
ParaDiag and Collocation Methods:

Theory and Implementation

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der KIT-Fakultät für Mathematik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Gayatri Čaklović

Tag der mündlichen Prüfung: 28. Juni 2023

1. Referent: Prof. Dr. Martin Frank

2. Referent: Prof. Dr. Willy Dörfler

3. Referent: Prof. Dr. Martin J. Gander

Betreuer: Dr. Robert Speck

Dedicated to

Sanja and Saša Singer

Acknowledgements

First and foremost, I would like to thank my supervisor Martin Frank for the opportunity to pursue my
projects at KIT and for constructive feedback that has greatly improved the quality of this work.

Furthermore, I would also like to thank my second supervisor, Robert Speck, who introduced me to
time-parallel integration while starting my project in Forschungszentrum1 Jülich. I appreciate all the
creative and mathy brainstorming conversations we had and the immense support I received throughout
my Ph.D. During my time at FZJ, I shared a lot of fun times with my colleagues Giorgio, Ruth2, Alba
and Lukas. I will never forget our coffee breaks, adventures, and lake trips when the summers got too
hot for the little container building we sat in. I would also like to thank Hannah for her great support and
help.

I want to express my sincere gratitude to all who have helped me to complete this dissertation, especially
Sebastian and Thibaut from TUHH whose comments and suggestions greatly improved the content of
this work. I would also like to thank them for the fun times during conferences as well as for supporting
my research. A special thanks to Thibaut for coming up with a lot of mini-projects that shifted my focus
to new exciting topics.

Working at KIT allowed me to meet many new colleagues, and I would like to extend my gratitude to
Steffen and an occasional special guest Antonia, for all the brainstorming sessions and shared activities
which made my office days interesting and fun. I would also like to thank Chinmay and Pia for making
my office days more lively.

I also want to thank my friends Anja, Hana, Lena, and Petra for bearing with me and supporting me
through all the challenges a Ph.D. holds. I am also grateful for the support of my friends from Zagreb
and Karlsruhe, especially Kirsten and Olivia.

Lastly, I am deeply grateful for the love and support of my family Vanda, Lavoslav, and Dea. Nick
provided constant support and encouragement, especially in these last stages of writing this dissertation,
and reminded me there is more to life.

1I think I still can’t spell this correctly.
2Special thanks to Ruth for sneaking out the couch.

v

Preface

In a world in which the price of calculation continues to
decrease rapidly, but the price of theorem proving continues
to hold steady or increase, elementary economics indicates
that we ought to spend a larger and larger fraction of our
time on calculation.

JOHN TUKEY,
American Statistician 40 (1986).

The numerical computation of time-dependent differential equations has been studied for a long time.
Euler was one of the famous mathematicians working on this topic whose method we use until this day.
Since Euler’s era, significant advancements have been made in theory and technology, allowing the field
of numerical analysis to advance further. In 1976, an important milestone in recent history was the devel-
opment of the first CRAY-1 supercomputer, ushering in a new era of high-performance computing. Since
then, the progress in supercomputer development has been relentless, with newer and more powerful
systems being developed continuously. With these high-performance machines, new branches of mathe-
matics are formed, designing algorithms tailored for exascale computing.

Time-parallel integration falls under this category. It is a technique for solving time-dependent differen-
tial equations that tries to break an inherently sequential structure of the classical time-stepping methods,
such as Euler’s method, by redesigning the mathematics behind it. Even before the assembly of the
first supercomputer, Nievergelt explored the idea of time-parallel integration already in 1964 [1]. The
introduction of IBM’s multicore Power 4 chip in 2001 marked another significant milestone in com-
puting, and it happened that traditional spatial parallelization methods started to approach their scaling
limits. As a result, the field of time-parallel integration gained even more attention, as it offers a promis-
ing approach to overcome the limitations of spatial parallelization and achieve even more significant
computational speedup.

vii

Excluding Nievergelt’s idea of a shooting method, the first ideas of time-parallel integration rely on
coarsening in time. While the coarsening aspect does not usually impact parabolic-type equations, it can
severely deteriorate the convergence when applied to hyperbolic-type equations. ParaDiag is an iterative
time-parallel integrator that does not rely on coarsening, making it a promising parallel-in-time method
for hyperbolic equations. Put simply, the method can be seen as a recipe for coupling time steps of
existing integrators and performing a parallel fast Fourier transform in time. In this stage, the time steps
become decoupled and are solved in parallel. To complete the iteration, an inverse Fast Fourier transform
in time is performed, bringing the iterate closer to the numerical solution obtainable by a classical time-
stepping approach.

Despite the elementary economics from Tuckey’s quote, we first turn to the theoretical aspects of Para-
Diag. First, we fill some missing gaps in error analysis for ParaDiag and extend its skeleton to collocation
methods, a subclass of implicit Runge-Kutta methods. Collocation methods cover a class of high-order
integrators allowing better approximations of solutions using fewer nodes per time step. With this, we
analyze yet another level of time parallelism inside the decoupled problems: across the collocation nodes.
Second, we develop a theoretical framework based on implicit-explicit splitting that enables us to analyze
the proposed approach for solving nonlinear evolutionary differential equations. Lastly, we provide an
open-source parallel implementation and benchmarks to support our theoretical claims. Furthermore, we
show that speedup for hyperbolic equations is possible, and it is possible even after the spatial parallelism
has been saturated.

The outline of the thesis is as follows. Chapter 1 contains an overview of time-parallel integration and
summarizes the contributions of this work. Chapter 2 defines collocation methods and ParaDiag for linear
equations. A round-off error analysis is developed to examine its impacts on convergence. Moreover,
Chapter 3 extends the method to nonlinear equations through the prism of implicit-explicit iterations
and studies its convergence. A parallel MPI implementation is described in Chapter 4. The method’s
capabilities are tested in Chapter 5, where we also stress the importance of relevant test cases and how
they affect the results. Chapter 6 provides an overall conclusion and outlook.

viii

Novelty and credit statement

This thesis contains a series of new research studies conducted with various co-authors and placed in the
context of prior research. In this section, I will specify which parts of the thesis are new research and
emphasize the contributions made by both myself and my co-authors.

Chapter 2 combines ParaDiag with the collocation problem for linear equations, and it was a collaborative
effort between myself and my supervisors Robert Speck and Martin Frank [2]. Robert Speck provided
general ideas and direction and helped me mathematically formulate the process of parameter selection
in Subsection 2.5.3. In general, my co-authors provided valuable guidance and input while I worked
out most the theory and implementation. Section 5.3 presents the outcomes obtained in [2], but it also
includes additional explanations, expanding the section’s scope.

Chapter 3 contains unpublished results. However, the idea of treating the nonlinearities explicitly came
from Robert Speck. However, the theoretical framework was provided by me. Shu Lin Wu pointed out
the idea of using iterative refinement to carry out the fixed-point iterations.

Subsection 5.4.2 presenting the results for the Boltzmann equation was developed with the help of
Tianbai Xiao, who helped me couple my implementation with the Julia based package he devel-
oped [3].

Appendix B is part of [4], where I am the sole author.

The remainder of the thesis is original work that has not been published previously. After introducing
time-parallel integration, the scientific contributions that build on existing ideas are presented in Subsec-
tion 1.2.3.

ix

Contents

Contents

Figures, Tables, and Algorithms xiii

1. Introduction to time-parallel integration 1
1.1. Coarsening methods . 2

1.1.1. Parareal . 2
1.1.2. Multigrid reduction in time . 3
1.1.3. Parallel Full Approximation Scheme in Space and Time 3

1.2. Single-level methods . 4
1.2.1. ParaExp . 4
1.2.2. Diagonalization-based methods . 5
1.2.3. Contribution and outline . 6

2. The ParaDiag method for linear equations 9
2.1. Collocation methods . 9

2.1.1. General definition . 9
2.1.2. Collocation methods as a subclass of Runge–Kutta methods 11
2.1.3. High-order methods . 13

2.2. The linear composite collocation problem . 13
2.3. The ParaDiag approach for the linear composite collocation problem 14
2.4. Diagonalization of QG−1

ℓ . 16
2.5. Parameter selection . 21

2.5.1. Convergence . 21
2.5.2. Bounds for computation errors . 22
2.5.3. Choosing the (αk)k∈N sequence . 24

3. Extensions to nonlinear equations 29
3.1. The collocation problem iterations: a single time step 31
3.2. The composite collocation problem iterations . 33

3.2.1. Convergence of the composite collocation iterations 34
3.2.2. Iterative refinement . 37

xi

Contents

4. Implementation 41
4.1. Parallelization strategies . 41
4.2. Employing the parallelization strategy . 45

4.2.1. Computing discrete Fourier transforms . 45
4.2.2. Solving decoupled problems . 48
4.2.3. Computing the residual . 48
4.2.4. Computing average Jacobians . 49

4.3. Code structure . 50
4.3.1. Setting up a problem class . 51
4.3.2. main.py . 52

4.4. Computational complexity and speedup analysis . 53
4.4.1. The linear case . 53
4.4.2. Iterative refinement . 54

5. Numerical results 57
5.1. Parallel scaling . 57
5.2. How to compare time-parallel methods and codes . 58

5.2.1. Presenting numerical results with ParaDiag . 59
5.2.2. Setting up the right test cases . 66

5.3. ParaDiag for linear equations . 67
5.3.1. Heat equation . 67
5.3.2. Advection equation . 71

5.4. ParaDiag for nonlinear equations . 77
5.4.1. Allen–Cahn equation . 77
5.4.2. Boltzmann equation . 81

6. Conclusion and outlook 87
6.1. Conclusion . 87
6.2. Outlook . 88

A. Spectral radius and the infinity norm of the iteration matrix 89

B. Bounds for the norm of the collocation matrix 93
B.1. Exact quadrature for degree 2M − 2 or higher . 94
B.2. Gauss–Lobatto nodes . 95
B.3. Conclusion . 96

Bibliography 97

xii

List of Figures

List of Figures

2.1. A block-diagonal matrix. 15
2.2. Adaptive strategy vs. convergence for fixed αk from the sequence. The y-axis represents

the error in log10 scale whereas the vertical lines represent the mk sequence starting with
m0 = 10∆T . The solid line is the convergence history with the sequence of αk given as
(6.19 × 10−7, 5.56 × 10−4, 1.67 × 10−2, 9.13 × 10−2). 26

2.3. Convergence with the adaptive strategy for different thresholds. The y-axis represents
the error in log10 scale, and vertical lines represent the thresholds for the stopping crite-
ria: red for reaching thresholds under 10−5, green for 10−9 and blue for 10−12. ’approx.
errors’ graphs contain the information available on runtime, which is: the errors of con-
secutive iterates in the last time-step (marker pointing left) and the approximations of the
upper bound for the error in each iteration (marker pointing right), the mk values starting
with m0 = ∆T . These values are generated in Algorithm 2 alongside the correspond-
ing αk. ’real errors’ graphs show corresponding errors to the exact solution, which is
generally unavailable at runtime. 27

3.1. Contours of
∥∥∥(I − λIQ)−1Q

∥∥∥
∞

for the Radau-Right quadrature. Upper plots are contours
for values 0.2, 0.5, 1 and lower plots are contours with values 1, 5, 10. 33

4.1. Communicator groups when the number of collocation points is M = 4 and the number
of time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 1 and nspace = 1. 42

4.2. Communicator groups when the number of collocation points is M = 4 and the number
of time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 2 and nspace = 1. 43

4.3. Communicator groups when the number of collocation points is M = 4 and the number
of time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 4 and nspace = 1. 43

4.4. Communicator groups when the number of collocation points is M = 4 and the number
of time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 4 and nspace = 2. 44

4.5. A parallel sum. 45

xiii

List of Figures

4.6. An example of a Radix-2 butterfly communication structure for L = 8 time steps and
nstep = 8 processors. Because the indices after the forward Fourier transform do not need
rearranging, the computation proceeds with the perturbed blocks of xli . The counter k
corresponds to the counter of Algorithm 6. The processors that exchange data with each
other are the ones whose kth digit differs in a binary representation of the time step they
hold, marked in red. The boxes marked in yellow correspond to the IF statement being
true in line 8 of Algorithm 6. 46

4.7. Setup function calls and the inheritance hierarchy. The symbol ⊕ denotes or, meaning
that just one of the solver classes is participating in the hierarchy. The flow is defined by
the user, specifying a solver as a parent of the Problem class. 50

5.1. Strong scaling with ParaDiag. The grouped intervals are solved in parallel. nstep proces-
sors determine the size of the moving window. 58

5.2. Number of ParaDiag iterations for the linear heat and the linear advection equation,
solved to three different tolerances ζ. The first row contains the number of iterations
when the α-adaptive strategy is used, whereas the remaining rows contain the number of
iterations when a fixed parameter α within iterative refinement is used. 59

5.3. Wall clock times and the total number of the maximum number of inner GMRES itera-
tions per time step for parallel runs of the linear heat and the linear advection equation,
solved to three different tolerances ζ. The figures compare ParaDiag with the α-adaptive
strategy to ParaDiag with a fixed parameter α using iterative refinement. 60

5.4. Convergence curves for ParaDiag with iterative refinement for different tolerances ζ.
The vertical lines represent the tolerances for the stopping criteria: red for the error
∥u(TL) − u(k)

L ∥∞ reaching under 10−5, green for 10−9 and blue for 10−12. 60
5.5. Speedup for the advection equation, solved in parallel across time steps and the colloca-

tion nodes. The gray plots represent scaling across time steps only. 61
5.6. Strong scaling plots for the Allen–Cahn equation with ε = 0.01. 62
5.7. Wall clock time for the Allenc-Cahn equation solved with implicit Euler. 62
5.8. Strong scaling plots for the Allen–Cahn equation with ε = 1. 63
5.9. Speedup . 64
5.10. Speedup for the Boltzmann equation using pyjulia. 65
5.11. Efficiency for the Boltzmann equation using pyjulia. 65
5.12. u(π + T64, x, y) − u(π, x, y) for T64 = 0.32, 0.16. 68
5.13. Strong scaling plots for the heat equation, solved in parallel accross time steps. The

numbers on the curves represent the number of outer iterations ParaDiag needs to reach
the given tolerance. 69

5.14. Strong scaling plots for the heat equation, solved in parallel across time steps and the
collocation nodes. The numbers on the curves represent the number of outer iterations
ParaDiag needs to reach the given tolerance. The gray plots are the same as in Figure 5.13
and serve as a reference. 69

5.15. Communication overheads for different parallelization strategies for the heat equation. . 70
5.16. Communication and system solving overheads in the diagonalization process across time

steps with M = 1 collocation node (implicit Euler method) for the heat equation. 71
5.17. Plotting u(T64, x, y) − u(0, x, y), for T64 = 0.00016, 0.00064. 72
5.18. Strong scaling plots for the advection equation, solved in parallel accross time steps. The

numbers on the curves represent the number of outer iterations ParaDiag needs to reach
the given tolerance. 72

xiv

List of Figures

5.19. Strong scaling plots for the advection equation, solved in parallel accross time steps
and the collocation nodes. The numbers on the curves represent the number of outer
iterations ParaDiag needs to reach the given tolerance. The gray plots are the same as in
Figure 5.18 and serve as a reference. 73

5.20. Communication and system solving overheads in the diagonalization process across time
steps with M = 1 collocation node (implicit Euler method) for the advection equation. . . 73

5.21. Communication overheads for different parallelization strategies for the advection equa-
tion. 74

5.22. Communication overheads when solving the advection equation parallel in space and
time. 75

5.23. Strong scaling plots for the advection equation and three thresholds. The solid gray line
represents the spatial scaling with petsc4py for the advection equation solved sequen-
tially with implicit Euler on 64 time steps. The curve shows the scaling of petsc4py
for our problem is best around 12 cores, since using more cores does not increase the
speedup significantly. The colored lines represent the scaling for the moving windows
with ncoll = M and nspace = 12 cores, in other words, parallelism across time-steps,
across the method, and in space. The numbers on the curves represent the number of
outer iterations Algorithm 1 needs in order to reach the given tolerance. 76

5.24. u(0.003, x) − u(0, x) . 78
5.25. Runtimes for ε = 0.01 for the Allen–Cahn equation for the inexact Newton’s method and

the collocation problem iterations from Test 1. The numbers on the graphs present the
rounded average number of iterations a parallel block needs to converge. 79

5.26. Strong scaling plots for the Allen–Cahn equation for Test 1. 79
5.27. Runtimes for ε = 1 for the Allen–Cahn equation for the inexact Newton’s method and

the collocation problem iterations from Test 2. The numbers on the graphs present the
rounded average number of iterations a parallel block needs to converge. The gray curves
are runtimes with parallelism across time steps and the colored curves are parallel runs
across time steps and collocation nodes. 80

5.28. Strong scaling plots for the Allen–Cahn equation for Test 2. The gray curves represent
scaling across time steps, whereas the colored curves present scaling across time steps
and across collocation nodes. 81

5.29. Density in time points t = 0, 0.032 for a value ε = 10−2. 83
5.30. Wall clock times for the Boltzmann equation from Test 1. The petsc line stands for the

runs that solve the Boltzmann equation in space-parallel fashion, covering L = 32 time
steps sequentially in time. petsc(n) means that n cores are used for the parallelization
of the spatial problem, i.e., nspace = n. On top of spatial parallelism with n fixed cores,
parallelism across the time domain is added, covering L = 32 time steps. 84

5.31. Strong scaling plots for the Boltzmann equation for Test 1. 85
5.32. Wall clock times for the Boltzmann equation from Test 2 with varying ε. 85
5.33. The average number of iterations for a ParaDiag block and wallclock times depending

on the relaxation parameter ε and the size of a parallel block nstep, covering L = 32 time
steps. The runs correspond to Test 2, and the colors of ε-labels correspond to the curves
in Fiure 5.32. 86

xv

List of Tables

List of Tables

2.1. Parallel wall clock times for parallelizing the advection equation across L = 64 time
steps. The data exactly accompanies Figure 2.2. 27

2.2. Parameter choice for solving the heat and advection equation in order to reach an error
∥u(T) − uL∥∞ < ζ when solving with a standard sequential approach. κ denotes the
discretization order in space, where upwind was chosen for the advection equation and
centered differences for the heat equation. 28

5.1. The time needed to compute the collision kernel for 100 spatial points and 48 × 24 × 24
velocity points using the pyjulia wrapper and Julia. 66

5.2. Parameter choice for the heat equation to reach an error ∥u(T64) − u64∥∞ < ζ when
solving with a standard sequential approach. Here, κ denotes the discretization order in
space, a centered difference scheme for the discrete Laplacian, see [5]. T64 represents the
interval length that is needed so that the error is below ζ after 64 time steps for a given
discretization. 68

5.3. Parameter choice for the advection equation to reach an error ∥u(T64) − u64∥∞ < ζ when
solving with a standard sequential approach with L = 64 time steps. Here, κ denotes the
discretization order in space for the upwind scheme. 72

5.4. Parameter choice to reach an error ∥r⃗es(k)
∥∞ < ζ in Test 1. 78

5.5. Parameter choice to reach an error ∥r⃗es(k)
∥∞ < ζ in Test 2. 79

5.6. The number of iterations the method needs when handling L time-steps in parallel and
propagating them until covering 32 time-steps in total. We can observe that the number
of iterations per time step grows proportionally to the number of parallel steps. 84

xvii

List of Algorithms

List of Algorithms

1. Linear ParaDiag iterations with the collocation problem and an (αk)k∈N sequence. 17
2. A stopping criterion combining approximations of worst-case convergence and an error

of consecutive iterates, with a given m0. The stopping tolerance is ζ. 25

3. Iterative refinement IMEX-based ParaDiag. 37

4. The parallel Radix-2 algorithm for computing the scaled Fast Fourier Transform. 47

xix

CHAPTER 1

Introduction to time-parallel integration

High-performance computing (HPC) uses advanced computer systems, such as supercomputers, to solve
various problems on multiple processing units. The primary usage of parallel computing is often pro-
ducing results faster by adapting a given algorithm. For some problems, this is straightforward. One of
these examples is the Monte Carlo method, an embarrassingly parallelizable algorithm. Time-parallel
integration, on the other hand, is on the opposite side of the spectrum. Coupling HPC and compu-
tation of parallel-in-space solutions of differential equations has become standard practice, however,
the number of processors in supercomputers keeps increasing, and scalability limits are quickly getting
maxed out. In cases like these, time-parallel integration methods may offer additional scaling opportuni-
ties.

Let
ut = f (t, u(t)), u(0) = u0

be an evolutionary differential equation. Classical numerical methods that solve such equations rely
on a time propagator F that propagates the initial condition forward in time for some time step ∆T .
Obtaining an approximation of the solution in point L∆T requires L propagations, where each of these
approximations depends on the previous one;

uℓ+1 = F (uℓ).

Time-parallel integration tries to break this inherently sequential nature of the problem. Throughout the
years, people came up with many ideas, and in 2015, a broad overview of the field Parallel-in-Time
(PinT) has been written: 50 Years of time-parallel integration [6]. Another review article from 2019
summarizing the many advances in time-parallel computations can be found in [7]. Today, we mark
almost 60 years with multiple usages of PinT methods, ranging from weather prediction [8], robotics
[9], computational fluid dynamics [10], and many more [11, 12, 13]. According to the Parallel-in-Time
web page1, more than 500 publications have been published so far, with the number exponentially grow-
ing from as early as 1964. The field properly took off in 2001 with the introduction of the parareal

1http://parallel-in-time.org/references/

1

1. Introduction to time-parallel integration

algorithm [14], a simple yet powerful idea of using two types of integrators, a coarse and a fine numer-
ical propagator, with the hope of achieving speedup. The same year, IBM introduced the world’s first
multicore processor chip, allowing higher performance at lower energy, ideal for large scale applica-
tions.

A classical way to distinguish parallel-in-time methods, following K. Burrage’s terminology, is: paral-
lelism across the system, parallelism across the method and parallelism across time steps [15]. Solving
an ordinary differential equation where the right-hand side is a vector-valued function can be performed
via Picard iterations, in parallel for every component, and is an example of parallelism across the system.
Solving a diagonal IRK method in parallel across the stages is parallelism across the method, whereas
the parareal algorithm, introduced in 1.1.1, is an example of parallelism across time steps. Some methods
use coarsening in time or space or both. A rule of thumb is that coarsening methods do not work well
with hyperbolic equations but do go hand in hand with parabolic-type equations. Therefore, a different
classification is more valuable for our purposes. We divide time-parallel integration methods into two
categories: methods that rely on coarsening and single-level methods. A concise summary of the most
prominent methods of the two groups is provided in Section 1.1 and 1.2. Each group has advantages
and disadvantages, depending on which differential equation we want to solve. In this thesis, we will
develop, implement and test the limits of a single-level approach coupled with a high-order implicit time
integrator for linear and nonlinear equations.

1.1. Coarsening methods

1.1.1. Parareal

Parareal was introduced by Lions et al. in 2001 [14], and nowadays almost became a synonym for
parallel-in-time integration. Parallelization is achieved using two time integrators: a fine yet expen-
sive propagator F and a coarse cheap propagator G. In French: ’fine’ and ’gross’. The fine propaga-
tor usually has a smaller step size and is of a higher order of accuracy than the coarse one. Parareal
is an iterative method where an approximation of the solution u(Tℓ) ≈ uk

ℓ
in iteration k is computed

as
uk+1
ℓ+1 = F

(
uk
ℓ

)
+ G

(
uk+1
ℓ

)
− G

(
uk
ℓ

)
, 0 ≤ ℓ < L.

With this, the expensive computations of F
(
uk
ℓ

)
can be performed in parallel, followed by sequential

computations of G
(
uk+1
ℓ

)
. By design, the sequential part should be inexpensive, and after K iterations on

L cores, one for each time step, an upper bound for speedup is L/K.

Parareal’s convergence to the solution of the fine integrator is guaranteed after L iterations, however,
speedup is only possible if the method converges faster. The method is known to work very well for
diffusive problems, and a detailed convergence analysis in the linear case is provided in [16], both for
the diffusion and the advection equation. In addition to the superlinear convergence bound for linear
problems, it is shown that parareal can be viewed as a two-level space-time multigrid or as a shooting
method. The convergence analysis for the nonlinear case can be found in [17].

