aWORKING_PAPER
001018651 3367_ $$028$$2EndNote$$aElectronic Article
001018651 3367_ $$2DRIVER$$apreprint
001018651 3367_ $$2BibTeX$$aARTICLE
001018651 3367_ $$2DataCite$$aOutput Types/Working Paper
001018651 520__ $$aMagnetic kagome metals, in which topologically non-trivial band structures and electronic correlation are intertwined, have recently emerged as an exciting platform to explore exotic correlated topological phases, that are usually not found in weakly interacting materials described within the semi-classical picture of electrons. Here, via a comprehensive single-crystal neutron diffraction and first-principles density functional theory study of the archetypical topological kagome metal Mn$_3$Sn, which is also a magnetic Weyl fermion material and a promising chiral magnet for antiferromagnetic spintronics, we report the realisation of an emergent spin-density wave (SDW) order, a hallmark correlated many-body phenomenon, that is engineered by the Fermi surface nesting of topological flat bands. We further reveal that the phase transition, from the well-known high-temperature coplanar and non-collinear k = 0 inverse triangular antiferromagnetic order to a double-$k$ non-coplanar modulated incommensurate magnetic structure below $T_1$ = 280 K, is primarily driven by the SDW instability. The double-$k$ nature of this complex low-temperature magnetic order, which can be regarded as an intriguing superposition of a longitudinal SDW with a modulation wavevector k$_L$ and a transverse incommensurate helical magnetic order with a modulation wavevector k$_T$, is unambiguously confirmed by our observation of the inter-modulation high-order harmonics of the type of 2k$_L$+k$_T$. This discovery not only solves a long-standing puzzle concerning the nature of the phase transition at $T_1$, but also provides an extraordinary example on the intrinsic engineering of correlated many-body phenomena in topological matter. The identified multi-$k$ magnetic state can be further exploited for the engineering of the new modes of magnetization and chirality switching in antiferromagnetic spintronics.
001018651 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001018651 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001018651 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x2
001018651 588__ $$aDataset connected to DataCite
001018651 650_7 $$2Other$$aStrongly Correlated Electrons (cond-mat.str-el)
001018651 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001018651 650_7 $$2Other$$aSuperconductivity (cond-mat.supr-con)
001018651 650_7 $$2Other$$aFOS: Physical sciences
001018651 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
001018651 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
001018651 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
001018651 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001018651 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x1
001018651 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
001018651 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x1
001018651 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x2
001018651 7001_ $$0P:(DE-Juel1)174027$$aZhu, Fengfeng$$b1
001018651 7001_ $$0P:(DE-HGF)0$$aYang, Xiuxian$$b2
001018651 7001_ $$0P:(DE-HGF)0$$aMeven, Martin$$b3
001018651 7001_ $$0P:(DE-HGF)0$$aMi, Xinrun$$b4
001018651 7001_ $$0P:(DE-HGF)0$$aYi, Changjiang$$b5
001018651 7001_ $$0P:(DE-Juel1)173891$$aSong, Junda$$b6
001018651 7001_ $$0P:(DE-Juel1)132204$$aMueller, Thomas$$b7$$ufzj
001018651 7001_ $$0P:(DE-Juel1)130944$$aSchmidt, Wolfgang$$b8$$ufzj
001018651 7001_ $$0P:(DE-Juel1)130943$$aSchmalzl, Karin$$b9$$ufzj
001018651 7001_ $$0P:(DE-HGF)0$$aRessouche, Eric$$b10
001018651 7001_ $$0P:(DE-Juel1)201394$$aXu, Jianhui$$b11$$ufzj
001018651 7001_ $$0P:(DE-HGF)0$$aHe, Mingquan$$b12
001018651 7001_ $$0P:(DE-HGF)0$$aShi, Youguo$$b13
001018651 7001_ $$0P:(DE-Juel1)172699$$aFeng, Wanxiang$$b14
001018651 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b15$$ufzj
001018651 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b16$$ufzj
001018651 7001_ $$0P:(DE-HGF)0$$aRoth, Georg$$b17
001018651 7001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b18$$ufzj
001018651 773__ $$a10.48550/ARXIV.2306.04312
001018651 8564_ $$uhttps://juser.fz-juelich.de/record/1018651/files/2306.04312.pdf$$yOpenAccess
001018651 8564_ $$uhttps://juser.fz-juelich.de/record/1018651/files/2306.04312.gif?subformat=icon$$xicon$$yOpenAccess
001018651 8564_ $$uhttps://juser.fz-juelich.de/record/1018651/files/2306.04312.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018651 8564_ $$uhttps://juser.fz-juelich.de/record/1018651/files/2306.04312.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018651 8564_ $$uhttps://juser.fz-juelich.de/record/1018651/files/2306.04312.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018651 909CO $$ooai:juser.fz-juelich.de:1018651$$popenaire$$popen_access$$pdriver$$pVDB:MLZ$$pVDB$$pdnbdelivery
001018651 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132204$$aForschungszentrum Jülich$$b7$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130944$$aForschungszentrum Jülich$$b8$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130943$$aForschungszentrum Jülich$$b9$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201394$$aForschungszentrum Jülich$$b11$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b15$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b16$$kFZJ
001018651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b18$$kFZJ
001018651 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001018651 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001018651 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x2
001018651 9141_ $$y2023
001018651 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018651 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001018651 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
001018651 9201_ $$0I:(DE-Juel1)JCNS-ILL-20110128$$kJCNS-ILL$$lJCNS-ILL$$x2
001018651 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
001018651 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x4
001018651 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x5
001018651 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x6
001018651 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x7
001018651 980__ $$apreprint
001018651 980__ $$aVDB
001018651 980__ $$aUNRESTRICTED
001018651 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001018651 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001018651 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
001018651 980__ $$aI:(DE-588b)4597118-3
001018651 980__ $$aI:(DE-Juel1)PGI-1-20110106
001018651 980__ $$aI:(DE-Juel1)IAS-1-20090406
001018651 980__ $$aI:(DE-82)080009_20140620
001018651 980__ $$aI:(DE-82)080012_20140620
001018651 9801_ $$aFullTexts