001     1018679
005     20240116084325.0
024 7 _ |a 10.1038/s41398-023-02344-2
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04973
|2 datacite_doi
024 7 _ |a 36797233
|2 pmid
024 7 _ |a WOS:000935891400001
|2 WOS
037 _ _ |a FZJ-2023-04973
082 _ _ |a 610
100 1 _ |a Gaebler, Arnim J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Functional connectivity signatures of NMDAR dysfunction in schizophrenia—integrating findings from imaging genetics and pharmaco-fMRI
260 _ _ |a London
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702473840_3807
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Fakour, Nilüfer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stöhr, Felix
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zweerings, Jana
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Taebi, Arezoo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Suslova, Mariia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 6
|u fzj
700 1 _ |a Hipp, Joerg F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Adhikari, Bhim M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kochunov, Peter
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Muthukumaraswamy, Suresh D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Forsyth, Anna
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Eggermann, Thomas
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kraft, Florian
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kurth, Ingo
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Paulzen, Michael
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Gründer, Gerhard
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Schneider, Frank
|0 P:(DE-Juel1)171785
|b 17
700 1 _ |a Mathiak, Klaus
|0 P:(DE-HGF)0
|b 18
773 _ _ |a 10.1038/s41398-023-02344-2
|g Vol. 13, no. 1, p. 59
|0 PERI:(DE-600)2609311-X
|n 1
|p 59
|t Translational Psychiatry
|v 13
|y 2023
|x 2158-3188
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1018679/files/9457_2_merged_1674735162.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1018679/files/s41398-023-02344-2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1018679/files/9457_2_merged_1674735162.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1018679/files/9457_2_merged_1674735162.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1018679/files/9457_2_merged_1674735162.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1018679/files/9457_2_merged_1674735162.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1018679/files/s41398-023-02344-2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1018679/files/s41398-023-02344-2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1018679/files/s41398-023-02344-2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1018679/files/s41398-023-02344-2.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1018679
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177727
910 1 _ |a F. Hoffmann-La Roche, Pharma Research Early Development
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)177727
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)177727
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:41Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21