However, parareal often fails to produce speedup for hyperbolic type equations, and convergence is some-
times achieved just in the last iteration. A study in [18] touches this subject for the advection equation and
broadens the study for the wave equation, concluding that the method is not very useful for parallelizing
the solution of the wave equation in time [...]. Later, a detailed analysis of wave propagation due to coars-
ening in time confirms this, concluding that a key finding is that the source of the instability is different
discrete phase speeds on the coarse and fine level, which cause instability of higher wave number modes

2

1.1. Coarsening methods

even thought the amplitude errors are quickly corrected by the iteration [19]. Over the years, extensions
and enhancements have been made [20, 21, 22]. Unfortunately, these extensions often lead to additional
computations that have to be performed, yielding reduced efficiency altogether.

The method is often coupled with coarsening in space, yet another trick is how to make the G integrator
even cheaper. Unfortunately, even without the time-coarsening aspect, spatial coarsening can also play a
significant role, deteriorating the convergence of the method [23].

Currently, an implementation of the method can be found as a Julia package [24], a package written in
C [25], and as a Fortran 90 implementation LibPFASST [26].

1.1.2. Multigrid reduction in time

Inspired by the parareal algorithm, a multigrid approach MultiGrid Reduction In Time (MGRIT) [27] was
developed, extending parareal to a multi-level algorithm that can use more than two levels of coarsening.
The general idea is to partition an equidistant subdivision of the time domain into C-points, the coarse
mesh, and F-points, the fine mesh. With this, corresponding restriction and prolongation operators are
defined. A two-level multigrid can be explained as interpolating the solution from the coarse level to
the fine level to correct the result on the fine level. This is called a coarse grid correction (CGC). In
a multi-level multigrid in time, this process visits the coarsest level and then revisits the finer levels in
some order, visiting the finest level again, yielding different cycle types.

The approach produces good speedups for parabolic problems for long time intervals when sufficiently
many cores are used. Implementations can be found in Xbraid [25], written in MPI/Cwith C++, Fortran
90, and Python interfaces, and as a standalone Python package pyMGRIT [28]. Both implementations
provide nonintrusive implementations as well as a variety of time stepping, relaxation, and temporal and
spatial coarsening options.

However, the problems of not handling hyperbolic-type equations very well are inherited from parareal.
The main part where MGRIT struggles with is the coarse-grid correction term which seemingly does not
adequately correct smooth Fourier modes when using standard coarsening strategies. Extensive analysis
for the linear advection equation is still ongoing, producing new coarsening strategies [29, 30, 31, 32]
and achieveing modest speedups of around 8.5 on 1024 cores [33].

1.1.3. Parallel Full Approximation Scheme in Space and Time

The Parallel Full Approximation Scheme in Space and Time (PFASST) was initially proposed in 2012
by Emmett and Minion [34]. The idea of PFASST is to use Spectral Deferred Corrections (SDC) [35],
an iterative approach to solve a collocation problem on a single time interval coupled with parareal. The
collocation problem is formally introduced in Section 2.1. However, for now, it can be viewed as a
high-order integration method, under certain conditions, equivalent to an Implicit Runge–Kutta (IRK)
method. A version of SDC with coarsening in space and/or time is called Multi-Level Spectral Deferred
Corrections (MLSDC) and is also used within PFASST. One iteration of these algorithms on a single time
interval is called a sweep, and instead of using coarse and fine propagators F and G, PFASST uses SDC
sweeps to update uk+1

ℓ+1. This can be viewed as a modified coarse grid correction.

A multigrid point of view was explored in [36], concluding that under certain assumptions, the PFASST
algorithm can be conveniently and rigorously described as a multigrid-in-time method. However, due
to coarsening, the same problem of not handling hyperbolic-type equations very well is inherited from

3

1. Introduction to time-parallel integration

parareal. One can find an asymptotic convergence theory and convergence comparisons for the linear
heat and the linear advection equation in [37], in which the authors also conclude that the advective case
performs much worse than the diffusive case. A case study comparing space-time-multigrid methods
and PFASST is conducted for the Allen–Cahn equation in [38]. The most favorable setup for implicit
Euler produced a speedup of almost 11 on 64 cores for PFASST [38, Table 5.8] and 9 on 128 cores for
a seven level space-time multigrid without temporal coarsening [38, Table 5.7]. Speedup for 2 or more
Radau-Right nodes is reduced.

The method produces significant speedups on longer time intervals, and a Python implementation of
SDC and PFASST is available as pySDC [39]. An implementation written in Fortran 90 can be found
in LibPFASST [26], as well as a C++ implementation [40]2.

1.2. Single-level methods

One of the promising approaches to tackle this underlying problem is to remove coarsening altogether.
Because of this, one does not need to spend time on finding a good coarse-fine combination of propaga-
tors. Some methods that do not use coarsening are ParaExp [41] and REXI [42]. Other single-single level
methods exploit small scale parallelism across the method. Some prominent examples include parallel
RK methods [43, 44, 45] and parallel SDC [46]. Many more exist, however, we will briefly explain the
idea of ParaExp and mostly focus on diagonalization-based methods.

1.2.1. ParaExp

ParaExp [41] is a direct time-parallel integrator defined for linear problems of form

ut(t) = Au(t) + g(t), u(0) = u0.

First, one solves the equation in parallel for every slice [Tℓ−1,Tℓ] with a zero initial condition, obtaining
solutions vℓ. Second, the homogeneous problems

wt(t) = Aw(t), w(Tℓ−1) = vℓ−1(Tℓ−1)

are solved for a time slice [Tℓ−1,Tend], again in parallel, obtaining solutions wℓ. These parallel steps are
carried out efficiently by approximating the matrix exponential. The solution for a slice [Tℓ−1,Tℓ] is then
obtained using the linearity of the problem as

u
∣∣∣
[Tℓ−1,Tℓ]

= vℓ +
ℓ∑

k=1

wk
∣∣∣
[Tℓ−1,Tℓ]

.

Since it is a direct method, ParaExp is very suitable for hyperbolic problems. Because of this, ParaExp
works excellently with all linear problems, achieving remarkable speedups.

2Not maintained since 2016.

4

1.2. Single-level methods

1.2.2. Diagonalization-based methods

Another way to circumvent the coarsening is to use diagonalization techniques. An all-in-common base
idea of these methods is an assembly of the all-at-once system of a time-stepping method,

Cu :=


I
−F I

. . .
. . .

−F I



u0
u1
...

uL

 =

g0
g1
...

gL

 , (1.1)

where uℓ ≈ u(tℓ), followed by either a direct system solve by diagonalization (when operators F differ
across time steps) or an iterative method with an α-circulant preconditioner. The system (1.1) is given in
its simplest form, satisfying propagations uℓ+1 = F (uℓ) =: Fuℓ + gℓ. Writing the problem in form (1.1)
is a crucial reformulation, allowing us to analyze the problem from a different perspective. It is also used
to analyze and explain time-parallel multigrid methods [27, 36].

A pioneering report from 2007 [47] explored the idea of diagonalization for the first time for linear
problems, using a series of geometrically increasing large time step sizes. Because of this, the matrix in
the all-at-once system (1.1) is diagonalizable. Later, a more in-depth application for wave equations was
made, concluding that speedup is possible for a limited number of time steps due to balancing carefully
truncation and roundoff error [48].

An iterative approach using the α-circulant preconditioner

Cα :=


I −αF
−F I

. . .
. . .

−F I

 (1.2)

for the all-at-once system was explored inside GMRES or MINRES iterations starting from 2003 [49,
50, 51, 52], showing in [52] an analysis of the spectrum and clustering of eigenvalues, an important
factor leading to fast convergence of Krylov space methods. The preconditioner is of specific interest
because it can be diagonalized using a parallel fast Fourier transform and it’s inverse. After diago-
nalizing across time steps, the problems on the diagonal are decoupled and can be solved in paral-
lel.

One can use the same preconditioner inside the Preconditioned Richardson Iterations (PRI), leading to
a second iterative approach with good convergence properties and less required memory than GMRES.
The idea of using PRI was already explored in 2018, in combination with parareal, as a coarse grid
correction [53]. In 2019, the waveform relaxation technique in combination with diagonalization [54]
was published, and later, in 2020, it was plugged into parareal as a coarse propagator G with the same
time step size as the fine one [55]. The GMRES and the PRI approach were compared in [56], concluding
that the number of iterations for both methods is almost identical.

A convergence analysis from 2021 can be found in [57], followed by an analysis from 2022 [52], showing
that the spectral radius of the iteration matrix using PRI is bounded as ρ((I − Cα)−1C) ≤ α/(1 − α) for
both first-order and second-order evolutionary problems, provided that the time integrator is stable. An
overview of diagonalization-based PinT algorithms can be found in [58], including some comparisons
to MGRIT, and followed on the PinT web page [59]. The forming umbrella term for these methods is
ParaDiag.

5

1. Introduction to time-parallel integration

1.2.3. Contribution and outline

So far, only simple time-stepping integrators were examined: a general two-point approximation of the
integral which covers methods such as implicit or explicit Euler method and the trapezoidal rule. 3 The
work on our topic with an idea to examine the PRI with the α-circulant preconditioner as a standalone
solver outside the parareal framework and extend it to high-order integrators, namely the collocation
problem, also covering high-order IRK methods.

Chapter 2 introduces and analyzes ParaDiag for linear equations. After diagonalizing the block circulant
preconditioner bearing the collocation problem, the decoupled problems are also solved via diagonaliza-
tion of the perturbed collocation matrix, yielding a doubly time-parallel method: across the time steps
and across the collocation nodes. The diagonalization of inner systems is theoretically supported in Sub-
section 2.4. We do so by finding the scaled characteristic polynomial of a general perturbed collocation
problem for every time step and α and use it to show under which conditions are the inner systems
diagonalizable.

Unfortunately, the preconditioner (1.2) is ill-conditioned, and the round-off error analysis for this type
of preconditioner needs to be improved. We extend it in Subsection 2.5.2 by examining the error orig-
inating from the poorly conditioned diagonalization while considering the inexactness of system solves
in the diagonalized form. Using these results in Subsection 2.5.3, we show how one can balance the
convergence rate and the round-off errors by choosing a different α in each iteration, leading to a reduced
number of iterations when solving linear equations. This leads to improved performance, and we support
this finding with a benchmark.

An extension on how to solve nonlinear equations is developed in Chapter 3. One way to solve a system
of nonlinear equations arising from the all-at-once problem (1.1) is to use the inexact Newton’s method
[56, 55] or Newton–Krylov methods [52]. For the PRI, a natural extension is to use the former. In addi-
tion to that, in Subsection 3.1, a Jacobian-free iterative approach is introduced and analyzed for a single
time step, treating the nonlinear part in an explicit way. We show that both approaches can be formulated
as implicit-explicit (IMEX) preconditioning for the composite collocation problem in Subsection 3.2.
With that, a convergence analysis on Dahlquist’s test equation is presented in Subsection 3.2.1, unifying
the convergence of both approaches: the inexact Newton’s method and the Jacobian-free approach, and
in the same form, includes convergence for the fully linear equations as a special case. We show that
the upper bound for the error of these iterations depends almost linearly on the number of parallel time
steps. In theory, Newton’s method leads to faster convergence, as evident from our results since it needs
fewer iterations. On the other hand, treating the nonlinear terms explicitly is used for equations when the
Jacobian is a computational bottleneck or unavailable, e.g., the Boltzmann equation, since the right-hand
side is a nonlinear collision term that dominates the computation time.

The reports of parallel implementations are almost as important as the theory itself, and they are of-
ten lacking when a new method or theory is presented. Therefore, we also contribute with a parallel
implementation (in space and time), benchmarking the method for the linear heat, the linear advection
equation, the nonlinear Allen–Cahn, and the nonlinear Boltzmann equation. The runs also consider the
inexactness of system solves, leading to less efficient but more representative results of speedup. The
implementation, thoroughly described in Chapter 4, is written in Python with the help of mpi4py and
petsc4py. It is open source and available on GitHub [60].

3A parallel implementation of this integrator as preconditioned FGMRES iterations is available since 2021 within the
Firedrake project, an automated system for the portable solution of partial differential equations using the finite element method.
Avaliable under https://github.com/firedrakeproject/asQ.

6

https://github.com/firedrakeproject/asQ

1.2. Single-level methods

Chapter 5 contains the presentation of the results. In Section 5.2.1, we emphasize the significance of
selecting relevant test cases and parameter configurations when generating results. The section is struc-
tured using examples that demonstrate overperformance. Finally, our implementation’s outcomes are
exhibited in Sections 5.3 and 5.4.

We achieve significant speedups of around 10 on 64 cores when parallelizing across steps and up to
14 on 128 cores when additionally parallelizing across the method for the linear advection equation.
With this, we outperform the mentioned results for MGRIT. Furthermore, when parallelizing in space,
we can scale the algorithm further in time after the spatial cores reach the saturation point, achieving a
speedup of 90 on 1536 cores. For the Allen–Cahn test case, an advection-diffusion equation, we achieve
a speedup of 9 on 128 cores when solving with implicit Euler and Newton’s method and around 5.5 using
the Jacobian-free approach. When additionally parallelizing across 3 Radau-Right nodes, the speedup is
more significant, resulting in around 50 when solving with Newton’s method and 35 using the Jacobian-
free approach on 192 cores. Compared to the previously mentioned results of PFASST, our results are
comparable to the state-of-the-art algorithms.

7

CHAPTER 2

The ParaDiag method for linear equations

First, we start by explaining our base numerical integrator: the collocation problem. Collocation meth-
ods can be seen as a subclass of IRK methods, and we provide a discussion to show this in Sec-
tion 2.1. Furthermore, the all-at-once system is constructed in Section 2.2, and an iterative approach
is presented using the preconditioned Richardson iterations with an α-circulant preconditioner in Sec-
tion 2.3.

We extend the original approach of ParaDiag that uses only two-point approximations of the integral
with a collocation method as our base integrator. This choice not only yields time integrators of ar-
bitrary order but also adds another level (and opportunity) of parallelization in time: across the col-
location nodes for each time step via diagonalization of the perturbed collocation matrix. The de-
talis are described in Section 2.4. Following the taxonomy in [15], this yields a doubly-time parallel
method: combining parallelization across the steps and parallelization across the method first proposed
in [61].

Section 2.5 describes the convergence of ParaDiag coupled with the collocation problem for linear equa-
tions and the analysis of round-off errors arising from the diagonalization of the preconditioner. We
present and analyze an adaptive strategy to select a new parameter α for each iteration in order to bal-
ance (1) the convergence rate of the method with (2) round-off errors arising from the diagonalization
of the preconditioner, and (3) inner system solves of the decoupled time-steps. Finally, we present an
algorithm for the practical selection of the adaptive preconditioners and demonstrate the speedup gains
these methods can provide over sequential methods in Subsection 2.5.3.

2.1. Collocation methods

2.1.1. General definition

In this section, a collocation method for an initial value problem

ut = f (t, u), u(0) = u0 ∈ C, (2.1)

9

2. The ParaDiag method for linear equations

is presented.

Let 0 ≤ t1 < t2 < · · · < tM ≤ ∆T be a subdivision of [0,∆T] using M ∈ N additional collocation nodes.
Because of variable change in the integral, we can without loss of generality, assume that ∆T = 1. A
Picard integral formulation over an interval [0, tm] for (2.1) is

u(tm) = u(0) +
∫ tm

0
f (s, u(s))ds, m = 1, . . . ,M. (2.2)

Let ci denote the ith Lagrange polynomial in points t1, . . . , tM defined as

ci(t) =
M∏

m=1,m,i

t − tm
ti − tm

, i = 1, . . . ,M. (2.3)

A polynomial approximation of the integrand f in (2.2) in these same collocation nodes t1, . . . , tM

is

f (s, u(s)) ≈
M∑

i=1

f (ti, u(ti))ci(s), s ∈ [0, 1].

This yields an approximation of the whole integral:∫ tm

0
f (s, u(s))ds ≈

∫ tm

0

(M∑
i=1

ci(s) f (ti, u(ti))ds
)

(2.4a)

=

M∑
i=1

∫ tm

0
ci(s) f (ti, u(ti))ds (2.4b)

=

M∑
i=1

(∫ tm

0
ci(s)ds

)
f (ti, u(ti)). (2.4c)

Combining the last equation (2.4c) with the integral formulation (2.2) yields

u(tm) ≈ u0 +

M∑
i=1

(∫ tm

0
ci(s)ds

)
f (ti, ui), m = 1, . . . ,M,

and the approximation is as good as the integral approximation in (2.4a). With this, we can compute the
approximate solutions by solving M equations

um = u0 +

M∑
i=1

(∫ tm

0
ci(s)ds

)
f (ti, ui), m = 1, . . . ,M, (2.5)

in variables um that approximate u(tm). The equations (2.5) can compactly be written in a matrix formu-
lation known as the collocation problem:

u −Qf(u) = u0, (2.6)

where u = [u1, . . . , uM]⊤, f(u) = [f (u1), . . . , f (uM)]⊤, u0 = [u0, . . . , u0]⊤ and the matrix Q ∈ RM×M is
defined as

[Q]i j =

∫ ti

0
c j(s)ds. (2.7)

10

2.1. Collocation methods

Generally, the approximate solution of the initial value problem on an interval of length ∆T , 1, in (2.6)
is written as

u − ∆TQf(u) = u0, (2.8)

which can be verified by the corresponding change of variables in the integral.

The M equations (2.5) propagating a linear initial value problem

ut = Au + b(t), u(0) = u0, (2.9)

where now u ∈ CN , A ∈ CN×N is a constant matrix and b : R→ CN , can be written as

(INM − ∆TQ ⊗ A)u = u0 + ∆T (Q ⊗ IN)b.

Here, u ∈ CMN and b = [b1, . . . , bM]⊤ ∈ CMN denotes a vector of the function b evaluated in the
collocation nodes. Symbol ⊗ denotes a Kronecker product defined below.

Definition 2.1
The Kronecker product of A ∈ Cn×n and B ∈ Cm×m is defined as

A ⊗ B :=


a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

...

an1B an2B . . . annB

 ∈ Cnm×nm.

2.1.2. Collocation methods as a subclass of Runge–Kutta methods

Collocation methods are linked to Implicit Runge–Kutta methods (IRK), more specifically, they are a
subclass of IRK methods [62, Collocation methods]. The collocation matrix Q ∈ RM×M and the IRK
matrix as in the Butcher tableau are the same, when the IRK method is of order at least M. The collocation
method is equivalent to an IRK method when the last node contains an interval end-point tM = ∆T .
Otherwise, if tM < ∆T , the solutions u1, . . . , uM of the collocation problem are just internal stages of a
M-stage IRK scheme, and the last step of constructing the approximation in point ∆T is missing. We
will support our claims with a discussion, simultaniously proving a theorem that states necessary order
requirements from the literature.

A generic M-stage Runge–Kutta method is defined as

ki = f

Tn + ci∆T, yn + ∆T
M∑
j=1

ãi jk j

 , i = 1, . . . ,M,

accompanied by a prolongation equation

yn+1 = yn + ∆T
M∑

i=1

biki. (2.10)

The vectors values bi, ci and ãi j are formally stored in the Butcher tableau as:

c1 ã11 ã12 . . . ã1M

c2 ã21 ã22 . . . ã2M
...

...
...
. . .

...

cM ãM1 ãM2 . . . ãMM

b1 b2 . . . bM

,

11

2. The ParaDiag method for linear equations

or, written compactly as
c Ã

b⊤
.

Let

ui = yn + ∆T
M∑
j=1

ãi jk j,

and the definitions of ki now read
ki = f (Tn + ci∆T, ui).

Alltogether, written line by line in a matrix formulation, we have
u1
u2
...

uM

 =

yn

yn
...

yn

 + ∆T Ã


f (t1, u1)
f (t2, u2)
...

f (tM, uM)

 ,
where ti = Tn + ci∆T . Observed more closely, this is exactly the formulation of the collocation problem,
where yn denotes the approximation of the solution in point tn. The prolongation equation (2.10) now
reads

yn+1 = yn + ∆T
M∑

i=1

biki

= yn + ∆T
M∑

i=1

bi f (ti, ui).

Now, let Q be a collocation matrix defined in (2.7). It holds

Q


tm
1

tm
2
...

tm
M

 =


∫ t1
Tn

∑
j tm

j c j(x)dx∫ t2
Tn

∑
j tm

j c j(x)dx
...∫ tM

Tn

∑
j tm

j c j(x)dx


=



∫ t1
Tn

p(x)dx∫ t2
Tn

p(x)dx
...∫ tM

Tn
p(x)dx


,

where p is a polynomial of degree less or equal than M − 1 (since the Lagrange polynomials are of
degree M − 1) containing points

(
t1, tm

1

)
, . . . ,

(
tM, tm

M

)
. From here, we conclude that p(x) = xm. Now, for

Tn = 0, the integrals equal to

∫ ti

Tn

p(x)dx =
∫ ti

0
xmdx =

tm+1
i

m + 1
, m = 0, . . . ,M − 1. (2.11)

In conclusion, the IRK matrix Ã and the collocation matrix Q are the same when the order conditions
(2.11) are satisfied. Another condition is that ti have to be distinct, otherwise the Lagrange polynomi-
als forming a basis cannot be formed. Formally, this proves the following theorem from [63, Theo-
rem 1.1.1].

Theorem 2.2
The M-stage implicit Rung–Kutta method with distinct parameters ci and order at least M can be ob-
tained by collocation if and only if the relations (2.11) hold.

12

2.2. The linear composite collocation problem

2.1.3. High-order methods

Solving the collocation problem (2.8) yields an approximation of the solution, and the distance to the
exact solution of the equation (2.1) can be expressed through the order of the underlying quadrature rule.
For this purpose, we state the local error theorem for collocation methods from [62, p. 500, Theorem
4.9], rephrased to fit our object definitions.

Theorem 2.3
If tm , 0 for all m and tM = 1, then the local error of the collocation method (2.8) satisfies

u(∆T) − um = O
(
∆T p+1

)
,

where p is the order of the underlying quadrature formula (2.4a).

The theorem provides us with a direct recipe for how to derive high-order methods: we can choose a
high-order quadrature rule that includes the right side of the interval. Then, the weights of he quadrature
rule are stored in the last row of the matrix Q. Some widely used quadrature rules are the Radau-
Right quadrature with a local error O

(
∆T 2M

)
or the Lobatto quadrature with a local error O

(
∆T 2M−1

)
.

Many more exist and can be found in [62, Chapter VII.4] under the subsection Collocation meth-
ods.

Viewing the basic numerical propagator as the collocation method provides us with a structured matrix
Q, simplifying the theoretical analysis, and yet, it leaves room for generalization of the collocation
nodes.

2.2. The linear composite collocation problem

Let Ccoll := IMN − ∆TQ ⊗ A ∈ CMN×MN and let H := HM ⊗ IN , where

HM =


0 . . . 1
...

...

0 . . . 1

 ∈ RM×M. (2.12)

A classical (sequential) approach to solve equation (2.9) with the collocation method for L time steps is
first solving

Ccollu1 = u0 + v1, (2.13)

and then sequentially solving
Ccolluℓ = Huℓ−1 + vℓ−1, (2.14)

for ℓ = 2, . . . , L. Here, vℓ = ∆T (Q ⊗ IN) bℓ, where bℓ is the function b evaluated at the corresponding
collocation nodes Tℓ + t1 < Tℓ + t2 < · · · < Tℓ + tM = Tℓ+1. The matrix H serves to utilize the previously
obtained solution uℓ−1 as the initial condition for computing uℓ. For L time steps, equations (2.13) and
(2.14) can be cast as an all-at-once or a composite collocation system:

Ccoll
-H Ccoll

. . .
. . .

-H Ccoll



u1
u2
...

uL

 =

u0 + v1

v2
...

vL

 . (2.15)

13

2. The ParaDiag method for linear equations

More compactly, this can be written as

Cu⃗ := (IL ⊗ Ccoll + E ⊗H)u⃗ = w⃗ (2.16)

with u⃗ = [u1,u2, . . . ,uL]⊤ ∈ CLMN , w⃗ = [u0 + v1, v2, . . . , vL]⊤ ∈ CLMN , and the matrix

E :=


0
-1 0
. . .
. . .

-1 0

 ∈ RL×L,

accounting for the transfer of the solution from one step to another.

Solving the composite collocation problem via block forward substitutions produces the sequential ap-
proach (2.13)–(2.14). Often, to solve a linear system, iterative methods that rely on preconditioning are
deployed. A standard fixed point iteration method, Preconditioned Richardson Iteration (PRI) has the
form

Pu⃗(k+1) = (P − C) u⃗(k) + w⃗,

where the preconditioning matrix P should be cheaper to invert than the system matrix C, but ’close’ to
it in some sense. Time-parallel integration aims to manufacture a method that can be implemented in
parallel across time steps, computing the solution faster than what is obtainable with the block forward
substitutions. Strictly speaking, an iteration matrix I − P−1C that has a small spectral radius yields fast
convergence. Simultaneously, the idea is to find a preconditioner for which P−1 can be computed in par-
allel. If the preconditioner can be block-diagonalized, each system solve can be handled in parallel. With
this, the most costly part of the computation is solved across multiple cores.

2.3. The ParaDiag approach for the linear composite collocation
problem

For ParaDiag methods, the preconditioner is a block-circulant Toeplitz matrix and has been previously
analyzed and used [64, 65, 50, 55, 52], however, it was yet not coupled with collocation methods. In our
case, the preconditioner is defined as

Cα := IL ⊗ Ccoll + Eα ⊗H, Eα :=


0 −α

−1 0
. . .

. . .

−1 0

 . (2.17)

This yields an iteration of the form

Cαu⃗(k+1) = (Cα − C)u⃗(k) + w⃗. (2.18)

Conveniently, Eα can be diagonalized.

14

2.3. The ParaDiag approach for the linear composite collocation problem

Lemma 2.4
The matrix Eα ∈ RL×L defined in (2.17) can be diagonalized as Eα = VDV−1, where V = 1

L JF and

Dα = diag(d1, . . . , dL), dℓ = −α
1
L e−2πi ℓ−1

L ,

J = diag
(
1, α−

1
L , . . . , α−

L−1
L

)
,

[F] jk = e2πi (j−1)(k−1)
L , 1 ≤ j, k ≤ L,

V−1 = F∗J−1.

Proof: The proof can be found in [66, Lemma 4]. □

The diagonalization property of Eα involving the scaled Fourier matrix allows parallelization across
time steps. Using the diagonalization property, each iteration in (2.18) can be computed in three steps:

x⃗ = (V−1 ⊗ IMN)((Cα − C)u⃗(k) + w⃗), (2.19a)

(Dα ⊗H + IL ⊗ Ccoll)y⃗ = x⃗, (2.19b)

u⃗(k+1) = (V ⊗ IMN)y⃗. (2.19c)

Step (2.19b), which we assume will be the most time-consuming one since it involves system solves,
can now be performed in parallel because the matrix is block-diagonal (see Figure 2.1) and steps (2.19a)
and (2.19c) can be computed with a parallel Fast Fourier Transform (FFT) in time.

Figure 2.1.: A block-diagonal matrix.

Using preconditioners in the fixed point iterations often has a price
between cheap computation but slow convergence and more ex-
pensive computation yet better convergence. In this case, the
difference between the system matrix and the preconditioner is
α, and for a very small value, one would expect blazing conver-
gence. However, that is not the case since for very small α values
since the system is also ’closer’ to a Jordan block, i.e., a non-
diagonalizable structure. Because of this, the diagonalization of
the preconditioner introduces round-off errors that degrade con-
vergence. We perform a more in depth analysis of how α influ-
ences the iterations in Section 2.5.

The value α also has a physical interpretation. Before transferring the vector (Cα −C)u⃗(k) + w⃗ into a dis-
crete Fourier space (which is essentially a change of function space in a discrete way) in equation (2.19a),
the ℓth block-entry is scaled with α(ℓ−1)/L, originating from the matrix J−1. The parameter α < 1 can be
seen as a dampening factor of sorts because it dictates how much the blocks dampen across time steps
before solving the systems in the frequency space. Most of the round-off errors are then introduced by
rescaling the vector back, i.e., multiplying with J.

To solve (2.19b), we propose yet another diagonalization strategy. The block diagonal problems in
equation (2.19b) can be expressed as

(dℓH + Ccoll)yℓ = xℓ, ℓ = 1, . . . , L,

for dℓ ∈ C, or in other words,(
(dℓHM + IM) ⊗ IN − ∆TQ ⊗ A

)
yℓ = xℓ, ℓ = 1, . . . , L. (2.20)

15

2. The ParaDiag method for linear equations

Here, xℓ ∈ CMN denotes the ℓth block of the vector x⃗ ∈ CLMN . Let us define

Gℓ := IM + dℓHM =


1 dℓ

1 dℓ
. . .

...

1 + dℓ

 , dℓ = −α
1
L e−2πi ℓ−1

L , (2.21)

for each ℓ = 1, . . . , L, an upper triangular matrix of size M × M, nonsingular when α , 1, with an
inverse

G−1
ℓ := IM − rℓHM =


1 −rℓ

1 −rℓ
. . .

...

1 − rℓ

 , rℓ :=
dℓ

1 + dℓ
. (2.22)

Now, we propose to solve the linear systems (2.20) in two steps:(
IMN − ∆T

(
QG−1

ℓ

)
⊗ A

)
zℓ = xℓ, (2.23a)

(Gℓ ⊗ IN)yℓ = zℓ. (2.23b)

Let us suppose that QG−1
ℓ is a diagonalizable matrix for a given ℓ and α. In that case, one can solve (2.23a)

by diagonalizing a much smaller M × M matrix and inverting the matrices on the diagonal in paral-
lel, but now across the collocation nodes (or, as cast in [15], across the method). More precisely, let
QG−1

ℓ = SℓDℓS−1
ℓ denote the diagonal factorization, where Dℓ = diag(dℓ1, . . . , dℓM). Hence, the inner

systems in (2.23a) can now be solved in three steps for each ℓ = 1, . . . , L as

(Sℓ ⊗ IN) x1
ℓ = xℓ, (2.24a)

(IN − dℓm∆TA) x2
ℓm = x1

ℓm, m = 1, . . . ,M, (2.24b)(
S−1
ℓ ⊗ IN

)
zℓ = x2

ℓ , (2.24c)

where xℓm ∈ CN denotes the mth block of xℓ ∈ CNM.

With this, we end up with a doubly-time-parallel method: parallel across time steps and across the
method, that iteratively solves an initial system (2.16) of size LMN but relies on solving systems of size
N in each iteration. If LM cores are used, the systems are solved simultaneously, and ideally, one iteration
should be as time-consuming as solving the smaller linear system of size N. The exact circumstances
under which QG−1

ℓ is diagonalizable are discussed in Section 2.4 and a summary of the whole method
is presented as a pseudo-code in Algorithm 1. It traces the steps described above and indicates which
parts can be run in parallel. We will describe how a sequence of preconditioners,

(
Cαk

)
k∈N, can be

prescribed, balancing the round-off errors and the convergence rate, as well as a stopping criterion in
Section 2.5.3.

2.4. Diagonalization of QG−1
ℓ

The section addresses the diagonalization of inner systems. It makes significant contributions, opening a
possibility to solve the perturbed collocation problems in parallel across the method for every time step
and α. Even though the section’s highlight is Lemma 2.5, the whole subsection is based on setting up the
theory to prove it and a recipe for utilizing it. For the Radau-Right quadrature with 2 and 3 collocation
nodes, we show that for a certain number of time steps L, the diagonalization is possible for values of α

16

2.4. Diagonalization of QG−1
ℓ

Algorithm 1 Linear ParaDiag iterations with the collocation problem and an (αk)k∈N sequence.
Input: (Cαk)k∈N, C, w⃗, u⃗(0)

Output: a solution to Cu⃗ = w⃗.

1: k = 0
2: while not done do
3: Dαk = diag(d1, . . . , dL), dℓ = −α

1
L
k e−2πi l−1

L

4: r⃗ = (Cαk − C)u⃗(k) + w⃗ # compute the right-hand side
5: ˜⃗r = (J−1 ⊗ IMN)⃗r
6: x⃗ = FFT(̃⃗r) # perform the parallel FFT

7: for l = 1, . . . , L in parallel do # solve on L parallel steps
8: Gℓ = dℓHM + IM

9: QG−1
ℓ = SℓDℓS−1

ℓ , Dℓ = diag(dl1, . . . , dlm) # digonalize the matrix QG−1
ℓ

10: x1
ℓ =

(
S−1
ℓ ⊗ IN

)
xℓ

11: for m = 1, . . . ,M in parallel do # solve on M parallel nodes
12: solve

(
IN − dlm∆TA

)
x2

lm = x1
lm

13: zℓ =
(
Sℓ ⊗ IN

)
x2
ℓ

14: yℓ = (G−1
ℓ ⊗ IN)zℓ

15: ˜⃗u(k+1)
= IFFT(y⃗) # perform the parallel IFFT

16: u⃗(k+1) = (J ⊗ IMN)̃u⃗
(k+1)

get the new iterate
17: k = k + 1
18: return u⃗(k)

that do not expect to generate a too-large round-off error. Using Lemma 2.5, the same analysis can be ex-
tended to any quadrature, not necessarily high-order, such as equidistant nodes.

In order to solve (2.23a) via diagonalization, we need to study when diagonal factorization of QG−1
ℓ is

possible. A sufficient condition is that the eigenvalues of QG−1
ℓ are distinct. Here, we will show that for

our matrix QG−1
ℓ this is also a necessary condition.

First, let us observe what does a matrix-vector multiplication with the matrix Q mean. Let y ∈ CM,
recalling the definition of Q (2.7), we have

[Qy]m =

∫ tm

0

M∑
i=1

yici(s)ds, (2.25)

where ci are the Lagrange interpolation polynomials defined in the collocation nodes. In other words,
Q is integrating a polynomial of degree M − 1 interpolated through points (t1, y1) . . . , (tM, yM). The
only assumption on the nodes in this subsection is that they are distinct and positive 0 ≤ t1 < · · · <
tM.

Now, let us recompute QG−1
ℓ , where G−1

ℓ is written in (2.22). We know that for Dt := diag(t1, . . . , tM),
QHM = DtHM holds, since Q is the integration matrix. In conclusion, we can write

QG−1
ℓ = Q − rℓQHM = Q − rℓDtHM. (2.26)

17

2. The ParaDiag method for linear equations

To formulate the eigenproblem, we need to find λ ∈ C and y , 0 such that QG−1
ℓ y = λy. Because

of the reformulation of QG−1
ℓ in (2.26) and (2.25), the eigenproblem can be reformulated as: finding a

polynomial h of degree M − 1 such that∫ tm

0
h(s)ds + rℓtmh(tM) = λh(tm), m = 1, . . . ,M.

Substituting h with a derivative g′, where the polynomial g is of degree M, yields

g(tm) − g(0) + rℓtmg′(tM) = λg′(tm), m = 1, . . . ,M. (2.27)

From here we see that the eigenvector represented as a polynomial g is not uniquely defined, because if
g is a solution of (2.27), then aMg(t) + a0 is also a solution. Without loss of generality, we set g(0) = 0
so that g takes the form

g(t) = tM + aM−1tM−1 + · · · + a1t.

With this, we have M nonlinear equations (2.27) and M unknowns (aM−1, . . . , a1, λ). The reformulation
of the problem leads us to the following lemma from which we will see that g is uniquely defined. This
is similar to the statement that an eigenproblem with distinct eigenvalues has a unique eigenvector if it is
a unit vector.

Lemma 2.5
Define

wM(t) := (t − tM) . . . (t − t1) = tM + bM−1tM−1 + · · · + b0.

Then, the eigenvalues of QG−1
ℓ are the roots of

pM(λ) = M!λM + cM−1λ
M−1 + · · · + c0,

where the coefficients are defined as c0 = (rℓ + 1)b0,

cm = m! bm − rℓ
M−m∑
j=1

(m + j)!
j!

bm+ j, 1 ≤ m ≤ M − 1,

and bM = 1.

Proof: Without loss of generality let tM = 1. The eigenproblem is equivalent to solving M nonlinear
equations

g(tm) + rℓtmg′(1) − λg′(tm) = 0, m = 1, . . . ,M, (2.28)

where g(t) = tM + aM−1tM−1 + · · · + a1t and λ ∈ C. Now, we define

G(t) := g(t) + rℓtg′(1) − λg′(t).

It holds that G(tm) = wM(tm) for m = 1, . . .M and that the difference G − wM is a polynomial of degree
at most M − 1, since both G and wM are monic polynomials of degree M. Because G − wM is zero in M
distincs points, we conclude that G = wM. Equations (2.28) can compactly be rewritten as

g(t) + rℓtg′(1) − λg′(t) = wM(t). (2.29)

18

2.4. Diagonalization of QG−1
ℓ

Since the polynomial coefficients on the left-hand side of (2.29) are equal to the ones on the right-hand
side, we get

−λa1 = b0 (*0)

a1 + rℓg′(1) − 2λa2 = b1 (*1)

a2 − 3λa3 = b2 (*2)
...

aM−2 − (M − 1)λaM−1 = bM−2 (*M-2)

aM−1 − Mλ = bM−1. (*M-1)

Telescoping these equations starting from (*M-1) up to (*m) for m ≥ 2, we get

am =

M−m∑
j=0

λ j (m + j)!
m!

bm+ j,

and from (*0) we get a1 = −b0/λ. Note that λ , 0 since both Q and Gℓ are nonsingular. The fact that Q
is a nonsingular matrix is visible because it is a mapping in a fashion(

tm
1 , . . . , t

m
M

)
→

1
m + 1

(
tm+1
1 , . . . , tm+1

M

)
, 0 ≤ m ≤ M − 1. (2.31)

The vectors in (2.31) form columns of the Vandermonde matrix W which is known to be nonsingular
when 0 < t1 < · · · < tM. Because of (2.31), we have QW = DMW, where DM = diag(1, 1/2, . . . , 1/M).
Now, from here we see that Q is nonsingular as a product of nonsingular matrices.

Substituting the expression for a2 and a1 into (*1) and multiplying it with −λ , 0 yields

−λrℓg′(1) +
M∑

m=0

m! λmbm = 0. (2.32)

It remains to compute g′(1). We have

g′(1) = M + (M − 1)aM−1 + · · · + 2a2 + a1

= M +
M−1∑
m=2

m
M−m∑
j=0

λ j (m + j)!
m!

bm+ j −
b0

λ
,

yielding

λg′(1) =
M∑

m=2

M−m∑
j=0

λ j+1 (m + j)!
(m − 1)!

bm+ j − b0.

Now we have to reorder and shift the summations by 1:

λg′(1) + b0 =

M−1∑
m=1

M−m∑
j=1

λ j (m + j)!
m!

bm+ j =

M−1∑
j=1

λ j
M− j∑
m=1

(m + j)!
m!

bm+ j. (2.33)

Combining (2.32) and (2.33) gives a polynomial in λ with coefficients being exactly as stated in the
lemma. □

19

2. The ParaDiag method for linear equations

Remark 2.6
When rℓ = 0, the resulting polynomial pM from Lemma 2.5 is a scaled characteristic polynomial of the
collocation matrix Q. This is true because of relation (2.26).

From the proof of lemma 2.5, it is visible that each λ generates exactly one polynomial g represent-
ing an eigenvector, therefore the matrix QG−1

ℓ is diagonalizable if and only if the eigenvalues are dis-
tinct.

Lemma 2.5 also provides an analytic way of pinpointing the values rℓ where QG−1
ℓ is not diagonaliz-

able. First, we have to formulate the polynomial of roots wM of the underlying quadrature. The Mth

orthognal polynomial RM, which roots are the quadrature nodes, can be obtained with a recursive for-
mula [67]. Since RM usually has roots in the interval [−1, 1], a linear substitution x(t) is required to
obtain the corresponding collocation nodes in [0, 1]. Then, wM(t) is the monic polynomial colinear to
(RM ◦ x)(t).

Now it remains to find the values of rℓ for which pM defined in Lemma 2.5 has distinct roots. This can
be done using the discriminant of the polynomial and computing these finitely many values since the
discriminant of a polynomial ∆pM is nonzero if and only if the roots are distinct. The discriminant of a
polynomial is defined as

∆pM :=
(−1)M(M−1)/2

cM Res
(
pM, p′M)

) ,
where cM is the leading coefficient of pM and Res is the residual between two polynomials. More
formally, the residual is a polynomial r(λ) := Res

(
pM(λ), p′M(λ)

)
that satisfies

pM(λ) = q(λ)p′M(λ) + r(λ), deg(r) < deg
(
p′M

)
,

where q is the quotient in the polynomial division.

For M = 2, 3 points in the Radau-Right quadrature, we give the analysis here. Note that for M = 1, the
diagonalization is trivial since the matrix Q is of size 1 × 1.

Example 2.7
When M = 2, the corresponding polynomial of the Radau-Right quadrature is w2(t) = t2 − 4

3 t + 1
3 ,

generating p2(λ) = 2λ2 − (4
3 + 2r)λ+ r+1

3 . Solving the equation ∆p2 = 0 is equivalent to 9r2 + 6r − 2 = 0

and the solutions are r∗ = −1±3
√

3
13 . From here, we can compute α∗ which could generate these values.

Then, the matrix QG−1
ℓ is not diagonalizable for α∗ ≈ 0.323L, 0.477L and these values should be avoided.

These values are already of order 10−8 for L ≈ 25 which is something that should be avoided anyways
since such a smalle α tends to generate a large round-off error for the outer diagonalization.

Example 2.8
When M = 3, the corresponding polynomial Radau-Right quadrature is w3(t) = t3 − 9

5 t2 + 9
10 t − 1

10 ,
generating p3(λ) = 6λ3 − (18

5 + 6r)λ2 + (9
10 +

3
5 r)λ − r+1

10 . Solving the equation ∆p3 = 0 is equivalent
to 1700r4 + 3560r3 + 1872r2 + 18r + 9 = 0 and the solutions are r∗ ≈ −1.0678,−1.0259,−0.000214 ±
0.069518i. This generates α∗ ≈ 0.516L, 0.504L, 0.069L, for which the diagonalization of QG−1

ℓ is not
possible. These alphas are already very small for L ≈ 25 and should not be used anyways.

Examples 2.7 and 2.8 show that for M = 2, 3 and a sufficient number of time steps L, the diagonalization
of QG−1

ℓ is possible for every time step. We also identified for which parameters α the inner method’s
diagonalization is impossible. Even though Lemma 2.5 does not provide a direct answer, it is still helpful
to compute finitely many values that should be avoided. Without it, a computational effort of checking for
every α, ℓ and Q whether QG−1

ℓ is diagonalizable would have been necessary.

20

2.5. Parameter selection

2.5. Parameter selection

Numerical error is introduced after each outer iteration in Algorithm 1, which has been observed in
various works [53] and [50, Remark 3]. In Subsection 2.5.2 we comment on it more, but for now, let
∆u⃗(k+1) denote the error arising after performing the (k + 1)th iteration for input u⃗(k). The goal is to find
α for each iteration that balances the perturbation errors and the convergence rate of the method. The
distance between our (k+1)th perturbed iterate and the solution u⃗∗ of system (2.15) can be expressed and
bounded as

∥u⃗(k+1) + ∆u⃗(k+1) − u⃗∗∥ ≤ cα∥u⃗(k) − u⃗∗∥ + ∥∆u⃗(k+1)∥ (2.34)

for some constant cα > 0. The constant cα is the contraction rate of iterations (2.18) and satisfies the
inequality ∥u⃗(k+1) − u⃗∗∥ ≤ cα∥u⃗(k) − u⃗∗∥ on unperturbed values. The link between α and cα is discussed in
Section 2.5.1. Moreover, as α→ 0, we expect ∥∆u⃗(k+1)∥ → ∞ and cα → 0, making the decision on which
parameter α to choose for the next iteration highly relevant for the convergence of the method. Bounding
the second α-dependent term ∥∆u⃗(k+1)∥ on the right hand side of (2.34) and approximating cα will bring
us closer in finding suitable αk+1 to use for the computation of u⃗(k+1).

2.5.1. Convergence

In order to formulate this problem more precisely, we will utilize the error analysis from [57], which we
restate here for completeness.

Theorem 2.9
Assume that the matrix A ∈ CN×N is diagonalizable as A = VADAV−1

A and define W = IL ⊗ VA. Let u∗
denote the solution of the composite collocation problem (2.16). Then for any k ≥ 1 it holds

∥u⃗(k+1) − u⃗∗∥W,∞ ≤
α

1 − α
∥u⃗(k) − u⃗∗∥W,∞ ,

provided that the spectral radius of the collocation matrix (2.6) satisfies ρ(Ccoll) < 1. Here, ∥u⃗∥W,∞ :=
∥Wu⃗∥∞.

Proof: See [57, Theorem 2.1]. □

Using the above result, we can write

∥u⃗(k+1) − u⃗∗∥∞ ≤ ∥W−1∥∞∥W(u⃗(k+1) − u⃗∗)∥∞

≤ ∥W−1∥
α

1 − α
∥W(u⃗(k) − u⃗∗)∥∞

≤ κ∞(W)
α

1 − α
∥u⃗(k) − u⃗∗∥∞.

This then leaves the question of how to bound the second error term ∥∆u⃗(k+1)∥ in equation (2.34).

Remark 2.10
We derive a similar bound, specific to the collocation problem being the underlying integrator, indepen-
dently of [57, Theorem 2.1]. Additionally, our analysis also covers the bound on the spectal radius, that
was also published in [52, Theorem 2.1]. Despite that, it is included in the manuscript and confirms, in
a different way, that for linear problems the convergence can be understood as o(α). The only difference
is that we do not require the matrix A to be diagonalizable. See Appendix A for details.

21

2. The ParaDiag method for linear equations

2.5.2. Bounds for computation errors

In this subsection, we show that the relative error bound for the diagonalization of the preconditioner is
O(L(3ε + τ)/α), where ε denotes machine precision and τ is the relative error of inner system solves.
Previously, there were several attempts to study the round-off error emerging from diagonalization of
the preconditioner Cα. In [53], Wu mentions that the round-off error is of order 1/α and refers to a
technical report [68, Theorem 6 and 7]. However, the analysis is performed on triangular matrices V,
which emerge from a geometric mesh discretizing the time domain. A similar analysis has been done
in [48], however, again performed on triangular matrices. In [55] the authors state that the round-off error
is O (2Lε/α), referring to [69, Lemma 2.6 and 2.10], however, the matrix is again triangular. Another
mentioned reference is [54, Theorem 2.1], where the relative error bound is O

(
ε(2L + 1)/α2

)
, much

closer to what we show, however, the bound is larger and presumes exact system solves via the LU-
factorization with pivoting.

Because the following error bounds are very general and can be applied to any diagonalization-based al-
gorithm, we state them in simplified notation. The three steps in the diagonalization computation (2.19)
can be generally analyzed in this order: a matrix-vector multiplication y = Âx, solving a system B̂z = y,
where B̂ is a block diagonal matrix, followed by a matrix-vector multiplication w = Ĉz, where in our par-
ticular case Ĉ is the inverse of Â. The errors in each step can be expressed as

y + ∆y = (Â + ∆Â)x (2.35a)

(B̂ + ∆B̂)(z + ∆z) ≈ y + ∆y (2.35b)

w + ∆w = (Ĉ + ∆Ĉ)(z + ∆z) (2.35c)

with relative errors satisfying

∥∆Â∥ ≤ ε∥Â∥, ∥∆B̂∥ ≤ ε∥B̂∥, ∥∆Ĉ∥ ≤ ε∥Ĉ∥, (2.36)

for some ε > 0, representing machine precision.

Lemma 2.11
Let the system solve in (2.35b) be inexact, in other words ∥(B̂ + ∆B̂)(z + ∆z) − (y + ∆y)∥ ≤ τ∥y + ∆y∥
for some τ > 0 and let (2.36) hold. Then the norm of the absolute error of w after the diagonalization
process (2.35) satisfies

∥∆w∥ ≤
∥B̂−1∥ ∥Â∥ ∥Ĉ∥

1 − εκ(B̂)

(
2ε + τ + εκ(B̂)

)
∥x∥ + O(τε + ε2),

where the matrix norm is consistent, i.e. ∥Âx∥ ≤ ∥Â∥ ∥x∥, and the condition number is κ(Â) := ∥Â∥ ∥Â−1∥.

Proof: With Ĉz = w it holds

∆w = Ĉ∆z + ∆Ĉ(z + ∆z).

Using the triangle inequality, we have

∥∆w∥ ≤ ∥Ĉ∥ ∥∆z∥ + ε∥Ĉ∥ ∥∆z + z∥. (2.37)

Now we need to find a way to bound ∥∆z∥ and ∥∆z+ z∥. Since the system solving is inexact, there exists a
vector ξ such that (B̂+∆B̂)(z+∆z) = y+∆y+ ξ with ∥ξ∥ ≤ τ∥y+∆y∥. Since (B̂+∆B̂)∆z+∆B̂z = ∆y+ ξ,

∆z = (B̂ + ∆B̂)−1(∆y + ξ − ∆B̂z)

22

2.5. Parameter selection

which yields the bound

∥∆z∥ ≤ ∥(B̂ + ∆B̂)−1∥
(
∥∆y∥ + ∥ξ∥ + ε∥B̂∥ ∥z∥

)
≤ ∥(B̂ + ∆B̂)−1∥

(
∥∆y∥ + τ∥∆y + y∥ + εκ(B̂)∥y∥

)
, (2.38)

where the last inequality comes from the fact that ∥z∥ ≤ ∥B̂−1∥∥y∥. Note that B̂ + ∆B̂ is invertible for
small perturbations if B̂ is invertible. On the other hand, we have

z + ∆z = (B̂ + ∆B̂)−1(y + ∆y + ξ)

which gives

∥z + ∆z∥ ≤ ∥(B̂ + ∆B̂)−1∥ (∥y + ∆y∥ + ∥ξ∥)

≤ (1 + τ)∥(B̂ + ∆B̂)−1∥ ∥y + ∆y∥. (2.39)

Combining (2.38) and (2.39) with (2.37) yields

∥∆w∥ ≤ ∥(B̂ + ∆B̂)−1∥ ∥Ĉ∥
(
∥∆y∥ + (τ + ε + ετ)∥y + ∆y∥ + εκ(B̂)∥y∥

)
. (2.40)

Since y = Âx and ∥∆Â∥ ≤ ε∥Â∥, we get the inequalities

∥y∥ ≤ ∥Â∥ ∥x∥,

∥∆y∥ = ∥∆Âx∥ ≤ ε∥Â∥ ∥x∥,

∥y + ∆y∥ ≤ (1 + ε)∥Â∥ ∥x∥.

Including these inequalities in (2.40) yields

∥∆w∥ ≤ ∥(B̂ + ∆B̂)−1∥ ∥Ĉ∥ ∥Â∥
(
ε + (τ + ε + ετ)(1 + ε) + εκ(B̂)

)
∥x∥

≤ ∥(B̂ + ∆B̂)−1∥ ∥Ĉ∥ ∥Â∥
(
2ε + τ + εκ(B̂)

)
∥x∥ + O(ετ + ε2).

It remains to bound ∥(B̂ + ∆B̂)−1∥. From (B̂ + ∆B̂)−1 = B̂−1(I + B̂−1∆B̂)−1 we have

∥(B̂ + ∆B̂)−1∥ ≤ ∥B̂−1∥∥(I + B̂−1∆B̂)−1∥ ≤
∥B̂−1∥

1 − ∥B̂−1∆B̂∥
.

Since the function 1/(1 − x) is monotonically increasing, we get

∥(B̂ + ∆B̂)−1∥ ≤
∥B̂−1∥

1 − εκ(B̂)

which completes the proof. □

Theorem 2.12
After one iteration of (2.18), for α ∈ (0, 1), under the assumption that the inner system solves in
step (2.19b) satisfy ∥B̂(z + ∆z) − (y + ∆y)∥∞ ≤ τ∥y + ∆y∥, the error of the (k + 1)th iterate can be
bounded by

∥∆u⃗(k+1)∥∞ ≤
∥B̂−1∥∞

1 − εκ∞(B̂)
L(2ε + τ + εκ∞(B̂))

α
∥⃗r(k)∥∞ + O(ετ + ε2), (2.41)

where ε is machine precision as in (2.36), r(k) = (Cα − C)u⃗(k) + w⃗ and B̂ = Dα ⊗ H + IL ⊗ Ccoll.
Furthermore, for ℓ = 1, . . . , L we have

∥∆u(k+1)
ℓ
∥∞ ≤

∥B̂−1∥∞

1 − εκ∞(B̂)
α
−(ℓ−1)

L L(2ε + τ + εκ∞(B̂))∥⃗r(k)∥∞ + O(ετ + ε2). (2.42)

23

2. The ParaDiag method for linear equations

Proof: Let relation (2.36) hold. Define Â := V−1 ⊗ IMN , B̂ = Dα ⊗ H + IL ⊗ Ccoll and Ĉ := V ⊗ IMN

where without loss of generality we can assume Â = V−1 and Ĉ = V. From Lemma 2.4 we see that

∥Â∥∞∥Ĉ∥∞ ≤
1
L
∥J∥∞∥J−1∥∞∥F∥∞∥F∗∥∞ ≤

L
α

since ∥F∥∞ ≤ L and ∥F∗∥∞ ≤ L. The proof for (2.41) now follows directly from Lemma 2.11. Further-
more, if we define Â = V−1 and Ĉ = 1

L F, then

∥Â∥∞∥Ĉ∥∞ ≤
1
L
∥J−1∥∞∥F∥∞∥F∗∥ ≤ L.

If now we define ∆w = (J−1 ⊗ IMN)∆u⃗(k+1), we have

∥u(k+1)
ℓ
∥∞ = α

−(l−1)
L ∥∆wℓ∥∞ ≤ α

−(l−1)
L ∥∆w∥∞

and the proof for (2.42) again follows directly from Lemma 2.11. □

Remark 2.13
The IEEE standard guarantees that relation (2.36) holds for the infinity norm and some ε = 2−p repre-
senting machine precision.

The above theorem provides an idea of how the round-off error propagates across the vector u⃗(k+1). The
larger the number of the time steps, the larger the round-off error we can expect. This means that if the
error between consecutive iterates is monitored, it is sufficient enough to do so just on the last time-step.
Thus, we can avoid computing a residual and use the difference between two consecutive iterates at the
last time-step as a termination criterion.

2.5.3. Choosing the (αk)k∈N sequence

While Theorem 2.9 confirms that a small α yields fast convergence, Theorem 2.12 indicates that a smaller
α leads to a more significant numerical error per iteration. Suitable choices of α should balance both
aspects. To achieve that, define m0 ∈ R so that ∥u⃗(0) − u⃗∗∥∞ ≈ m0. Using the results of Theorems 2.9
and 2.12, we can approximate

∥u⃗(1) − u⃗∗∥∞ ⪅ αm0

for α ≈ 0, and

∥∆u⃗(1)∥∞ ⪅
∥B̂−1∥∞

1 − εκ∞(B̂)
L(2ε + τ + εκ∞(B̂))

α
∥⃗r(0)∥∞ ⪅

L
α

(3ε + τ)∥⃗r(0)∥∞,

where, r⃗(0) = (Cα − C)u⃗(0) + w⃗. The first estimate originates from the fact that κ∞(W)α/(1 − α) =
o(α). We will later verify that the convergence rate is unaffected by the simplification (see Figure 2.3).
This assumption does not change the asymptotics for small values of α, but it allows us to draw more
conclusions about the trade-off of errors, especially around α ≈ 0. The sharpness of the convergence
bound from Theorem 2.9 is not very relevant, since the convergence factor is not practical to use it in
that form. Combining these estimates, we get

∥u⃗(1) + ∆u⃗(1) − u⃗∗∥∞ ⪅ αm0 +
L
α

(3ε + τ)∥⃗r(0)∥∞. (2.43)

24

2.5. Parameter selection

The aim is to find α such that the right-hand side of (2.43) is minimized for given L, ε, and τ. Since
(Cα − C)u⃗(0) is a block-vector with just −αHu(0)

L being a nonzero block, we can treat the ∥⃗r(0)∥∞ term in
the minimization process roughly as ∥w⃗∥∞ since this part is more relevant. Defining γ := L(3ε + τ)∥w∥∞
for simplicity, we can state the problem as: find α ∈ (0, 1) such that m1 = αm0 +

γ
α is minimized. The

solution is visible from the fact that m0α
2−m1α+γ = 0 is a parabola with a discriminant ∆ = m2

1−4m0γ

and that the smallest value for m1 so that ∆ ≥ 0 is when ∆ = 0. This yields m1 = 2
√

m0γ and a unique

root α =
√
γ

m0
. To interpret this result, we expect the error after one iteration to be around m1 if the

parameter α1 =
√
γ

m0
is used.

Recursively using (2.43), we can approximate

∥u⃗(k+1) + ∆u⃗(k+1) − u⃗∗∥ ⪅ αmk +
γ

α
.

Solving the same minimization problem now for mk+1 = αmk +
γ
α yields mk+1 = 2

√
mkγ and α = αk+1 =√

γ
mk

.

If 4γ ≤ mk holds, then the approximations of errors mk are decreasing. Consequently, the sequence
of (αk)k∈N is increasing since mk+1 = 2

√
mkγ. Because (αk)k∈N is additionally bounded from above

with
√
γ/mk ≤ 1/2, we see that it is a convergent sequence with a limit in (0, 1/2]. Telescoping the

recursion for mk we get mk = (4γ)1−2−k
m2−k

0 , k ≥ 1, showing that the sequence is asymptotically bounded
by 4γ. The convergence speed seems to be slower as the method iterates, but this does not have to be
the case in practice. A remedy to this is to monitor the error of consecutive iterates and because of
Theorem 2.12 we can do so just for the last time-step. If this error is far lower than mk, it is a good
sign the convergence is much better than anticipated. Usually, monitoring just the error of consecutive
iterates does not detect stagnation, but sees it as convergence. However, the combination of both can
provide solid information. This discussion can be summarized in the following algorithm for the stopping
criterion.

Algorithm 2 A stopping criterion combining approximations of worst-case convergence and an error of
consecutive iterates, with a given m0. The stopping tolerance is ζ.

1: γ := L(3ε + τ)∥w⃗∥∞
2: k = 0
3: while mk > ζ do
4: mk+1 = 2

√
mkγ

5: αk+1 =
√
γ/mk

6: u⃗(k+1) = iterate(u⃗(k), mk+1, αk+1) # perform one iteration as in Algorithm 1
7: if ∥u(k+1)

L − u(k)
L ∥∞ ≤ ζ then

8: return u⃗(k+1)

9: k = k + 1

The only problem remains how to approximate m0. Since it is an approximation of ∥u⃗(0) − u⃗∗∥∞ it
is convenient to define a vector filled with initial conditions u⃗0 as the initial iterate u⃗(0). Then, from
the integral formulation, we have m0 ≈ max[0,T] |u(t) − u(0)| ≤ T Lu where Lu is the local Lipschitz
constant of the solution on [0,T]. If this is inconvenient, one can also use that m0 ≈ ∥u⃗(0) − u⃗∗∥∞ ≤
T max[0,T] ∥Au(t) + b(t)∥∞ ≤ T (∥A∥∞Mu + Mb) where Mu denotes the approximation of a maximum of
the solution and Mb is the maximum for the function b. The best approximate convergence curves are
when m0 is a tight approximation. One can say that the errors are around values mk as much as m0 is

25

2. The ParaDiag method for linear equations

around ∥u⃗(0) − u⃗∗∥∞. In practice, we observed that if m0 is an upper bound, then all mk are as well an
upper bound.

This concludes the discussion about the (αk)k∈N sequence. In this section, we have proposed an (αk)k∈N

sequence that is supposed to minimize the number of outer iterations, balancing the unwanted numerical
errors and the convergence rate.

Now we will highlight the importance of α-adaptivity with numerical tests. The first test equation is the
heat equation, governed by

ut = ∆u + sin(2πx) sin(2πy)(8π2 cos(t) − sin(t)), (t, x, y) ∈ [π, π + T] × [0, 1]2, (2.44)

with the exact solution is u(t, x, y) = sin(t) sin(2πx) sin(2πy). This equation has periodic boundary
conditions which were used to form the discrete periodic Laplacian with central differences bring-
ing the equation into the generic form (2.9). The second equation is the advection equation defined
as

ut + ux + uy = 0, (t, x, y) ∈ [0,T] × [0, 1]2, (2.45)

with exact solution u(t, x, y) = sin(2πx−2πt) sin(2πy−2πt). Here, we again have periodicity on the bound-
aries which was used to form an upwind scheme [5]. This yields a sparse circulant spatial discretization
matrix since the approximation of the solution in the end interval point is treated as an approximation in
the left interval point of the spatial discretization.

Figure 2.2.: Adaptive strategy vs. convergence for fixed αk from the sequence. The y-axis represents
the error in log10 scale whereas the vertical lines represent the mk sequence starting with
m0 = 10∆T . The solid line is the convergence history with the sequence of αk given as
(6.19 × 10−7, 5.56 × 10−4, 1.67 × 10−2, 9.13 × 10−2).

Figure 2.2 compares the convergence for the linear advection equation when the adaptive (αk)k∈N se-
quence generated on runtime is used, to benchmarks where αk is a fixed parameter, originating from that
same generated sequence. For larger values of α, we can see a slow convergence speed that can reach
better accuracy, while for smaller α values, the convergence is extremely steep but short living. Using

26

2.5. Parameter selection

the adaptive (αk)k∈N requires fewer total iterations to recover a small error tolerance compared to a fixed
α. The numbers of discretization points in space and time are chosen so that the error with respect to the
exact solution (infinity norm) is below ζ = 10−12, without over-resolving in space or time. The param-
eters chosen are T = 0.0128, L = 64, M = 3, and a 5th-order upwind scheme in space with N = 700
spatial points. The scheme is formed as described in [5]. The benchmarks were performed in parallel
across time steps using 64 cores. The inner solver is GMRES (without a preconditioner) with a relative
tolerance τ = 10−15.

Counting the iterations seems promising, however, we must also look at the runtimes. When paralleliz-
ing across time steps, the parallel wall clock times accompanying the runs presented in Figure 2.2 are
summarized in Table 2.1. We can now indeed conclude that using α-adaptivity reduces the number of
iterations and computation time by 30 − 40%.

α optimal 6.19 × 10−7 5.56 × 10−4 1.67 × 10−2 9.13 × 10−2

parallel wall clock time [s] 25.34 36.15 31.72 38.22 38.33

Table 2.1.: Parallel wall clock times for parallelizing the advection equation across L = 64 time steps.
The data exactly accompanies Figure 2.2.

Figure 2.3.: Convergence with the adaptive strategy for different thresholds. The y-axis represents the
error in log10 scale, and vertical lines represent the thresholds for the stopping criteria: red for
reaching thresholds under 10−5, green for 10−9 and blue for 10−12. ’approx. errors’ graphs
contain the information available on runtime, which is: the errors of consecutive iterates in
the last time-step (marker pointing left) and the approximations of the upper bound for the
error in each iteration (marker pointing right), the mk values starting with m0 = ∆T . These
values are generated in Algorithm 2 alongside the corresponding αk. ’real errors’ graphs
show corresponding errors to the exact solution, which is generally unavailable at runtime.

Understanding the convergence behavior allows us to predict the number of iterations for a given thresh-
old roughly. In order to examine the convergence of the method, we test it when solving the same initial
value problem with the same domain for three thresholds ζ = 10−5, 10−9, 10−12. One challenge for an

27

2. The ParaDiag method for linear equations

actual application is when to stop the iterations since the actual error is not available. As discussed in
Section 2.5.2, a valid candidate is comparing successive iterates at the last time-step, cf. Lemma 2.11.
To check the impact of this choice, Figure 2.3 shows the convergence behavior for the two test problems
with the adaptive-α strategy, both for the actual errors and the difference between successive iterates.
The discretization parameters for each threshold are chosen accordingly for a fixed T (see Table 2.2 for
details). The convergence study shows that the mk values are indeed following the actual errors, unavail-
able at runtime, very well. However, values mk should be treated in combination with the consecutive
iterates as in Algorithm 2 since they are an overestimate.

Heat, T = 0.1 Advection, T = 10−2

tol. to reach ζ 10−5 10−9 10−12 10−5 10−9 10−12

no. of spatial points N 450 400 300 350 350 600
order in space κ 2 4 6 2 4 5
no. of collocation nodes M 1 2 3 2 2 3
no. of time steps L 32 32 16 8 16 32
linear solver tolerance τ 10−6 10−10 10−13 10−8 10−11 10−14

Table 2.2.: Parameter choice for solving the heat and advection equation in order to reach an error ∥u(T)−
uL∥∞ < ζ when solving with a standard sequential approach. κ denotes the discretization order
in space, where upwind was chosen for the advection equation and centered differences for
the heat equation.

28

CHAPTER 3

Extensions to nonlinear equations

Let us now consider an initial value problem of the form

ut = Au + f (u) + b(t), u(0) = u0, (3.1)

where f : RN → RN . The matrix A is a linear term that can be treated implicitly and might come
from discretization or linearization. The part f (u) does not strictly have to be nonlinear in u, however, it
may contain such a part. This term will be treated explicitly in the iterative process proposed in Section
3.2.

Imitating the sequential time stepping process (2.13)–(2.14), the collocation equations (3.1) have the
form

Ccollu1 − ∆T (Q ⊗ IN)f(u1) = u0 + v1 (3.2a)

Ccolluℓ − ∆T (Q ⊗ IN)f(uℓ) = Huℓ−1 + vℓ, ℓ = 2, . . . , L. (3.2b)

In order to use the diagonalization trick for the preconditioner Cα as in (2.19), the preconditioning matrix
has to have constant block entries.

One way to build Cα for this problem is to utilize inexact Newton’s iterative method. Let J(k)
ℓ

denote the
exact or an approximate Jacobian for the function f computed in the point u(k)

ℓ
. The approximation, for

example, can be a Jacobian computed just in the last internal stage Hu(k)
ℓ

. Now, for each iteration k, let
J̄(k) denote the average Jacobian across all time steps as:

J̄(k) =
1
L

L∑
ℓ=1

J(k)
ℓ
∈ RMN . (3.3)

An approach examined in a lot of algorithms [56, 52] is to use the preconditioner Cα as

Cα = IL ⊗
(
Ccoll − ∆T (Q ⊗ IN)J̄(k)

)
+ Eα ⊗H. (3.4)

29

3. Extensions to nonlinear equations

Then, the diagonal is composed of constant block matrices, making the diagonalization using Lemma 2.4
possible. The main drawback is that the Jacobian has to be recomputed in every iteration. This means
that, if implemented in parallel, the cores have to perform an MPI_Allreduce communication pattern to
update the next Jacobian approximation J̄(k).

We propose to treat the nonlinear part in (3.2) explicitly. This approach avoids the Jacobian updates
altogether. Preconditioning the equations (3.2) with the same preconditioner Cα, defined as for the linear
case in (2.17), yields iterations

Cαu⃗(k+1) = b⃗(k), (3.5)

where

b⃗(k) = w⃗ +


∆T (Q ⊗ IN)f(u(k)

1) − αHu(k)
L

∆T (Q ⊗ IN)f(u(k)
2)

...

∆T (Q ⊗ IN)f(u(k)
L)

 ,
and w⃗ is the same as before, defined in equation (2.16). In practice, this approach needs more iterations,
meaning that the convergence rate is sacrificed in order to avoid dealing with the Jacobians. However, it
is suitable for problems where the Jacobian matrix is too tedious to compute, such as the collision term
in the Boltzmann equation.

To analyze the convergence of both schemes, the inexact Newton’s method approach and the implicit-
explicit approach, we first need to examine the underlying single time-step iterations of solving (3.2)
that emerge from the global iterations (2.18) when using preconditioners Cα from (2.17) and (3.4). We
write down the sequential computation of equations (3.2) in an Implicit-Explicit (IMEX) iterative way

Ccollu(k+1)
1 − ∆T (Q ⊗ IN)fI

(
u(k+1)

1

)
= u0 + v1 + ∆T (Q ⊗ IN)fE

(
u(k)

1

)
(3.6a)

Ccollu(k+1)
ℓ
− ∆T (Q ⊗ IN)fI

(
u(k+1)
ℓ

)
= Huℓ−1 + vℓ +ℓ−1 +∆T (Q ⊗ IN)fE

(
u(k)
ℓ

)
, ℓ = 2, . . . , L, (3.6b)

where we split the function f into f = fI + fE to indicate that fI is treated implicitly and fE explicitly.
Here, we also assume that Huℓ−1 is constructed from the previously converged time step. The reason
behind this notation is that this splitting covers both approaches: in the inexact Newton’s method, we
have

fI(u) :=
(
A + J̄(k)

)
u, fE(u) := f(u) − J̄(k)u,

whereas for treating the nonlinear part f explicitly would yield a splitting

fI(u) := Au, fE(u) := f(u).

The iterative form (3.6) is motivated by semi-implicit spectral deferred corrections (SISDC), where
the fI part is usually used to precondition the stiff term and the fE the non-stiff term [70]. Another
interpretation is splitting f into parts corresponding to slow-wave and fast-wave formats as done in
[71].

Splitting f into implicit and explicit parts allows us not only to analyze both approaches, but any kind
of splitting, generalizing the analysis even further. If the fixed point iterations (3.6) converge, then the
solution also satisfies equations (3.2). Our next task is to determine under which conditions are these
fixed point iterations on a single time step a contraction.

30

3.1. The collocation problem iterations: a single time step

3.1. The collocation problem iterations: a single time step

For simplicity, we rewrite the IMEX iterations (3.6a) as

u(k+1) − ∆TQfI(u(k+1)) = u0 + ∆TQfE(u(k)). (3.7)

These iterations already presume to have an exact initial condition u0, compared to the schemes (3.5)
and (3.4) where the initial conditions are approximated as Hu(k)

ℓ
, however, the convergence in the purely

linear case is fast, which makes this approach look promising for equations where the Lipschitz constant
of fE in (3.7) is not ’too large’.

Remark 3.1
The collocation problem can be solved iteratively in many ways, one of which includes choosing addi-
tional preconditioners QI and QE for the implicit and the explicit parts fI and fE in (3.7) as

u(k+1) − ∆TQIfI(u(k+1)) − ∆TQEfE(u(k+1)) = u0 + ∆T (Q − QI)fI(u(k)) + ∆T (Q − QE)fE(u(k)).

These fixed point iterations form the most general form of a method called Spectral Deferred Corrections
(SDC), originally presented in [35]. The link to the matrix form presented here is described in [72,
Chapter 3]. The usual choices for the preconditioners are lower triangular matrices originating from
Euler stepping schemes, or the LU-trick, allowing the systems on the left-hand side to be solved via
forward substitutions. However, because of how the inner systems are solved via the additional two
substitutions with the help of the upper triangular matrix Gℓ (see (2.23a)), the structures of QIG−1

ℓ and
QEG−1

ℓ would be lost, except in the case, when they are also upper triangular matrices. This makes the
whole idea of using structured matrices as preconditioners, in our case, unfeasable. Formally, our idea
to treat the nonlinear part explicitly as in (3.5) can be expressed as using QI = Q and QE = 0.

In order to show that iterations (3.7) converge, we need to examine under which circumstances are they a
contraction. This analysis is usually done for the Dahlquist’s test equation ut = (λE+λI)u1. Let us now de-
fine our function f as fI(u) := λIu and fE(u) := λEu. The iterations now become

(I − ∆TλIQ)u(k+1) = u0 + ∆TλEQu(k), (3.8)

and we are interested when the iterations u(k) converge to a fixed point solution u∗ of

(I − ∆T (λI + λE)Q)u∗ = u0. (3.9)

Let e(k) = u(k) − u∗ be the error vector. The error behaves as

(I − ∆TλIQ)e(k+1) = ∆TλEQe(k),

from where
e(k+1) = ∆TλE(I − ∆TλIQ)−1Qe(k). (3.10)

By examining the factors on the right, we can easily see that when ∆TλE is small and (I − ∆TλIQ)−1

behaves in a damping way, a contraction is possible. First, to rigorously prove this, we need a preliminary
result.

1For this analysis, one assumes that the linear system is diagonalizable where λI represents an eigenvalue.

31

3. Extensions to nonlinear equations

Lemma 3.2
Let the matrix Q be built from quadrature nodes 0 ≤ t1 ≤ · · · ≤ tM ≤ 1 originating from the Gauss–
Lobatto quadrature or any other quadrature of degree 2M − 2 or higher. Then the following inequality
holds:

tM ≤ ∥Q∥∞ ≤
√

tM. (3.11)

Proof: See Appendix B. □

From now on, we will assume that the matrix Q satisfies the assumptions from Lemma 3.2. The following
lemma guarantees under which conditions the iterations (3.8) are a contraction.

Lemma 3.3
Let the matrix Q satisfy the conditions in Lemma 3.2. When ∆T

√
tM(|λE| + |λI|) < 1 holds, the itera-

tions (3.8) are a contraction. Furthermore, ∥e(k+1)∥∞ ≤ η∥e(k)∥∞, where

η ≤
∆T |λE|

√
tM

1 − ∆T |λI|
√

tM
< 1.

Proof: From (3.10) we have

∥e(k+1)∥∞ ≤ ∆T |λE| ∥(I − ∆TλIQ)−1∥∞∥Q∥∞∥ek∥∞.

Because of the assumption ∆T
√

tM(|λE| + |λI|) < 1 we know that ∥∆TλIQ∥∞ ≤ ∆T
√

tM |λI| < 1 holds.
This means that the inverse (I − ∆TλIQ)−1 exists and

∥(I − ∆TλIQ)−1∥∞ ≤
1

1 − ∆T |λI|∥Q∥∞
≤

1
1 − ∆T |λI|

√
tM
.

Thus,

∥e(k+1)∥∞ ≤
∆T |λE|

√
tM

1 − ∆T |λI|
√

tM
∥e(k)∥∞.

Here we can see that ∆T
√

tM(|λE| + |λI|) < 1, concluding that η < 1 which completes the proof. □

The condition ∆T
√

tM(|λE| + |λI|) < 1 in Lemma 3.3 is quite limiting. The following lemma explains
contractions for large ∆T .

Lemma 3.4
Let the matrix Q be nonsingular. When |λE| < |λI|, the iterations (3.8) are a contraction in the stiff limit,
i.e., ∆T → ∞. Furthermore, for any norm ∥ · ∥, it holds that ∥e(k+1)∥ ≤ η∥e(k)∥, where

η ≤
|λE|

|λI|
< 1.

Proof: From (3.10) we have

∥e(k+1)∥ = ∆T |λE| ∥(I − ∆TλIQ)−1Q∥ ∥ek∥.

Inserting ∆T into the norm, we get

∥e(k+1)∥ = |λE|

∥∥∥∥∥∥∥
(

1
∆T

I − λIQ
)−1

Q

∥∥∥∥∥∥∥ ∥ek∥.

32

3.2. The composite collocation problem iterations

Now, for ∆T → ∞, the norm of the iteration matrix becomes

|λE|

∥∥∥∥∥∥∥
(

1
∆T

I − λIQ
)−1

Q

∥∥∥∥∥∥∥→ |λE|

|λI|
< 1,

which concludes the proof. □

Remark 3.5
The condition ∆T

√
tM(|λE|+ |λI|) < 1 in Lemma 3.3 guarantees η < 1, a contraction of a single time-step

method (3.8), however, the condition seems to be too strict than what is observed in practice. On the other
hand, Lemma 3.4 ensures contractions for very large time steps, and it is difficult to show what happens
for intermediate step sizes theoretically. Figure 3.1 illustrates different values of

∥∥∥(I − λIQ)−1Q
∥∥∥
∞

. For
a given λE, we can gain more information whether the iterations are a contraction by validating when∥∥∥(I − λIQ)−1Q

∥∥∥
∞
< 1/|λE| is true.

(a) M = 1 (b) M = 2 (c) M = 3

Figure 3.1.: Contours of
∥∥∥(I − λIQ)−1Q

∥∥∥
∞

for the Radau-Right quadrature. Upper plots are contours for
values 0.2, 0.5, 1 and lower plots are contours with values 1, 5, 10.

3.2. The composite collocation problem iterations

We want to extend the IMEX iterations for a single time step (3.6) in a structure that can exploit paral-
lelism across time steps. We again utilize the block α-circulant matrix and define composite collocation
problem iterations as

CI
coll -αHM

-HM CI
coll
. . .

. . .

-HM CI
coll



u1
u2
...

uL


(k+1)

=


u0 + ∆T (Q ⊗ IN)fE(u(k)

1) − αHMu(k)
L

∆T (Q ⊗ IN)fE(u(k)
2)

...

∆T (Q ⊗ IN)fE(u(k)
L)

 , (3.12)

33

3. Extensions to nonlinear equations

where we assume that
CI

coll := Ccoll − ∆T (Q ⊗ IN)fI(·)

is a linear operator. Compared to the single time step iterations (3.6), the composite problem itera-
tions (3.12) use an approximation of Huℓ. These iterations can be seen as a generalization of the method
used for solving linear equations, because, when λE = 0, we end up with the already introduced algo-
rithm for linear equations. A straightforward convergence analysis is difficult, and because of this, we
again turn to the analysis for the Dahlquist’s test equation.

3.2.1. Convergence of the composite collocation iterations

Let us rewrite the main idea of iterations (3.12) for Dahlquist’s test equation and let CI
coll = IM −

∆TλIQ be the collocation problem for the implicit part of the equation. The global iterations then
read


CI

coll -αHM

-HM CI
coll
. . .

. . .

-HM CI
coll



u1
u2
...

uL


(k+1)

=


u0 + ∆TλEQu(k)

1 − αHMu(k)
L

∆TλEQu(k)
2

...

∆TλEQu(k)
L

 . (3.13)

When analyzing convergence, an important aspect to consider is the stability requirement of the under-
lying propagator. In particular, for the implicit propagator, we require some form of stability condition,
which can be expressed as ∥(IM − ∆TλIQ)−1H∥∞ ≤ 1. This matrix can be seen as a propagating matrix
that propagates the solutions of equation ut = λIu as uℓ+1 = (IM −∆TλIQ)−1Huℓ. This stability assump-
tion is essential for proving convergence, regardless of the value of λE. Similar stability assumptions have
already been made when analyzing and bounding the spectrum of the all-at-once systems in [52, 49]. Ad-
ditionally, the stability requirement also appears in our analysis for the convergence of linear problems
in Appendix A. Refer to Remark 3.7 for further information on the difference in stability definitions. The
following theorem demonstrates the contraction rate of iterations (3.13).

Theorem 3.6
Let the iteration for a single time-step as in (3.8) converge with a contraction factor

η := ∥∆TλE(I − ∆TλIQ)−1Q∥∞ ≤ 1

and let
∥(IM − ∆TλIQ)−1H∥∞ ≤ 1

be the stability requirement for the implicit part.

Define ξ(k) = ∥u⃗(k) − u⃗∗∥∞, where u⃗∗ denotes the solution of fixed point iterations in (3.13). Then

ξ(k+1) ≤
ηL + α
1 − α

ξ(k),

where L is the number of time steps.

34

3.2. The composite collocation problem iterations

Proof: Let the error be defined as e(k) = u⃗(k) − u⃗∗. Reading equations in (3.13) block by block, we get

CI
colle

(k+1)
1 − αHMe(k+1)

L = ∆TλEQe(k)
1 − αHMe(k)

L ,

CI
colle

(k+1)
ℓ
−HMe(k+1)

ℓ−1 = ∆TλEQe(k)
ℓ
, 2 ≤ ℓ ≤ L.

Rearranging the terms yields

CI
colle

(k+1)
1 = ∆TλEQe(k)

1 − αHMe(k)
L + αHMe(k+1)

L ,

CI
colle

(k+1)
ℓ
= ∆TλEQe(k)

ℓ
+He(k+1)

ℓ−1 , 2 ≤ ℓ ≤ L.

Multiplying the equations by
(
CI

coll
)−1 from left gives

e(k+1)
1 = ∆TλE

(
CI

coll
)−1Qe(k)

1 − α
(
CI

coll
)−1He(k)

L + α
(
CI

coll
)−1He(k+1)

L ,

e(k+1)
ℓ
= ∆TλE

(
CI

coll
)−1Qe(k)

ℓ
+

(
CI

coll
)−1He(k+1)

ℓ−1 , 2 ≤ ℓ ≤ L.

Now, applying the infinity norm, recalling the definition of η, and the fact that ∥
(
CI

coll
)−1HM∥∞ ≤ 1 holds,

we have

∥e(k+1)
1 ∥∞ ≤ η∥e(k)

1 ∥∞ + α∥e
(k)
L ∥∞ + α∥e

(k+1)
L ∥∞,

∥e(k+1)
ℓ
∥∞ ≤ η∥e(k)

ℓ
∥∞ + ∥e(k+1)

ℓ−1 ∥∞, 2 ≤ ℓ ≤ L.

Let us define ξ(k)
ℓ

:= ∥e(k)
ℓ
∥∞. The equations now read

ξ(k+1)
1 ≤ ηξ(k)

1 + αξ
(k)
L + αξ

(k+1)
L ,

ξ(k+1)
ℓ

≤ ηξ(k)
ℓ
+ ξ(k+1)
ℓ−1 , 2 ≤ ℓ ≤ L.

Telescoping the inequalities, we can get a bound for ξ(k+1)
ℓ

as

ξ(k+1)
ℓ

≤ ηξ(k)
ℓ
+ ξ(k+1)
ℓ−1

≤ η
(
ξ(k)
ℓ
+ ξ(k)
ℓ−1

)
+ ξ(k)
ℓ−2 + ξ

(k+1)
ℓ−2

...

≤ η

ℓ∑
j=1

ξ(k)
j + αξ

(k)
L + αξ

(k+1)
L . (3.14)

Specifically, for ℓ = L we have

ξ(k+1)
L ≤ η

L∑
j=1

ξ(k)
j + αξ

(k)
L + αξ

(k+1)
L ,

which yields a bound for ξ(k+1)
L as

ξ(k+1)
L ≤

1
1 − α

η L∑
j=1

ξ(k)
j + αξ

(k)
L

 .
Since ξ(k) = maxℓ ξ

(k)
ℓ

, we can bound ξ(k+1)
L as

ξ(k+1)
L ≤

ηL + α
1 − α

ξ(k). (3.15)

35

3. Extensions to nonlinear equations

Now, using the inequality for ξ(k+1)
ℓ

from (3.14) and combining it with (3.15), we have

ξ(k+1)
ℓ

≤ (ηℓ + α)ξ(k) + αξ(k+1)
L

≤ (ηℓ + α)ξ(k) + α
ηL + α
1 − α

ξ(k)

≤ (ηL + α)
(
1 +

α

1 − α

)
ξ(k) =

ηL + α
1 − α

ξ(k).

Because the upper inequality holds for any ℓ, this concludes the proof. □

Remark 3.7
The stability requirement ∥(IM − ∆TλIQ)−1H∥∞ ≤ 1 from Theorem 2.9 is stricter than the stability
requirement of a numerical method in a classical sense. The latter is motivated by making sure that
the approximations, for stiff problems, satisfy |u(Tℓ+1)| ≤ |u(Tℓ)|. For collocation or RK methods, this
considers just the last internal stage or their convex combination. In addition to this classical stability
definition, here we assume that the inequality holds for all internal stages: |u(Tℓ + tm)| ≤ |u(Tℓ + tm+1)|.
In practice, when comparing both stability areas for the test equation, the difference is minimal.

Remark 3.8
How to interpret λE and λI from Theorem 3.6? Firstly, let us comment on the case when fI(u) = Au and
fE = f . Let LipE be the Lipschitz constant of fE:

∥ fE(x) − fE(y)∥∞ ≤ LipE ∥x − y∥∞.

Defining λE := LipE, the proof of Lemma 3.3 and Lemma 3.4 and the convergence Theorem 3.6 still hold
as stated. λI can be interpreted as an eigenvalue of the matrix A, specifically, the stability condition that
then needs to be satisfied in Theorem 3.6 reads

∥(IM − ∆TQ ⊗ A)−1H∥∞ ≤ 1,

and the contraction condition is

η := ∥∆TλE(I − ∆TQ ⊗ A)−1Q∥∞ ≤ 1.

This covers the interpretation of any case where fI is a linear function.

Secondly, we examine the case when solving the all-at-once problem with an inexact Newton’s method,
meaning that we use the preconditioner for the composite collocation problem as defined in (3.4). Then,
fI(u) = A + J̄(k)u, where J̄(k) is an approximation of the Jacobian matrix (3.3), and fE(u) = f (u) − J̄(k)u.
This is now again covered in the previous discussion: the value λE is the Lipschitz constant of fE. When
the inexact Newton’s method has a ’good’ approximation of the Jacobian matrix, λE gets smaller as well,
reducing the leading parameter η in the convergence bound of Theorem 3.6. Because of this, we expect
faster convergence with the inexact Newton’s method.

The last observation worth mentioning is that when λE = 0, the bound from Theorem 3.6 then becomes
the same as already proven bounds for the linear case.

36

3.2. The composite collocation problem iterations

3.2.2. Iterative refinement

Until now, we have built an iterative process:

Cαu⃗(k+1) = Cαu⃗(k) − C f (u⃗(k)) + w⃗, (3.16)

that solves C f (u⃗) = w⃗, where

C f (u⃗) = Cu⃗ −


∆T (Q ⊗ IM)f(u1)

...

∆T (Q ⊗ IM)f(uL)

 , (3.17)

and C and w⃗ are defined in (2.16). From Theorem 2.12 we see that smaller parameters α can generate
larger round-off errors because the matrix Cα has a large condition number κ(Cα) ≈ 1/α. To avoid these
rounding errors, we can rewrite the problem as

r⃗es(k)
= w⃗ − C f (u⃗(k)), Cαc⃗(k) = r⃗es(k)

, u⃗(k+1) = u⃗(k) + c⃗(k), (3.18)

a formulation known as iterative refinement [73]2. Note that iterations (3.16) may refer to any implicit-
explicit splitting.

Algorithm 3 Iterative refinement IMEX-based ParaDiag.
Input: C f , w⃗, u⃗(0), α, ζ

Output: a solution to C f u⃗ = w⃗.

1: k = 0
2: r⃗es(k)

= w⃗ − C f (u⃗(k)) # form a residual
3: while ∥r⃗esk∥ > ζ do
4: c⃗(k) = (Cα)−1r⃗es(k) # one iteration of Algorithm 1
5: u⃗(k+1) = u⃗(k) + c⃗(k) # update the solution
6: k = k + 1
7: r⃗es(k)

= w⃗ − C f (u⃗(k)) # form a new residual

8: return u⃗(k)

Firstly we will comment where does the parameter selection described in Section 2.5.3 emerge when us-
ing the iterative refinement approach (3.18). Intuitively, the same round-off errors are now affecting the
residual. To formally show this, let us assume that we do not have an explicit part, meaning C f = C, re-
turning to our previously introduced linear iterations. A new iterate is computed as

u⃗(k+1) = C−1
α (Cα − C) u⃗(k) + w⃗.

We can see that the rounding errors originate from applying C−1
α to a vector (Cα −C)u⃗(k). In the iterative

refinement approach, the matrix C−1
α is applied to the residual, yielding fixed point iterations on the

residuals as
r⃗es(k+1)

=
(
IMN − CC−1

α

)
r⃗es(k)

. (3.19)

Since computing an inverse of Cα introduces round-off errors, we can rewrite (3.19) as

r⃗es(k+1)
=

(
IMN − C (Cα + R)−1

)
r⃗es(k)

, (3.20)

2The idea came while personally corresponding with Shu-Lin Wu

37

3. Extensions to nonlinear equations

where R is the error produced when computing the factorization of Cα. In the notation of Lemma 2.11,
this would read as (Cα + R)x = w + ∆w, yielding Rx = ∆w. Let Uα := Cα − C, then from (3.20) we
get

r⃗es(k+1)
=

(
IMN − C (C + Uα + R)−1

)
r⃗es(k)

. (3.21)

For any error matrix E that satisfies ∥EC−1∥ ≤ 1, we can bound

∥IMN − C (C + E)−1 ∥ ≤
∥E∥ ∥C−1∥

1 − ∥E∥ ∥C−1∥
(3.22)

and the bound is less than 1 when ∥E∥ ∥C−1∥ ≤ 1
2 . This is visible from the relation

IMN − C(C + E)−1 = (C + E − C) (C + E)−1 = E(C + E)−1 = EC−1(IMN + C−1E)−1.

In our case E := Uα +R and we expect convergence in the infinity norm when

∥Uα + R∥∞ ∥C−1∥∞ ≤ (∥Uα∥∞ + ∥R∥∞) ∥C−1∥∞ ≤ (α + ∥R∥∞) ∥C−1∥∞ <
1
2
.

Using the structure of preconditioner (similarly as for proving Theorem 2.12) we get

∥Rx∥∞ = ∥∆w∥∞ ≤ c
L(3ε + τ)
α

∥x∥∞,

for some contant c, concluding that an upper bound for the norm of the matrix in (3.21) is(
α + c

L(3ε + τ)
α

)
∥C−1∥∞. (3.23)

If want to minimize the rounding errors originating from the residual, we end with one parameter α, the
one that minimizes α + c L(3ε+τ)

α . This is the same result we would get if we were to repeat the process of
forming the α-adaptive strategy as proposed in Section 2.5.3.

Let us now assume that C f is a linear operator. This is equivalent to solving linear differential equations
with an explicit part in the iterations. Let C f = C − D∆T , where the matrix D∆T denotes how explicit
iterates are handled, see (3.17). The fixed point iteration on the residual, including the rounding errors,
now reads

r⃗es(k+1)
=

(
IMN − C f

(
C f + D∆T + Uα + R

)−1
)

r⃗es(k)
. (3.24)

Using the same constraint as in (3.22) for E = D∆T+Uα+R, we get convergence if

∥D∆T + Uα + R∥∞ ∥C−1
f ∥∞ ≤

(
α + c

L(3ε + τ)
α

+ ∥D∆T ∥∞

)
∥C−1

f ∥∞ <
1
2

(3.25)

is satisfied. The round-off errors emerging from the diagonalization procedure are now the same as in
the linear case. This is to be expected since the same preconditioner is applied. If we want to minimize
the errors, we would have the same approach as in the linear example, since the matrix D∆T is block
diagonal with blocks that depend on ∆T , Q and some linear operator f . Thus, the minimization of the
errors depends on the first two terms in the bracket of equation (3.25).

It remains to comment on the norms ∥C−1∥∞ and ∥C−1
f ∥∞. For this, we assume a more general case,

where the matrix C f has a form

C f =


C1
−H C2

. . .
. . .

−H CL

 (3.26)

38

3.2. The composite collocation problem iterations

where Cℓ = IM − ∆TQ ⊗ Aℓ. The matrix can be factorized as

C f =


C1

C2
. . .

CL




I
−C−1

2 H I
. . .

. . .

−C−1
L H I


and we need to compute the inverse of the right factor, since the inverse of the block diagonal matrix is
straightforward to compute. Let Bℓ = C−1

ℓ H. With this, the inverse of the right factor is

I
B2 I

B3B2 −B3 I
...

...
. . .

BL · · ·B2 BL · · ·B3 BL · · ·B4 . . . I


,

from where we can conclude that the infinity norm of it is bounded by

∥I∥∞ + ∥BL∥∞ + · · · +

L∏
ℓ=2

∥Bℓ∥∞.

If we assume that ∥C−1
ℓ ∥∞ ≤ b < 1, for every ℓ, we have

∥Bℓ∥∞ = ∥C−1
ℓ H∥∞ ≤ ∥C−1

ℓ ∥∞ ∥H∥∞︸︷︷︸
=1

≤ b < 1,

and we can bound the inverse as

∥C−1
f ∥∞ ≤

1
1 − b

L
max
ℓ=1
∥C−1
ℓ ∥∞ ≤

b
1 − b

. (3.27)

The restriciton b < 1 demands more than just requiring stability of the underlying method. The stability
in a classical sense would be imposing ∥HC−1

ℓ H∥∞ ≤ 1 when the collocation nodes contain the right end
of the interval. The discussion can be summarized in the following theorem.

Theorem 3.9
Let C f be a linear operator defined as in (3.26). Then, for a given C and Cα, the norm of the residual in
fixed point iterations (3.16) is bounded as

∥r⃗es(k+1)
∥∞ ≤

ρ

1 − ρ
∥r⃗es(k)

∥∞,

and convergent when

ρ =
b

1 − b
(α + ∥D∆T ∥∞) <

1
2

and b = maxL
ℓ=1∥C

−1
ℓ ∥∞ < 1. Here, D∆T = C − C f .

Furthermore, when the round-off errors emerging from the diagonalization of Cα are included, and the
inner systems are solved to a relative tolerance τ, then ρ has the form

ρ =
b

1 − b

(
α + c

L(3ε + τ)
α

+ ∥D∆T ∥∞

)
,

for some constant c.

39

3. Extensions to nonlinear equations

Observing these results and comparing them to our previous theorem, Theorem 3.6, we see some differ-
ences. This is to be expected since one theorem examines the errors e⃗(k) = u⃗∗−u⃗(k), whereas Theorem 3.9
focuses on the residuals as r⃗es(k)

= C f e⃗(k). This is also where the factor ∥C−1
f ∥∞ comes into play in our

bounds. Another important difference in these two results is that the latter theorem is difficult to ex-
pand for nonlinear equations. The theorem for the test equation is on the other hand directly expandable
as described in Remark 3.8. Nevertheless, it summarizes the discussion of round-off errors in iterative
refinement.

In our numerical tests, we observe that the convergence depends on the number of time-steps L as in
Theorem 3.6. When some problems diverged, it was not the fault of the round-off errors as our new
theorem would indicate, since we only for this purpose set a very small τ to test this. However, if we
look at the bounds (3.27), when b is close to 1, our bound takes the form ∥C−1

f ∥∞ ≤ L, introducing the L
dependency in the new bound as well.

In the prevous chapter, in Section 2.5.3, the rounding errors are handled by always selecting a different
parameter α, computed on runtime. It is done in order to balance the convergence rate and the rounding
errors, yielding an adaptive-α strategy with an ascending array of parameters. In contrast, the iterative
refinement approach allows us to choose a fixed parameter α for each iteration, and the round-off errors
are automatically reduced with each new iteration, since r⃗es(k)

→ 0. The numerical tests show that when
the ’optimal’ α is computed, it is often too large, and as a consequence, slowing down the overall conver-
gence. This is because the constant c that scales the round-off error estimates is often not straightforward
to compute. Even though the ’perfect’ parameter is not easily achievable, we see that lowering the rel-
ative solver tolerance for the inner solver τ would overall help the convergence. In practice, the best
approach was to use a rather small α, correcting it if divergence is detected.

An additional cost is induced in the iterative refinement method, the construction of the residual r⃗es(k),
slightly increasing communication time, since the processor (or a group of processors) Pℓ has to pass
Hu(k)
ℓ

to Pℓ+1. This is explained in more detail in Subsection 4.2.3. However, the residual can be used
as a stopping criterion, in addition to monitoring the norm of consecutive iterates ∥u⃗(k+1) − u⃗(k)∥. The
consecutive error is sometimes not a true measure of convergence since stagnation can be perceived as
convergence.

Remark 3.10
Iterative refinement in the linear case may or may not be better than the adaptive-α strategy. The ad-
ditional communication cost does not seem to dominate, especially since the number of outer iterations
using the iterative refinement (3.18) approach with a small parameter α ≈ 10−8 is overall lower. How-
ever, compared to using a larger parameter α ≈ 10−3, the system shifts (2.23a) can result in longer
solves. For the heat equation, the runtimes using iterative refinement seem to be longer than when using
the adaptive-α strategy, although the latter has more outer iterations. This is one of the reasons why
just counting iterations in Parallel-in-Time methods is not an accurate representation of actual speedup
[74]. The linear advection equation seemed to profit more from iterative refinement, making it for some
tests a slightly better choice. The details can be found in Section 5.2.1.

40

CHAPTER 4

Implementation

Until now, we analyzed the idea of ParaDiag with the collocation method extensively, however, only
theoretically. After setting up all the necessary mathematical structures in Chapters 2 and 3, we continue
with a more applied part: the implementation. This chapter contains implementation details of a code
written in Python in the framework of mpi4py, a message passing interface for Python, and petsc4py,
a Portable, Extensible Toolkit for Scientific Computation [75, 76]. First, we discuss a parallelization
strategy in Section 4.1, followed by detailed explanations of implementing some essential algorithm
parts using the introduced strategy in Section 4.2. A more documentation-style section explains the code
structure in Python, and last, speedup and efficiency estimates for the proposed ParaDiag implementa-
tions are presented in Section 4.4.

4.1. Parallelization strategies

The Message Passing Interface (MPI) is a message-passing standard designed to work on parallel com-
puting architectures in a standardized and portable manner. This standard is defined by library routines
that provide syntax and semantics. Several open-source implementations of MPI exist, encouraging the
development of portable and scalable large-scale parallel applications. MPI uses distributed memory for
communication among processes. In distributed memory, each processor has its own local memory, and
the communication between processors occurs through passing messages. The MPI standard dictates
several concepts, such as communicators, point-to-point communication, and collective communication.
These features are a skeleton for all MPI-based applications.

In an MPI application, each process is assigned a number called rank, a unique identifier that distin-
guishes one process from another. The data is usually partitioned into smaller memory chunks that can
be processed independently by each process. The processes can communicate point-to-point by sending
data to each other, where the messages’ origin and destination are specified by rank. Commonly used
routines are MPI_Send for sending a message and MPI_Recv for receiving a message. The processes can
also engage in a collective communication pattern within a group called a communicator. At the start
of any MPI application, all processes belong to a communicator called COMM_WORLD. Being a member

41

4. Implementation

(a) COMM_WORLD (b) COMM_LAST

Figure 4.1.: Communicator groups when the number of collocation points is M = 4 and the number of
time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 1 and nspace = 1.

of a communicator allows processes to work together through already implemented routines, such as:
broadcasting data from one process to all other processes using MPI_Bcast or computing a parallel sum
on one process using MPI_Reduce. In contrast to these examples, where the message passing format
is all-to-one, communication can happen in an all-to-all manner. One example is an MPI_Allgather
after which each process in the communicator locally stores all chunks of data previously owned by all
other processes. The MPI standard also has routines that can create new subcommunicators, allowing
collective communication patterns to be carried out by the subgroup members. One process can be a part
of multiple communicating groups, having a unique rank in every one of them. For example, Figure 4.2a
shows all the processes of the communicator COMM_WORLD named P1 to P8 with ranks 1−8. However, in
the subcommunicator COMM_ROW in Figure 4.2b, their rank is relabeled so that P2, P4, P6, P8 have ranks
1 − 4. Processor P6 has rank 6 in the COMM_WORLD communicator, but rank 3 in the COMM_ROW commu-
nicator. Overall, writing an MPI application requires careful attention to data partitioning and process
coordination to ensure efficient and correct execution.

Remark 4.1
In an MPI application, a rank is a number between 0 and the size of the communicating group deduced
by 1.

Let nproc denote the number of processors used in the application. The total number of processors
is nproc = nstepncollnspace, where nstep groups of processors handle the parallelization across the time
steps and ncollnspace processors handle the parallelization of the collocation problem. The three-level
parallelization strategy can be best explained by first explaining the parallelization across time steps,
then adding the parallelization across the collocation points, and finally, by adding spatial paralleliza-
tion.

Let the number of processors be nproc = nstep. In this particular implementation, we fix nstep = L where L
is a power of 2. This means that processor Pl stores one single approximation u(k)

l ∈ C
MN , denoting the

corresponding time step block of u⃗(k) ∈ CLMN defined in (2.18). The main communication group created
is the MPI_COMM_WORLD. For Algorithm 1 (the linear case with the adaptive α-strategy), an additional
subcommunicator COMM_LAST is defined and used to transfer the approximation u(k)

L in the last time step
from PL to P1. With this, the right-hand side for the new iteration r⃗(k) can be formed, and essentially,

42

4.1. Parallelization strategies

only r⃗(k)
1 is changed. This corresponds to line 4 in Algorithm 1. Graphically, the communicators used are

presented in Figure 4.1.

(a) COMM_WORLD (b) COMM_ROW (c) COMM_COL (d) COMM_LAST

Figure 4.2.: Communicator groups when the number of collocation points is M = 4 and the number of
time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 2 and nspace = 1.

(a) COMM_WORLD (b) COMM_ROW (c) COMM_COL (d) COMM_LAST

Figure 4.3.: Communicator groups when the number of collocation points is M = 4 and the number of
time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 4 and nspace = 1.

In addition, if available, more cores for the collocation-space problem can be utilized. Let the number
of processors be nproc = nstepncoll, where we impose that the number of collocation points M is divisible
by ncoll. This means that each group of ncoll processors, for each time step, stores M/ncoll internal
stages of the collocation vector. In addition to the already mentioned communicating groups, we define
COMM_ROW for communication across time steps (or rows) and COMM_COL for communication across the
collocation nodes (or columns). Two different parallelization strategies are presented in Figures 4.2 and
4.3.

43

4. Implementation

(a) COMM_WORLD (b) COMM_ROW (c) COMM_COL

(d) COMM_LAST (e) COMM_SUBCOL_SEQ (f) COMM_SUBCOL_ALT

Figure 4.4.: Communicator groups when the number of collocation points is M = 4 and the number of
time steps is L = 4. The parallelization strategy used is nstep = 4, ncoll = 4 and nspace = 2.

44

4.2. Employing the parallelization strategy

Lastly, on top of time parallelization, let nspace denote the number of processors handling the spatial
parallelization. This means that one single approximation u(k)

l ∈ CMN is spread across a group of
ncollnspace processors. We assume the parallelization strategy for handling the collocation problem is
exhausted, meaning nstep = L and ncoll = M. We also assume that the spatial size of the problem N
is divisible by nspace. With this setup, we define two more subcommunicators: COM_SUBCOL_SEQ and
COMM_SUBCOL_ALT. Every collocation vector u(k)

l is then spread across the COM_SUBCOL_SEQ commu-
nicator, which is then passed on as a communicator to petsc4py. COM_SUBCOL_SEQ is also the main
communicating group the user needs to consider when assembling the matrix A and functions f and b.
The matrix A is defined in row chunks, with N/nspace rows stored on the corresponding processors in
the group. For example, the communicator COMM_SUBCOL_ALT is used when applying the matrix Q to
a block vector because the corresponding internal stages of the collocation vectors need to be grouped
together. See Figure 4.4 for clarity.

4.2. Employing the parallelization strategy

The parallelization strategy is designed in a user-friendly way where only nstep, ncoll, and nspace need to be
defined. As a result, the subcommunicating groups are handled internally and automatically. In this sub-
section, we explain how essential steps of the proposed algorithms are executed.

4.2.1. Computing discrete Fourier transforms

Figure 4.5.: A parallel sum.

The main feature of preconditioner Cα in use is the di-
agonalization using the Fast Fourier Transform (FFT)
and its inverse (IFFT). Applying a linear operator F∗ in
equation (2.19a) marks the start of our diagonalization
process. After scaling the vector r⃗ as ˜⃗r = (J−1⊗ IMN)⃗r
in line 4 of Algorithm 1, we start the FFT. This sub-
section explains how the Radix-2 algorithm for com-
puting the FFT works in parallel. It is a divide-and-
concquer technique of multiplying a vector ˜⃗r with a
matrix

F∗ =



1 1 1 . . . 1
1 ω−1 ω−2 . . . ω−(L−1)

1 ω−2 ω−4 . . . ω−2(L−1)

...
...

...
. . .

...

1 ω−(L−1) ω−2(L−1) . . . ω−(L−1)2


,

where ω = e2πi/L is a Lth primitive root and L = 2n. The result x⃗ = F∗̃r⃗, written by components,
is

xl =

L∑
j=1

ω−(l−1)(j−1)̃r j, l = 1, . . . , L.

45

4. Implementation

If we rewrite the summation over odd and even indices, we get:

xl =

L/2∑
j=1

ω−(l−1)(2 j−2)̃r2 j−1 +

L/2∑
j=1

ω−(l−1)(2 j−1)̃r2 j

=

L/2∑
j=1

(
ω2)−(l−1)(j−1)r̃2 j−1 + ω

−(l−1)
L/2∑
j=1

(
ω2)−(l−1)(j−1)r̃2 j.

When using two processors for each part of the summation, the complexity reduces to O(L/2) algebraic
operations. If we continue dividing these summations further and compute them similarly as a parallel
sum on L processors, we end up with a computational cost of O(L log2(L)). The difference between the
parallel sum (Figure 4.5) and the Radix-2 process is that the partial sums are scaled before summation
(see line 16 in Algorithm 4) and that the computed solution is again partitioned over all processors.
With this, the FFT significantly reduces the computational cost of O(L2) of a matrix-vector multiplica-
tion.

The key idea of building this communication pattern is to look at the binary representation of the time
step stored on the processor. Let l = (l1l2 . . . ln)2 be a binary digit representation of l, n = log2(L). Then,
a perturbed index of xli is computed on the processor Pl and has a binary index li = (ln . . . l2l1)2 (see
Figure 4.6). In the end, each group of processors that stored r̃l now hold xli .

Figure 4.6.: An example of a Radix-2 butterfly communication structure for L = 8 time steps and
nstep = 8 processors. Because the indices after the forward Fourier transform do not need
rearranging, the computation proceeds with the perturbed blocks of xli . The counter k corre-
sponds to the counter of Algorithm 6. The processors that exchange data with each other are
the ones whose kth digit differs in a binary representation of the time step they hold, marked
in red. The boxes marked in yellow correspond to the IF statement being true in line 8 of
Algorithm 6.

Let rloc denote a corresponding chunk of r̃l stored on processor Prank. The algorithm for comput-
ing the scaled FFT (lines 5, 6 in Algorithm 1) is presented in Algorithm 4 where xloc is the corre-

46

4.2. Employing the parallelization strategy

sponding chunk of the output vector with the perturbed indices xli , now existing only on processor
Prank. In our implementation, the butterfly communication structure stretches across processors in
the COMM_ROW (or COMM_WORLD in case ncoll = 1) subgroup, and the rank marks the time step index
stored on Prank. The communication cost is O

(
log2(L)

)
with chunks of memory sent and received being

O(MN/(ncollnspace)).

Algorithm 4 The parallel Radix-2 algorithm for computing the scaled Fast Fourier Transform.
Input: rloc, COMM
Output: xloc = FFT(rloc)

1: rank = COMM.get_rank() # rank of the processor in the group
2: n = log2(L)
3: P = (rank)2 = (P1P2 . . . Pn)2 # digits in the binary representation of rank
4: R = base10

(
(Pn . . . P1)2

)
number in base 10 of reversed digits of P

5: ω = e2πi/L

6: for k = 1, . . . , n do # stages of the butterfly
7: ϕ = 1
8: if Pk == 1 then
9: ϕ = −1

10: r = R % 2k − 2k−1

11: rloc = ω
−rL/2k rloc # redifine rloc

12: comm_with = base10
(
(P1 . . . flip(Pk) . . .)2

)
base 10 with a flipped kth digit

13: req = COMM.Isend(rloc, destination = comm_with) # Prank sends rloc to Pcomm_with
14: vloc = COMM.Recv(source = comm_with) # Prank recieves vloc from Pcomm_with
15: req.Wait()
16: xloc = vloc + ϕr⃗loc

17: return xloc

Remark 4.2
There are two fundamental ways of passing messages using MPI. Suppose processor A packs the data
in a single message and sends the data to processor B via MPI_Send. The message is then passed to a
buffer and directed to processor B. Simultaneously, B has to indicate that it wants to receive the message
with a MPI_Recv. In this scenario, both processors wait until their actions are completed: A will not
continue until it can use the send buffer again, and B continues only after the receive buffer contains the
newly received message. In other words, their communication is blocking.

On the other hand, one can use non-blocking versions MPI_Isend and MPI_Irecv. In these versions, the
send and the receive buffers are allowed to be used again only when the message passing is successful;
however, the application continues, allowing this request to be fulfilled later. In Algorithm 4 (line 13),
all the processors perform a non-blocking MPI_Isend operation, allowing the application to receive the
data in line 14. Success of req.Wait() in line 15 allows the application to continue because the send
buffer is available again.

If MPI_Send is used in line 13, instead of a non-blocking MPI_Isend, processors A and B would be
hanging in the send routine without a corresponding receive, leading to a deadlock.

47

4. Implementation

At this stage, the problem is decoupled; therefore, there is no need to rearrange the vectors back in the
original order as done in the standard Radix-2 algorithm, which saves communication time. The inner
system solves in (2.19b) can be carried out on these perturbed indices until the next Radix-2 for the
parallel IFFT in (2.19c) (line 15 in Algorithm 1) is performed. The IFFT has an inverse communication
structure, perturbing the indices back to the original state.

4.2.2. Solving decoupled problems

Solving the diagonal systems in (2.19b) requires more care. Each group or subgroup of COMM_COL
simultaneously and independently solves its own system, storing the solutions in yl. Excluding the
communication time, this part is expected to be the most costly one. After forming and diagonalizing
the matrix QG−1

l locally on each processor, x1
l as in (2.24a) (line 10 in algorithm 1) is firstly computed

as

(x1
l)m =

M∑
j=1

[S−1
l]m j(xl) j, (x1

l)m, (xl) j ∈ C
N , Sl ∈ C

M×M, (4.1)

where (xl)m is a subvector of xl ∈ C
NM containing indices from mN to (m + 1)N which represents the

corresponding implicit collocation stages. Depending on the parallelization strategy, these chunks are
stored in xloc, as in the output of Algorithm 4.

When ncoll = nspace = 1, the sums are computed locally on each processor since all data is locally stored
and no communication is needed.

When ncoll > 1, the summation is computed using MPI_Reduce on the COMM_COL level or, in case of
spatial parallelization, on the COMM_SUBCOL_ALT level. Each processor locally computes the sum and
then engages in a collective routine MPI_Reduce, which then computes a parallel sum on one of the
processors. The communication complexity is O(ncoll log2(ncoll)). The length of the stored vector xloc is
MN/(ncollnspace), therefore the chunks of memory being sent and received are O(MN/(ncollnspace)).

The decoupled inner linear systems, after diagonalization across all time points (2.24b) (line 12 in al-
gorithm 1), can be solved using three already implemented predefined solvers: a direct solver based
on the perturbed LU-decomposition, a GMRES solver implemented in scipy or a predefined GMRES
solver (without a preconditioner) from petsc4py. When ncoll = M, each linear system is simultaneously
solved on one processor. When ncoll < M, one processor contains M/ncoll > 1 systems, and they are
solved sequentially within a group. If nspace > 1, the communicator COMM_SUBCOL_SEQ is passed to
petsc4py for handling the systems of size N × N in parallel. In this case, only a space-parallel solver
can be used. The predefined spatial solver is user accessible and serves as an example with an intent to
redefine it freely. See Section 4.3 for more details.

Equations (2.24c) and (2.23b) (lines 13 and 14 in Algorithm 1) are computed in exactly the same manner
as (4.1).

4.2.3. Computing the residual

The extension to using iterative refinement heavily depends on the already discussed parts of Algorithm
1. The only thing that needs to be taken care of is the computation of the residual (line 7 in Algorithm

48

4.2. Employing the parallelization strategy

3). The residual vector in (3.18) can be expressed in three parts as

r⃗es(k)
=


u0 + v1

v2
...

vL

︸ ︷︷ ︸
w⃗

+


0

Hu(k)
1
...

Hu(k)
L−1

︸ ︷︷ ︸
h⃗(k)

+


∆T (Q ⊗ IN)f(u(k)

1) − Ccollu(k)
1

∆T (Q ⊗ IN)f(u(k)
2) − Ccollu(k)

2
...

∆T (Q ⊗ IN)f(u(k)
L) − Ccollu(k)

L

︸ ︷︷ ︸
d⃗(k)

.

The vector w⃗ is a constant vector built just once. The chunks are then stored accordingly, depending on
the parallelization strategy in use.

To assemble the vector h⃗(k), each processor (or group of processors) containing the last collocation stage
of u(k)

ℓ
has to send it to the processor (or group of processors) containing u(k)

ℓ+1. In case nstep = L, ncoll =

nspace = 1, processor Pℓ has to do one MPI_Isend to processor Pℓ+1, followed by a corresponding
recieve. The chunk of memory being communicated is O(N). This is done using the MPI_COMM_WORLD
communicator. See Figure 4.1a for clarity.

The parallelization on the collocation level is triggered with a setup nstep = L, ncoll ≥ 1, and nspace = 1.
In this case, the last stage of u(k)

ℓ
of length O(N) is sent to the whole group of processors over which u(k)

ℓ+1
is spread. First, the processor Pℓ from the COMM_ROW group containing the last stage sends the vector
to Pℓ+1 (here, the indexing of processors is within the group). After receiving the vector, the processors
perform an MPI_Bcast within the COMM_COL communicator, sending the vector to each processor of
that group. For example, if the parallelization strategy is as in Figure 4.2 and 4.3, the processors in the
bottom row send the last stage to the processors on the right, followed by a broadcast vertically within
the column.

In the case of spatial parallelization nspace ≥ 1, the last stage of u(k)
ℓ

is spread across multiple processors.
The chunks of length O(N/nspace) are first sent within the COMM_ROW in the same fashion as before, but
the vertical broadcast is now performed on the COMM_SUBCOL_ALT communicator. See Figure 4.4 for
clarity.

Computing vector d⃗(k) in the residual is more straightforward. The Ccollu(k)
ℓ
=

(
IMN − (Q ⊗ A)

)
u(k)
ℓ

contains an underlying part which is similar to equation (4.1). It can be seen as applying Q ⊗ IN to
vector containing block entries A

(
u(k)
ℓ

)
m ∈ C

N×N , where
(
u(k)
ℓ

)
m is a subvector containing indices from

mN to (m + 1)N. In case the parallelization strategy also parallelizes in space, the A
(
u(k)
ℓ

)
m product is

computed using petsc4py on the COMM_SUBCOL_SEQ level since the matrix A is in that case also stored
in row-chunks. Vectors f(u(k)

L) are computed locally and Q ⊗ IN is applied in the same fashion as in
equation (4.1).

4.2.4. Computing average Jacobians

The implementation also supports the computation of the Jacobians. A simple switch variable decides
whether the computation is performed or not. If so, in every iteration, a new approximation of a Jaco-
bian is computed as an average. First, a local Jacobian J(k)

ℓ
is computed on the processors that contain

the last stage of u(k)
ℓ

. After that, the processors in the COMM_ROW group perform an MPI_Allreduce
routine on the 1

L J(k)
ℓ

matrices, after which every processor storing the last stage implicit stage contains
the average. The Jacobians are multiplied by 1/L before the summation, lowering the chances of an
overflow.

49

4. Implementation

In case ncoll > 1, nspace = 1, a broadcast within the COMM_COL is needed so that every processor gets the
new approximation. In case nspace > 1, the broadcast is done within the COM_SUBCOL_ALT communica-
tor.

4.3. Code structure

In this section, the structure of the implementation is explained. The design is user-friendly, where the
user should just focus on defining the initial value problem in the Problem class, choosing a time-
parallel solver class, and configuring the variables in main.py. The code is publicly available with a
mini tutorial on GitHub [60]. The solver classes available are a linear solver with α-adaptivity and the
iterative refinement-based solver. The variables in main.py are simple, such as choosing the number of
parallel steps L, number of collocation nodes M, number of spatial points N, etc. Figure 4.7b shows the
class hierarchy.

(a) Setup calls (b) Class hierarchy

Figure 4.7.: Setup function calls and the inheritance hierarchy. The symbol ⊕ denotes or, meaning that
just one of the solver classes is participating in the hierarchy. The flow is defined by the user,
specifying a solver as a parent of the Problem class.

The Abstract class contains instances of variables inherited and used across every lower class in the
hierarchy but become defined later on. For example, the communicator COMM_WORLD is instanced in the
uppermost Abstract class but defined in the Communicator class. After that, it is accessible and

50

4.3. Code structure

used within all the child classes. Another example is the definition of the A matrix. The variable is
instanced in the Apstract class but defined by the user in the Problem class. This is possible with
a call of a setup function within each class. The setups are performed bottom-up so that the matrix
object A is defined when the COMM_WORLD is already an object, see Figure 4.7a for the setup function
calls. In conclusion, this inheritance structure allows us to access objects across every class, whereas the
bottom-up setup allows us to use the object definitions from top to bottom. It also allows us to define
variables passed on on runtime instead of defining them in the main.py.

The Communicator class handles the initialization of the communicators described in section 4.1.
The MPI communicating groups are defined depending on the variables set up in the main.py (or via
runtime arguments). The only communicator a user needs is then renamed to comm_matrix to simplify
the user experience.

Helper class is a collection of methods that are used as building blocks in the solver classes. Here, the
time stepping method is defined through the Q matrix alongside every other object needed in the solver
classes. The functions owned by this class handle different cases of the parallelization strategy. It is, by
far, the collection of the most complicated and algorithmic methods, such as the computation of the FFT
and the IFFT, computation of the residual, functions updating the right-hand side of each iteration, etc.
With this, the flow in the solver classes is more straightforward, using just the inherited functions from
the Helper class.

The two solver classes resemble the code in Algorithm 1 and Algorithm 3. An additional feature of the
solver classes is that time-sequential runs are also supported, meaning that a sequential time solver can
be combined with a space-parallel one. This case is carefully handled separately, ensuring that fully
sequential runs have no communication overheads.

4.3.1. Setting up a problem class

The problem class consists of several vital variables. The first one is the definition of matrix A in (2.9)
or the linear operator fI in (3.7). The object is stored into a sparse matrix Apar, which can be as-
sembled after the super.setup() function call. In this function call, firstly, a matrix communicator
comm_matrix and variables row_beg and row_end are set up. After that, on the current processor,
we have to store rows starting from a row indexed row_beg to a row indexed row_end-1 in sparse
format.

Other members of the class are functions. The function bpar is a definition of the function b(t) in par-
allel, returning the rows indexed from row_beg to row_end-1. Another simple yet important function
is the definition of the initial condition u_initial. The definition of fE in (3.7) is a function F, and
its first derivative is dF. A switch parameter betas determines whether dF is used or not. For example,
if the array is defined as betas = [0, 1], then in the first global iteration, fI = A is used, and in
every other, fI = A + J

(k)
is used. The explicit part fE is also changed automatically to fit the split-

ting.

Some additional functions can be redefined or used as is. These are the linear_solver function and
norm function so that the errors can be monitored in different norms. The linear_solver contains
a petsc4py GMRES solver. Because of this, testing and coupling with other linear solvers is made
easy.

51

4. Implementation

Some pre-implemented problem classes can be found on GitHub [60]. They include different discretiza-
tions of the liner heat, advection, wave and Schrödinger equations, and nonlinear Allen-Cahn and Boltz-
mann equations. The parent of the class is user-defined and defines the parallel-in-time solver that will
be used.

4.3.2. main.py

After choosing or implementing a problem class, an object of the problem class is made in main.py.
With this, additional class attributes are defined, such as variables defining the parallelization strategy,
number of time steps, number of collocation points, number of spatial points, etc. An example is included
here.

from examples.linear.advection_2d_pbc_upwind5 import Advection
prob = Advection()

choosing a number of points
prob.spatial_points = [700, 600] # number of spatial points
prob.time_points = 2 # number of collocation points

choosing a time domain
prob.T_start = 0
prob.T_end = 0.1

choosing the number of intervals handled in parallel
prob.time_intervals = 16 # number of time steps in parallel
prob.rolling = 4 # number of parallel windows

choosing a parallelization strategy
prob.proc_col = 4 # number of cores for the coll. problem
prob.proc_row = prob.time_intervals # number of cores handling time steps

choosing a solver
prob.solver = ’custom’

setting maximum number of iterations
prob.maxiter = 5 # maximum number of iterations
prob.smaxiter = 100 # maximum number of inner solveri

terations

choosing a setting for the alpha sequence
prob.optimal_alphas = True

setting tolerances
prob.tol = 1e-5 # a stopping tolerance
prob.stol = 1e-7 # inner solver stopping tolerance

prob.setup() # must be before solve()
prob.solve() # solve
prob.summary(details=True) # print details

A sequential solver in time steps, but parallel across the collocation nodes (or in space), is also supported
and can be chosen by setting time_intervals = 1 and proc_col > 1. The number of time steps
is then governed by rolling. In general, this variable specifies how many windows of ParaDiag with
will be applied in a windowed way, computing the first time_intervals in parallel and then using the

52

4.4. Computational complexity and speedup analysis

solution as a new initial value for the next parallel window. The variables are thoroughly explained in a
mini tutorial on GitHub [60].

4.4. Computational complexity and speedup analysis

In this section, we explore the theoretical speedup of parallelization in time with the proposed algorithm.
Speedup is a number that measures how many times is a parallel execution of a program faster compared
to a serial execution. In a formula, speedup using n cores can be expressed as

sn =
T1

Tn
,

where Tn is the time needed to execute the same algorithm on n cores. Another important measure
accompanying speedup is efficiency. It measures how efficient the parallel execution of a program is and
can be expressed as

en =
T1

n Tn
.

Ideally, using n cores would be n times faster, resulting in sn = n and en = 100%. However, this is almost
never the case when communication overheads are counted in.

4.4.1. The linear case

In order to estimate speedup, we need computational complexity estimates for three different cases: an
estimate for a completely sequential implementation T1, an estimate if there are M processors available
for solving the problem sequentially over time steps, but parallel across the collocation points TM, and
lastly, an estimate if we have LM processors to solve in parallel across the steps (lines 6 and 17 in Algo-
rithm 1) and across the collocation points (lines 11–13 in Algorithm 1) TML. The last time corresponds
to a setup when nstep = L and ncoll = M. Communication times in this model are ignored, and we assume
to handle algebraic operations on the same amount of memory chunks O(N) in all cases. The estimates
can be given as follows:

T1 = L(MTsol + 2M2) = LM(Tsol + 2M),

TM = L(Tsol + 2M log2(M)),

TML = k(Tsol,par + 2 log2(L) + 3M log2(M)).

Quantity T1 denotes the computational complexity when solving the collocation problem (2.6) sequen-
tially over L time steps directly via diagonalization of Q. For each step, the solution is obtained by solving
each system on the diagonal, one by one, M times, with a solver complexity of Tsol. The expression 2M2

stands for the two matrix-vector multiplications needed for the diagonalization of Q.

TM denotes the complexity for solving the collocation problem sequentially over L time steps via di-
agonalization, except these diagonal systems of complexity Tsol are solved in parallel across M proces-
sors. The two matrix-vector products can be carried out in parallel with a computational complexity of
2M log2(M).

At last, TML represents the computational complexity when nstepncoll = LM processors. Here, k de-
notes the number of outer iterations, and 2 log2(L) + 3M log2(M) is the complexity of operations when
using the communication strategies as discussed in Section 4.1. The solver complexity Tsol,par may

53

4. Implementation

differ from Tsol since differently conditioned systems may be handled on the diagonals. Also, the algo-
rithm requires solving complex-valued problems even for real-valued systems, which could also cause
an overhead, depending on the solver at hand. Remark 4.3 comments more on the solver complexi-
ties.

Hence, the theoretical speedups for k ∈ N iterations look like:

T1

TML
=

LM(Tsol + 2M)
k(Tsol,par + 2 log2(L) + 3M log2(M))

, (4.2a)

TM

TML
=

L(Tsol + 2M log2(M))
k(Tsol,par + 2 log2(L) + 3M log2(M))

. (4.2b)

The true definition of speedup would be (4.2a); however, the baseline method in our algorithm is also a
parallel method (parallel across the method, i.e. over the collocation nodes); therefore, we also need to
take (4.2b) into account. For L ≥ 2 it holds

2 log2(L) + 3M log2(M) ≥ 2M

which in combination with (4.2a) gives

T1

TML
≤

LM
k

Tsol + 2M
Tsol,par + 2M

. (4.3)

If we combine the fact that

2 log2(L) + 3M log2(M) ≥ 2M log2(M)

is true for all M, L and (4.2b), we get

TM

TML
≤

L
k

Tsol + 2M log2(M)
Tsol,par + 2M log2(M)

. (4.4)

The speedup estimates (4.3) and (4.4) roughly depend on the ratio between how many steps and nodes
are handled in parallel and the number of outer iterations. On the other hand, the efficiency depends on
the number of outer iterations e ≈ 1/k, deteriorating fast with every iteration.

This is not a surprise when dealing with Parareal-based parallel-in-time methods, and our speedup es-
timates fit the usual theoretical bounds in this field, too. Most importantly, as in Parareal, minimizing
the number of iterations is crucial to achieving parallel performance. This is the reason why carefully
choosing the (αk)k∈N sequence is important; it brings the number of outer iterations down. Lowering
the outer iteration count for even a few iterations can provide significant speedup. This claim is not just
supported theoretically but in our test runs as well.

4.4.2. Iterative refinement

An extension to the iterative refinement can be expressed using already made estimates for the purely
linear case. Let the parallelization setups for estimating T1, TM, and TML be the same as for the previous
case. Following the same logic, the estimates read:

T1 = Lk(MTsol + 2M2 + T1,res),

TM = Lk(Tsol + 2M log2(M) + TM,res),

TML = k(Tsol,par + 2 log2(L) + 3M log2(M) + TML,res).

54

4.4. Computational complexity and speedup analysis

Since solving an equation on a single time step is an iterative process, k denotes the average number of
iterations over L time steps, and k is the same as before, the global number of iterations when doing a
fully-parallel run.

A novelty in each iteration is the computation of the residual. The dominant part in the computational
complexity T1,res is the application of the Q matrix two times, once on a vector Au(k)

ℓ
and the second time

on f(u(k)
ℓ

). We can assume that the matrix-vector multiplication has a complexity of N since the matrices
in play are usually sparse, and in total, we have M multiplications. With this, we have T1,res = 2M2+MN.
The complexity TM,res has the application of the Q two times, which is on M processors 2M log2(M) and
a matrix-vector computation on each processor. In total, it reads TM,res = 2M log2(M) + N. The same
computation is carried out on ML cores, concluding TML,res = 2M log2(M)+N.

With this, the theoretical speedup estimates read

T1

TML
=

LMk(Tsol + 4M + N)
k(Tsol,par + 2 log2(L) + 5M log2(M) + N)

, (4.5a)

TM

TML
=

Lk(Tsol + 4M log2(M) + N)
k(Tsol,par + 2 log2(L) + 5M log2(M) + N)

. (4.5b)

For L ≥ 4 it holds
5M log2(M) + 2 log2(L) ≥ 4M

which in combination with (4.5a) gives

T1

TML
≤

LMk
k

Tsol + 4M + N
Tsol,par + 4M + N

. (4.6)

To get the other speedup estimate, we can use the inequality, true for every M and L

5M log2(M) + 2 log2(L) ≥ 4M log2(M),

which in combination with (4.5b) gives

TM

TML
≤

Lk
k

Tsol + 4M log2(M) + N
Tsol,par + 4M log2(M) + N

. (4.7)

The speedup estimates (4.6) and (4.7), similarly as before, depend on the ratio between the average
number of iterations per time step and the number of how many steps are handled in parallel and the
number of outer iterations. The efficiency roughly depends on the ratio between the number of average
iterations and outer iterations e ≈ k/k. In conclusion, lowering the number of outer iterations is an
important part of gaining good speedup and efficiency.

Remark 4.3
It has to be kept in mind that the computational complexities of system solves should stay similar Tsol,par ≈

Tsol while trying to minimize the number of outer iterations. For example, we can choose a smaller
parameter α to lower the convergence factor, expecting fewer outer iterations. By doing so, we would
also need to balance the rounding errors by solving the inner systems to a better accuracy ε. This would
balance the rounding errors, ending up with errors being approximately ε/α. However, the systems in
the sequential run usually do not have to be solved to machine precision, but rather to some accuracy
τ ≫ ε. In the end, this results in an imbalance in the system solving complexities Tsol,par ≫ Tsol, which
would again reduce speedup.

55

CHAPTER 5

Numerical results

The structure of this chapter is as follows. Section 5.1 comments on weak and strong scaling of time-
parallel methods. Next, in Section 5.2, we discuss the challenges associated with selecting appropriate
test cases for time-parallel integration methods and examine specific difficulties in evaluating perfor-
mance measures that may result in overestimating the method’s performance. In Section 5.2.2, we pro-
vide a conclusion on how to select appropriate benchmark setups that will be employed in the main
results sections, which numerically test our ParaDiag method for linear (Section 5.3) and nonlinear (Sec-
tion 5.4) equations. Throughout Section 5.2.1, a collection of example test cases and setups that lead to
overperformance or faulty conclusions, we refer to future benchmarks performed in Sections 5.3 and 5.4
as already known results, even though they show up chronologically later in the manuscript. The struc-
ture is nontraditional because we first want to stress the importance of manufacturing meaningful results,
especially since some overlooked misconceptions can be very easily introduced silently. Section 5.3
analyzes the ParaDiag method coupled with the collocation problem on linear equations, namely the
heat and advection equation, where Section 5.4 examines the method for the nonlinear Allen–Cahn and
Boltzmann equation.

All the results presented here were obtained by the implementation discussed in Chapter 4, and per-
formed on the supercomputer JURECA-DC, a supercomputer at Forschungszentrum Jülich. The system
combines a flexible Data Centric (DC) module, based on the Atos BullSequana XH2000 [77]. The con-
figuration used consists of 480 compute nodes containing 2 sockets with AMD EPYC 7742 processors
where each processor has 2 sockets with 64 cores.

5.1. Parallel scaling

The type of scaling where the problem size is fixed, but the number of processors varies is called strong
scaling. To do a thorough case study of how well our proposed ParaDiag method behaves for a given
equation, we first pick a desired tolerance ζ we want our approximation to satisfy. Then, while increasing
the number of processors, we must ensure that we always solve the same equation on the same time
domain. This is done by fixing the number of time steps L we want to scale for and choosing a time step

57

5. Numerical results

∆T for the propagator to reach the desired accuracy. The time domain we are solving for is then fixed as
[T0,T0 + L∆T]. Then, depending on the number of processors for the parallelization across time steps,
we compute parallel moving windows of ParaDiag. For example, if we want to cover a time domain
[0, 8∆T] with nstep = 4 processors, we compute the first 4 time steps in parallel and then propagate the
solution further for the next 4 time steps, in parallel (see Figure 5.1). As a result, the benchmarks always
produce the approximation at the same point in time.

Figure 5.1.: Strong scaling with Para-
Diag. The grouped intervals
are solved in parallel. nstep
processors determine the size
of the moving window.

Another type of scaling is weak scaling. It is a benchmark
where the problem size changes according to the number of
given processors. Since we want to keep solving the same
equation (not changing the time-space domain), weak scal-
ing would translate to fixing the time domain [T0,T0 + T]
and changing the number of parallel time steps since each
time step corresponds to one processor. Consequently, each
parallel window of ParaDiag would solve the equation for
nstep = L = 1, 2, . . . , Lmax time steps, with a corresponding
step size ∆T = T/L on L processors. Because we would
want to avoid under- or over-resolve in time, we would need
to change our spatial discretization accordingly to match the
time discretization error. The discretization error is now
changing, therefore, to present honest speedups, we would
have to solve to a different tolerance ζ, somewhere around
the discretization error. Ultimately, we end up with a weak
scaling plot in which each point solves the same equation to

a different tolerance with a different discretization error. Solving the problem to three different thresh-
olds ζ ∈ {ζ1, ζ2, ζ3} can be seen as weak scaling since the tolerance dictates the discretization order, and
with this, the problem size. Because of this, strong scaling results for three thresholds ζ ∈ {ζ1, ζ2, ζ3} are
presented since they are more valuable from a mathematical point of view.

5.2. How to compare time-parallel methods and codes

The primary objective of this section is to underscore the challenges involved in evaluating the effective-
ness of parallel-in-time methods through examples. In the absence of suitable numerical experiments,
performance of these methods can be overestimated, leading to faulty conclusions. It is critical to high-
light some potential shortcomings to promote greater awareness among researchers. The section is writ-
ten lightheartedly, drawing inspiration from the article Twelve Ways To Fool The Masses When Giving
Parallel-In-Time Results [74] and providing additional examples that are specific to our newly derived
ParaDiag method coupled with the collocation problem.

Several widely used benchmarks in the Parallel-in-Time community include the heat equation, the linear
advection equation, the Allen–Cahn equation, and Burger’s equation, among others. However, the exam-
ples presented frequently lack several crucial setup parameters, and manual comparison is the only viable
means of evaluating different parallel-in-time methods. Additionally, varying time-stepping schemes are
only supported by some implementations, further complicating the comparison. Therefore, a direct per-
formance comparison with other methods, such as MGRIT and PFASST, is beyond the scope of this
analysis and is reserved for future research.

58

5.2. How to compare time-parallel methods and codes

It is worth to mention that some comparison has been made between ParaDiag, MGRIT, and Parareal
in the preliminary work of [58]. The method used for comparison is backward Euler only, without
the parameter adaptivity and without consideration of inexactness in the system solves. Despite these
shortcomings, the approach still shows promising scaling properties, even outperforming the classical
PinT methods.

5.2.1. Presenting numerical results with ParaDiag

Compare runtimes

Let us assume that the theoretical component of ParaDiag has been developed, and it is anticipated that
rounding errors will pose a challenge. To address this issue, we adopt an iterative refinement approach
as in (3.18) and monitor the number of iterations required to achieve convergence. We evaluate the
performance of ParaDiag under different fixed parameter values α = 10−4, 10−8, 10−12, while solving the
linear heat and linear advection equations and achieving three different accuracies for the approximation,
ζ = 10−5, 10−9, 10−12. The parameter configuration for the equations is identical to that presented in
Table 2.2.

Figure 5.2.: Number of ParaDiag iterations for the linear heat and the linear advection equation, solved
to three different tolerances ζ. The first row contains the number of iterations when the α-
adaptive strategy is used, whereas the remaining rows contain the number of iterations when
a fixed parameter α within iterative refinement is used.

The results are illustrated in Figure 5.4. We see that convergence is achieved in only 1 or 2 iterations,
which is superior to the outcomes obtained in Figure 2.3. While some choices of α demonstrate that the
round-off errors are still considerable, we can safely assume that values α = 10−4, 10−8 are a good and
robust choice. Given that our parallel-in-time method solves both parabolic and hyperbolic prototype
equations, it is a highly promising approach. Moreover, efficiency estimates suggest that our parallel
implementation efficiency is expected to be roughly around e = 1/k, where k denotes the number of
outer iterations, as presented in Section 4.4. Therefore, we anticipate an efficiency of around 50% – a
remarkably favorable outcome when considering parallel-in-time methods!

In order to verify the results on another numerical example, we can count the number of outer iterations.
To accomplish this, we monitor the number of iterations until convergence for the setups presented in Ta-
ble 5.2. The outer iterations of ParaDiag implemented with iterative refinement and ParaDiag employing
the adaptive α-strategy is shown in Figure 5.2. The results show that using iterative refinement reduces
the number of outer iterations, making it again a more favorable approach!

59

5. Numerical results

(a) Wall clock time in seconds (b) Maximum numberof GMRES iterations.

Figure 5.3.: Wall clock times and the total number of the maximum number of inner GMRES iterations
per time step for parallel runs of the linear heat and the linear advection equation, solved to
three different tolerances ζ. The figures compare ParaDiag with the α-adaptive strategy to
ParaDiag with a fixed parameter α using iterative refinement.

Figure 5.4.: Convergence curves for ParaDiag with iterative refinement for different tolerances ζ. The
vertical lines represent the tolerances for the stopping criteria: red for the error ∥u(TL)−u(k)

L ∥∞

reaching under 10−5, green for 10−9 and blue for 10−12.

60

5.2. How to compare time-parallel methods and codes

Despite the promising results, counting outer iterations in parallel-in-time algorithms may not necessarily
be correlated with wall clock times. Figure 5.3a displays parallel runtimes for the same setups Figure 5.2
shows the number of outer iterations for. It is evident that the computation time required for solving
the heat equation is significantly greater than expected. Additionally, previously deemed optimal, the
parameter α = 10−8 now underperforms. The reason is that the inner systems are poorly conditioned
and take a longer time to solve. This has also been observed in Subsection 5.3.1, and the smaller the
value, the worse it gets. On the other hand, the iterative refinement approach may benefit the linear
advection equation. However, the optimal value of α remains uncertain. The α-adaptive strategy, while
not minimizing wall clock time in every case, appears to be a robust option.

Remark 5.1
Counting the number of inner GMRES iterations would also not predict the wall clock times very well.
If that were the case, we would expect the runs with 10 inner GMRES iterations to have a greater wall
clock time than those with 2 inner GMRES iterations. However, this is not the case, and the run with
fewer total GMRES iterations takes ∼ 50% longer.

Choose the right time step

To showcase the exceptional performance of our parallel-in-time method, we test it for the linear advec-
tion equation, which is governed by

ut + ux + uy = 0, (t, x, y) ∈ [0,T] × [0, 1]2.

Figure 5.5 presents noteworthy speedup for a hyperbolic type equation, achieving a factor of up to 20
on 192 cores when parallelizing across time steps and M = 3 collocation nodes. Previously, a modest
speedup of 7 had been reported in Figure 5.19a.

Figure 5.5.: Speedup for the advection equation,
solved in parallel across time steps and
the collocation nodes. The gray plots
represent scaling across time steps only.

Furthermore, we also test our newly proposed
method based on the composite collocation
problem iterations solved via iterative refine-
ment (3.18), where we treat the nonlinear right-
hand side of the equation implicitly. The base
time-stepping propagator is chosen to be implicit
Euler, and we apply it to the Allen–Cahn equa-
tion

ut = ∆u +
1
ε2 u(1 − u2), (5.1)

(t, x) ∈ [0,T] × [−8, 8]2,

where ε = 0.01. The strong scaling plots are
depicted in Figure 5.6, again demonstrating ex-
ceptional speedup despite the equation’s Lipschitz
constant of the right-hand side being approxi-
mately equal to 1/ε2. Our newly proposed ap-
proach is Jacobian-free and thus does not introduce communication overheads. Because of this, we
expect improved performance compared to the inexact Newton’s method.

61

5. Numerical results

Here, both results are presented in the Results section 5.4.1. The parameters for the linear advection equa-
tion are taken from Table 5.3 and the ones for the Allen–Cahn equation from Table 5.4. A slight modifi-
cation in reducing the time step to ∆T/100 produces the presented results.

(a) Speedup (b) Efficiency

Figure 5.6.: Strong scaling plots for the Allen–Cahn equation with ε = 0.01.

For the linear advection equation, it sometimes lowers the number of global iterations from 5 to 4. This
is because the desired tolerance is easier to achieve if the time step is smaller. The trade-off game played
here is that, when solving the problem sequentially, the time stepper has to propagate previous solutions L
times, which translates to solving a linear system in every time step, yielding a total amount of L system
solves. These system solves may take less time when ∆T is smaller, but nevertheless, we still have a
baseline sequential method requiring L system solves. When this setup is combined with ParaDiag, a
fixed point iteration method, it needs fewer iterations since the solution does not change too much on the
time domain. If we look at the convergence Theorem 3.6, where ξ(k) is the error in the kth iteration, we
see that the error is bounded as

ξ(k) ≤

(
α

1 − α

)k
ξ(0).

Figure 5.7.: Wall clock time for the
Allenc-Cahn equation solved
with implicit Euler.

When the initial iteration u⃗(0) is filled with initial conditions
u0, then ξ(0) is of order L∆T . So if instead of ∆T we plug
in ∆T/100, the benefits are obvious: we are simply closer
to the fixed point solution! A possible bypass of the prob-
lem would be to use a relative tolerance as a stopping crite-
rion.

In the case of the Allen–Cahn equation, ∆T plays a more
significant role since it damps the explicit terms. The
convergence factor from Theorem 3.6 can be expressed
as

ξ(k+1) ≤
o(∆T)L + α

1 − α
ξ(k).

Because of this, the approach that is not even converging
for the composite collocation problem iterations (Test 1 in
Subsection 5.4.1) for parallel windows coupling more than L ≥ 16 time steps (see Figure 5.25), now
exhibits significant speedup. The situation becomes more apparent if we look at Figure 5.7 representing

62

5.2. How to compare time-parallel methods and codes

wall clock time with the rounded average number of iterations a parallel window needs to converge. We
see that the sequential method, iteratively solving a nonlinear problem in each propagation, needs only 1
iteration to converge. The time step is so tiny that 64 time steps need just 3 iterations in total. Not only
did we make the method converge, but we also inflated speedup.

In conclusion, choosing the step size of the method should always be coupled with the actual accuracy
we want to reach. It can be challenging to do so since sometimes additional requirements on ∆T have
to be satisfied, however, it should be chosen so that the time propagator does not over-resolve in time.
Analyzing the method should be done only when the underlining sequential propagator makes sense, and
using a tiny time step with a high-order implicit method rarely makes sense.

Setting the tolerance for an inner iterative solver

To analyze ParaDiag, we once again present our findings on the Allen–Cahn equation. The equation
is presented in (5.1), and we set ε = 1. The implicit Euler time stepper is used, while the spatial and
temporal discretizations are provided in Table 5.5. A solution is accepted when the norm of the residual
falls below ζ = 10−6. Figure 5.8 depicts the strong scaling plots for ParaDiag, which was solved using
inexact Newton’s method and the composite collocation problem iterations.

(a) Speedup (b) Efficiency

Figure 5.8.: Strong scaling plots for the Allen–Cahn equation with ε = 1.

Using inexact Newton’s method results in a speedup of approximately 20, whereas using 128 cores for the
composite collocation problem iterations yields a speedup of 11. This outcome represents a significant
improvement over the reported results in Figure 5.28a, surpassing them by more than a factor of 2. The
parallel efficiency achieved is almost 20%, which is considered to be very favorable for parallel-in-time
methods!

Here, a good speedup is achieved because the inner relative tolerance for GMRES is set to τ = 10−12.
Although a time-space discretization of order ζ = 10−6 is chosen, we employ over-resolution at each
iteration. In a sequential computation, unnecessary precision τ is applied to each time step, resulting
in an artificially and/or intentionally slower sequential method. In contrast, ParaDiag benefits from a
smaller τ as it mitigates the round-off errors generated by α.

63

5. Numerical results

Choosing a meaningful benchmark

To test the effectiveness of ParaDiag, the heat equation is solved with implicit Euler on a time interval of
[0, 0.32] and L = 64 time steps:

ut = c∆u, u(0) = sin(2πx) cos(2πy).

The parameters are chosen such that the solution is not over-resolved in time or space, with a tolerance
of τ = 10−6 for the inner linear solver and a stopping tolerance of ζ = 10−5. The parameter α is fixed at
10−5 for each iteration. The results, as shown in Figure 5.9, achieve a speedup of almost 15, surpassing
the reported speedup of below 10 in Figure 5.13a.

Figure 5.9.: Speedup

The diffusion coefficient in this example is c = 100
8π2

and the exact solution is

u(t, x, y) = e−100t sin(2πx) cos(2πy),

a solution that decays to 0 very fast. The algorithm
probably solves inaccurately but still converges
under the threshold ζ without any problems. In-
creasing the number of time steps that approach a
nearly steady state solution leads to an increase in
achievable speedup.

Even though the speedup increase is not extremely
significant, the problem serves as an example to
demonstrate how one has to understand the dy-
namics of the system in order to present meaningful results.

Optimizing the code

We examine the capabilities of the newly proposed ParaDiag on the nonlinear Boltzmann equation, where
we treat the nonlinear collision term explicitly. We consider the equation of form

ft + v1 fx =
1
ε

Q(f), (t, x, v) ∈ [0, 1] × [0, 1] × [−8, 8]3. (5.2)

The computation of the collision term Q is the most computationally heavy part, and we make use of a
KitBase.jl library, a Julia based code which contains the functions to compute the collision kernel via
the Fast Spectral Method (FSM). For purposes of bridging Python and Julia, we use a pyjulia code
wrapper which allows us to use variable definitions from both languages inside Python.

For the discretization part, we choose a first-order upwind scheme for the spatial discretization and
implicit Euler method as a time-stepper, with a step size ∆T = 10−3. We set ε = 10−3 and choose 384
points for the spatial discretization and 72× 36× 36 points for the velocity space. The stopping criterion
is ∥r⃗es(k)

∥∞ ≤ 10−4 and the linear solver tolerance is τ = 10−6.

First, we scale the problem sequentially in time but parallel in space for L = 32 time steps (the petsc line
in Figure 5.10). On top of the spatial parallelization, we deploy our time-parallel IMEX-based Jacobian-
free ParaDiag method for nonlinear equations. In Figure 5.10, petsc(n) means that a n cores are used
for the parallelization of the spatial problem for each time step.

64

5.2. How to compare time-parallel methods and codes

Figure 5.10.: Speedup for the Boltzmann equation using pyjulia.

We can see the terrific performance of our time-parallel integrator and how it continues scaling after
spatial parallelism is saturated. The overall speedup achieved is approximately 126, twice the speedup
obtained in the experiment shown in Figure 5.31a, an exceptional outcome when dealing with nonlinear
hyperbolic equations!

Figure 5.11.: Efficiency for the Boltzmann
equation using pyjulia.

What needs to be presented here is that the spatial scal-
ing narrowed down the runtime of a simulation from
2526 seconds to around 166 seconds, and the addi-
tional parallelization in time reduced the total runtime
to just 20 seconds. The experiment’s setting is the
same as in Subsection 5.4.2, where the execution time
of the sequential run took almost 400 seconds less.
Looking at the efficiency in Figure 5.11, things start to
look suspicious: one can even conclude that the time-
parallel integration could be more efficient than the spa-
tial one!

Unfortunately, the code wrapper does many silent
things, including having a small overhead each time
a Julia variable is used inside Python. The reason
for this is the conversion between the variable types. The computation of the collision parameter
should be an embarrassingly parallelizable process since the FSM acts on each entry of the spatial
vector x = [x1, . . . , xN]⊤. Table 5.1 shows a small scaling example of the computation of the col-
lision kernel, where the FSM method using 2 cores is called on one half of the vector x on each
core.

We see that the computation of the collision operator, even on a smaller mesh, does not scale well.
Using an inefficient code as a base plays in favor of time-parallel integration since these tiny constant
overheads are accumulated during runtime and become significant. Time-parallel integration profits
from these artificial overheads since they become smaller when more cores for time parallelization are
used!

65

5. Numerical results

cores pyjulia Julia

1 2.5 s 1.95 s
2 1.5 s 1.03 s

efficiency on 2 cores 83% 95%

Table 5.1.: The time needed to compute the collision kernel for 100 spatial points and 48 × 24 × 24
velocity points using the pyjulia wrapper and Julia.

5.2.2. Setting up the right test cases

Benchmarking parallel-in-time algorithms is often a challenging task. The heat equation, a parabolic
diffusive equation that usually exhibits ’good’ behavior, is a commonly used example equation. How-
ever, testing the method on different equations with various nonlinearities is crucial. The initial step
in benchmarking is to have a validated parallel implementation. The number of iterations required to
achieve convergence may or may not provide valuable performance estimates. Once an implementation
exists, a set of example equations for test cases is selected. A problem class is created for each equation,
choosing a stable space-time discretization. In some instances, additional conditions must be satisfied,
further complicating the selection of a suitable test case.

Assuming that we have a valid time-space discretization that meets all our conditions, the first step
in examining parallel performance is to ensure that we have the best sequential time-stepping method
available. The method must solve for each propagation only to the necessary precision, which may not
require an exact solver. We must then carefully select the number of discretization points. If there are too
few, we will not achieve the desired precision, whereas too many will result in over-resolving in space
or time. We must also establish a measure of how far we are from an exact solution of the equation.
If the analytical solution is known, we can use it. Otherwise, we must compute it using a very fine
discretization and consider it the ’exact’ solution.

Ideally, we want to present how well our method performs depending on the accuracy we want our
solution to have. Usually, we have an idea of how precise we want to solve a given equation, therefore,
a stopping criterion is chosen first, following a discretization with some order that can reach a given
tolerance ζ. The tolerance ζ is usually not much smaller than the wanted accuracy. It rarely makes
sense to solve aGa discretization in space and time of order 10−3 to machine precision, and as seen in
the previous section, this may lead to overperformance. However, solving to a precision ζ = 10−5 and
solving to a precision ζ = 10−12 does not have to exhibit the same speedup behavior. Because of this, we
choose three different tolerances ζ ∈ {ζ1, ζ2, ζ3} to test for.

To adapt the discretization error to the threshold ζ, we also adjust the time stepper by changing the
number of collocation nodes M in the Q matrix. Thus, the tolerance is coupled to M, simply because
there is no point in achieving low errors without deploying a higher-order method in space and time [78].
The nodes in use originate from the Gauss–Radau quadrature, with the right endpoint included. This is
equivalent to using a high-order implicit Runge–Kutta scheme with an order of 2M − 2. The underlying
sequential time-stepping method solves the collocation problem via diagonalization of the Q matrix. In
all of the test runs, ∆T is chosen so that the error of the stable time-stepping method satisfies the expected
discretization order.

The linear solver used is a GMRES (without a preconditioner) implemented in petsc4py. The relative
stopping tolerance τ is set for the linear solver. An advantage of using an iterative solver in a sequential
run is that τ can be just a bit smaller than the desired threshold ζ we want to reach on our domain,

66

5.3. ParaDiag for linear equations

otherwise, it would unnecessarily prolong the runtime. However, this is not the case when choosing a
relative tolerance τ̃ for the linear solver within our method for inner systems (see Algorithm 2, Figure 2.2
and Section 4.4). On the one hand, the method enormously benefits from having a small τ̃ in general
since it plays a vital role in the convergence, visible from Lemma 2.11, but on the other hand, the linear
solver needs more iterations, thus execution time Tsol,par is higher, see Section 4.4. As a result, this is
indeed a drawback when using the parallel method and has to be kept in mind.

We disabled multithreading which is usually silently triggered by numpy. A vector filled with initial
conditions u(0) = (u0, . . . ,u0) is chosen as guess for the initial iteration. Note that the timings do not
include the startup time, the setup, nor the output times.

In the interest of reproducibility, every parameter selection for each test case is explained and justified.
The study presents wall clock times, speedup, and efficiency plots as performance measures. Hope-
fully, some setup examples presented here will contribute to a set of standard benchmarks in the fu-
ture.

5.3. ParaDiag for linear equations

The linear heat equation is one of the most standard benchmark equations for time-parallel integration.
It is a parabolic-type equation describing the process of diffusion.

The second standard test case is the linear advection equation. As mentioned in the introduction (Chap-
ter 1), it is a notoriously difficult benchmark for time-parallel integration methods since most methods
rely on coarsening. Since ParaDiag coupled with the collocation method is a single-level method, it is
essential to test the limits for this standard hyperbolic-type test case since single-level methods seem like
a promising approach for hyperbolic-type equations.

The equations were chosen in a way that their analytical solutions are known in order to compute the
difference between the approximate solution and the exact one, simultaneously checking that the cho-
sen discretization orders are accurate. In both the linear heat and the linear advection equation, parallel
runtimes of the method for three different thresholds ζ = 10−5, 10−9, 10−12 are measured. The approx-
imation u(k) satisfies ∥u(T0 + ∆T L) − u(k)

L ∥∞ ≤ ζ, which is monitored by values mk from Algorithm 2
in addition to monitoring the absolute error between consecutive iterates. The parallel-in-time solver
used is the one with the α-adaptive strategy described in Algorithms 1 and 2. All the benchmarks are
performed according to the guidelines outlined in Section 5.2.2.

5.3.1. Heat equation

Figure: u(π, x, y)

The heat equation is a partial differential equation
that describes how heat flows through a material
over time. Our test example for the heat equation
is

ut = ∆u + sin(2πx) sin(2πy)(8π2 cos(t) − sin(t)),

(t, x, y) ∈ [π, π + T] × [0, 1]2,

with the exact solution

u(t, x, y) = cos(t) sin(2πx) sin(2πy).

67

5. Numerical results

This equation has periodic boundary conditions, which were used to form the discrete periodic Laplacian
with central differences bringing the equation into the generic form (2.9). The additional forcing term
ensures our equation does not reach a steady state solution.

The idea is to compare the execution times of the method covering L = 64 time steps, solved in parallel
across steps and parallel across all time points: across all collocation nodes for all time steps. The time
domain is set to [π, π+T64], for a given threshold ζ, where the length of the interval T64 is chosen so that
a desired accuracy can be reached with a step size ∆T = T64/64. Table 5.2 presents the used runtime
setup. The benchmarks were performed 10 times to get a better runtime estimate since some runtimes
were short.

tolerance to reach ζ 10−5 10−9 10−12

no. of spatial points N 350 400 350
order in space κ 2 4 6
no. of collocation points M 1 2 3
time endpoint T64 0.32 0.16 0.16
linear solver tolerance τ 10−6 10−10 10−13

linear solver tolerance τ̃ 10−6 10−10 10−13

Table 5.2.: Parameter choice for the heat equation to reach an error ∥u(T64)−u64∥∞ < ζ when solving with
a standard sequential approach. Here, κ denotes the discretization order in space, a centered
difference scheme for the discrete Laplacian, see [5]. T64 represents the interval length that is
needed so that the error is below ζ after 64 time steps for a given discretization.

Figures 5.12a and 5.12b plot the error u(π + T64, x, y) − u(π, x, y), for T64 = 0.32, 0.16, respectively.
The plots show that the solution evolves in time far more than the tolerances ζ in Table 5.2 are set to,
justifying the parameter choices.

(a) u(π + 0.16, x, y) − u(π, x, y) (b) u(π + 0.32, x, y) − u(π, x, y)

Figure 5.12.: u(π + T64, x, y) − u(π, x, y) for T64 = 0.32, 0.16.

The strong scaling across time steps is presented in Figure 5.13. The equation is solved with a paral-
lelization strategy where the total number of processors nproc = nstep is used to compute one moving
window of coupled time steps. There is no other parallelization, meaning ncoll = nspace = 1. This is a
setting where the diagonalization of the preconditioner is handled in parallel, whereas the inner systems
are solved on only one core via diagonalization of QG−1

ℓ . The starting value for m0 for Algorithm 2 is
m0 = 64T64/nstep.

68

5.3. ParaDiag for linear equations

(a) Speedup (b) Efficiency

Figure 5.13.: Strong scaling plots for the heat equation, solved in parallel accross time steps. The num-
bers on the curves represent the number of outer iterations ParaDiag needs to reach the
given tolerance.

Given more cores, we add an additional layer of parallelism, across the collocation nodes. The paral-
lelization strategy is then nspace = 1, ncoll = M, where nstep cores are used to handle the moving window,
and ncoll = M cores handle the collocation problem, yielding a total number of cores nproc = Mnstep. In
this setting, all the collocation nodes across all time steps are handeled in parallel and the strong scaling
plots are presented in Figure 5.14.

(a) Speedup (b) Efficiency

Figure 5.14.: Strong scaling plots for the heat equation, solved in parallel across time steps and the collo-
cation nodes. The numbers on the curves represent the number of outer iterations ParaDiag
needs to reach the given tolerance. The gray plots are the same as in Figure 5.13 and serve
as a reference.

Overall, additional parallelism across collocation nodes gives additional speedup, at least a factor of two
for the fully parallel runs. If we observe the speedup for the runs that are sequential over time steps
but parallel accross collocation nodes (marked with 1 iteration for 1, 2 and 3 cores in Figure 5.14a), we
see that some initial speedup is possible, however, not as efficient as one would expect. The efficiency
is already reduced to 40 − 45% when additional ncoll = 2, 3 cores are used. One reason is that the

69

5. Numerical results

system solves after diagonalizaion of the QG−1
ℓ matrix have different times-to-solution. In case M = 3,

the slowest system solve is around 0.078s while the fastest one is 0.056s, leading to a load imbalance
among the cores. As a result, the cores have to wait for the core with the slowest system solve, producing
overheads and, in the end, being less efficient.

(a) ncoll = 1, M = 2 (b) ncoll = 2, M = 2

(c) ncoll = 1, M = 3 (d) ncoll = 3, M = 3

Figure 5.15.: Communication overheads for different parallelization strategies for the heat equation.

When very accurate results are needed (blue curves), the performance is degrading. However, we have
multiple runs with up to 10 iterations. This is because the linear system shifts that are produced by the
diagonalization procedure are poorly conditioned for the particular choice of the value αk. Manually
picking this sequence with slightly different larger values can circumvent this issue to a certain degree.
However, this is not presented here, because it is also important to show that the method does not always
perform well when used without manually tweaking the parameters. A more in-depth study of this
phenomenon is needed and left for future work. Despite the drawbacks, the scaling results are strong and
additional parallelism for the collocation problem increases speedup.

The total overhead of the inner system solves can be roughly understood by plotting the total runtime
where the communication overhead is also presented. In Figure 5.16 and 5.15, where the colors of the

70

5.3. ParaDiag for linear equations

Figure 5.16.: Communication and system solving
overheads in the diagonalization pro-
cess across time steps with M = 1 col-
location node (implicit Euler method)
for the heat equation.

plots correspond to the already mentioned three
runs, we can see that when using parallelism ac-
cross the collocation nodes, the communication
time grows. In the case when M = 2, in Fig-
ures 5.15a and 5.15b, the communication over-
head is worth it and we see that it starts domi-
nating as we approach a full parallel run (all time
steps solved in parallel). This is not the case
for the example with M = 3 collocation nodes,
because, as already mentioned, the issue are the
solver iterations that do not converge. However,
when ParaDiag does converge, the communica-
tion time takes up about 20% when solving in
parallel accross time steps and 30% when solv-
ing in parallel accross all time points, becom-
ing quite significant, however, not nearly enough
to bring the efficiency down to 5%. The major
loss of efficiency is the price of the shifted sys-
tems.

5.3.2. Advection equation

The second equation for testing the performance of ParaDiag is the linear advection equation, a hyper-
bolic type equation. Advection is a process that describes a movement of some quantity through a fluid
or a gas. The equation is governed by

Figure: u(0, x, y)

ut + ux + uy = 0,

(t, x, y) ∈ [0,T] × [0, 1]2,

with an exact solution

u(t, x, y) = sin(2πx − 2πt) sin(2πy − 2πt).

An upwind scheme, incorporating the periodicity
on the boundaries is used, bringing the equation
into the generic form (2.9). The space discretiza-
tion is then combined with a high order implicit
time-stepping method, defined through the Q ma-
trix.

Similarly as for the heat equation, the execution times of the method covering L = 64 time steps are
compared. Table 5.3 summarizes the parameters in use for each benchmark and Figure 5.17 plots the
error u(T64, x, y)−u(0, x, y), for two different end times T64. The solution advances enough in the chosen
time domain, justifying the parameter choices.

The first strong scaling plots are given in Figure 5.18. The scaling is performed accross time steps only,
corresponding to a parallelization strategy with nproc = nstep and ncoll = nspace = 1 for each moving
window. After diagonalizing the preconditioner, the inner systems are solved again via diagonalization
of QG−1

ℓ , where the diagonal systems are then solved in a sequential manner on one core. The starting
value for m0 for Algorithm 2 is m0 = 10T64/nstep.

71

5. Numerical results

Figure 5.19 contains the scaling plots with additional parallelism across the collocation nodes. The setup
in this example uses nproc = Mnstep cores for each moving window of ParaDiag, with ncoll = M additional
cores used for solving the linear systems after diagonalizing QG−1

ℓ .

tolerance to reach ζ 10−5 10−9 10−12

no. of spatial points N 800 800 700
order in space κ 1 3 5
no. of collocation points M 1 2 3
time endpoint T64 0.00016 0.00064 0.0128
linear solver tolerance τ 10−6 10−11 10−14

linear solver tolerance τ̃ 10−9 10−13 10−15

Table 5.3.: Parameter choice for the advection equation to reach an error ∥u(T64) − u64∥∞ < ζ when
solving with a standard sequential approach with L = 64 time steps. Here, κ denotes the
discretization order in space for the upwind scheme.

(a) u(0.00016, x, y) − u(0, x, y) (b) u(0.00064, x, y) − u(0, x, y)

Figure 5.17.: Plotting u(T64, x, y) − u(0, x, y), for T64 = 0.00016, 0.00064.

(a) Speedup (b) Efficiency

Figure 5.18.: Strong scaling plots for the advection equation, solved in parallel accross time steps. The
numbers on the curves represent the number of outer iterations ParaDiag needs to reach the
given tolerance.

72

5.3. ParaDiag for linear equations

The additional cores provide around a factor of two additional speedup, similarly to what we have seen
for the heat equation benchmarks. The efficiency cost of deploying additional cores to handle the di-
agonalization of the Q matrix (the runs with 1 iteration in Figure 5.19b for nproc = 1, 2, 3) is around
30 − 40%. The method seems to be more efficient for the advection equation than for the heat equation
even though the imbalances in the inner system solves are even larger, ranging from 0.25s to 1.44s (for
M = 3). Despite that, ParaDiag is more efficient for the advection equation because the inner systems are
not as poorly conditioned. Given the fact that the advection equation is of hyperbolic type, the obtained
results are great for a time-parallel integrator when compared to MGRIT [33].

(a) Speedup (b) Efficiency

Figure 5.19.: Strong scaling plots for the advection equation, solved in parallel accross time steps and
the collocation nodes. The numbers on the curves represent the number of outer iterations
ParaDiag needs to reach the given tolerance. The gray plots are the same as in Figure 5.18
and serve as a reference.

Figure 5.20.: Communication and system solving
overheads in the diagonalization pro-
cess across time steps with M = 1 col-
location node (implicit Euler method)
for the advection equation.

We observe degrading performance when reach-
ing lower tolerances. The overall time spent
on solving linear systems can best be presented
through plots in Figures 5.20 and 5.21, where the
colors of the bars are linked to the corresponding
setups from Table 5.3. In practice, the amount
of time spent on communication grows with the
number of cores, however, by the design of our
strong scaling approach, all the communication
times and load imbalances of all windows in all it-
erations are summed up, making ParaDiag worth
to use as a windowed approach only when more
than a certain amount of time steps are coupled.
The amount of time steps that need to be coupled
to gain speedup, depends on the number of Para-
Diag iterations, which on the other hand, depends
on the tolerance we want to achieve. This is an
important result, since ParaDiag is very likely not
a method that can converge with a too large num-
ber of parallel time steps. The reason behind this
is that, even though the contraction factor from Theorem 2.9 guarantees convergence for linear equations,

73

5. Numerical results

the round-off error analysis from Theorem 2.12 allows errors to grow proportionally to the number of
parallel time steps. Consequently, there may exist problems that do not converge due to round-off errors,
given enough time steps.

(a) ncoll = 1, M = 2 (b) ncoll = 2, M = 2

(c) ncoll = 1, M = 3 (d) ncoll = 3, M = 3

Figure 5.21.: Communication overheads for different parallelization strategies for the advection equation.

Spatial scaling

Parallel-in-time integration methods are ideally used in combination with a space-parallel algorithm,
especially in the field of PDE solvers. Therefore, we test the method together with petsc4py’s parallel
implementation of GMRES for the advection equation.

First, petsc4py was scaled using up to 96 cores. This was done by solving sequentially in time with
implicit Euler on L = 64 time-steps. The number of cores nspace = 12 is chosen as the last point
where petsc4py scaled reasonably well for this problem size. After fixing the spatial parallelization,
the double time parallelization is layered on top of that. The strong scaling across all collocation nodes
and time-steps is repeated for nstep = 1, 2, . . . , 64 parallel windows for three different thresholds ζ =
10−5, 10−9, 10−12. For convenience, we changed the number of points per dimension in space to N =

74

5.3. ParaDiag for linear equations

768, 768, 702 for spatial orders κ = 1, 3, 5, respectively, so that N2 is divisible the number of cores we
scale with. Other parameters are the same as in Table 5.3 and our runs still reach below the wanted
tolerance. The complete parallelization trategy is nproc = 12Mnstep.

(a) petsc4py (b) ncoll = M = 1, nspace = 12

(c) ncoll = M = 2, nspace = 12 (d) ncoll = M = 3, nspace = 12

Figure 5.22.: Communication overheads when solving the advection equation parallel in space and time.

The results from Figure 5.23 clearly show that, by using ParaDiag with the collocation problem, we
can get significantly higher speedups for a fixed-size problem than when using a space-parallel solver
only. In the best case presented here, we obtain a speedup of about 85 over the sequential run. We
would like to emphasize here that all runs are done with realistic parameters, not over-resolving in space,
nor time, nor in the inner solves [74]. Thus, while the space-parallel solver gives a speedup of up to
about 8, we can get a multiplicative factor of more than 10 by using a space- and doubly time-parallel
method.

Figure 5.22 shows the communication overheads for the purely spatial parellel run (gray) and runs with
fixed number of ncoll = 12 cores for spatial parallelization combined with a parallel-in-time run. We
can see that utilizing more cores in space helps lower the communication costs even more because the
chunks of memory being communicated are overall smaller.

75

5. Numerical results

(a) Speedup

(b) Efficiency

Figure 5.23.: Strong scaling plots for the advection equation and three thresholds. The solid gray line
represents the spatial scaling with petsc4py for the advection equation solved sequen-
tially with implicit Euler on 64 time steps. The curve shows the scaling of petsc4py
for our problem is best around 12 cores, since using more cores does not increase the
speedup significantly. The colored lines represent the scaling for the moving windows with
ncoll = M and nspace = 12 cores, in other words, parallelism across time-steps, across the
method, and in space. The numbers on the curves represent the number of outer iterations
Algorithm 1 needs in order to reach the given tolerance.

It is important to note that first the spatial parallelisation should be exhausted, then parallelization ac-
cross the collocation points, and lastly, the parallelization across time steps. This is simply because the
efficiency gets worse in that order. In case when we do not care about efficiency and a lot of cores
are available, the parallel-in-time scaling of ParaDiag coupled with the collocation problem can provide
considerable speedups for linear equations.

76

5.4. ParaDiag for nonlinear equations

5.4. ParaDiag for nonlinear equations

First, we present the test result for the nonlinear Allen–Cahn equation, one of the standard benchmarks in
the parallel-in-time community, solved via the inexact Newton’s method and the semi-implicit iterations
where the nonlinear right-hand side is handled explicitly. This test aims to compare the two methods in
terms of scaling and time-to-solution in different settings.

The second example is the nonlinear Boltzmann equation, a hyperbolic-type equation. Because the right-
hand side of the equation is an integral expression, the Newton’s method is unfeasible. This example aims
to highlight the use case of the Jacobian-free iterations with the method that shows excellent scaling
results for the linear advection equation. So far, this test case has never been used since the nonlinear
hyperbolic structure is known to pose difficulties to time-parallel integration.

The benchmarks are performed with a fixed value α = 10−8 within the iterative refinement itera-
tions, defined in Algorithm 3. The global iterations (3.18) terminate when the norm of the resid-
ual is below a certain threshold, ∥r⃗es(k)

∥∞ < ζ. For the presentation of the results for the Boltz-
mann equation, a Julia-based library KitBase.jl is used to generate an output file for out Python-
based implementation. All the benchmarks are performed according to the guidelines outlined in Sec-
tion 5.2.2.

5.4.1. Allen–Cahn equation

The Allen–Cahn equation is one of the well-known test examples in the PinT community. It is a reaction-
diffusion equation that describes the process of phase separation:

ut = ∆u +
1
ε2 u(1 − u2), (t, x) ∈ [0,T] × R2.

Figure: u(0, x)

The initial condition

u(0, x) = tanh
(
R − ∥x∥2
√

2ε

)
describes a circle with a radius R and an inter-
face of width o(ε). The circle shrinks over time,
and in the sharp interface limit ε → 0, the radius
can be expressed as r(t) =

√
R − 2t [39]. This

means that the simulation is short-lived, and the
maximum simulation time for parallel-in-time al-
gorithms should not allow T > R/2 [74]. For
the spatial domain, we use [−2R, 2R] and peri-
odic boundary conditions.The aim is to measure
the time-to-solution when solving for three differ-
ent stopping tolerances. The condition ∆T < ε2 is satisfied in all of the runs [96, Proposition 3.1 and
Theorem 3.3]. Following the discretization observations from paper [79], we know that the local trunca-
tion error of the implicit Euler method for the Allen–Cahn equation is O(∆T 2/ε3). We use this estimate
to set the truncation errors in time, so that the errors in time and space are of a fixed order ζ. The accuracy
of the solution is verified by comparing it to an ’exact’ solution – the same equation numerically solved
on a much finer mesh. The error to the fine ’exact’ solution is of order of magnitude as the residual
itself.

77

5. Numerical results

For Paradiag, the Laplacian is treated implicitly fI(u) = ∆u. For the inexact Newton’s approach, the
averaged Jacobian is incorporated in the implicit part in every iteration.

Test 1: The idea of this test is to compare the inexact Newton’s methods and the composite colloca-
tion problem iterations by solving the same equation on the same time-space domain for three different
thresholds ζ. For this test, we choose ε = 0.01, R = 0.25 and T = 0.003. Even though the Lipschitz
constant seems to be very large, and the estimate from the convergence Theorem 3.6 is larger than 1, the
inexact Newton’s approach still converges for L = 641 time steps. For each tolerance ζ, we choose a
different discretization order in space κ and the number of points N for the discrete Laplacian [5]. M = 2
collocation points for the Q matrix are used, however, the scaling is performed only accross time teps.
The mentioned parameters can be summarized in Table 5.4.

Figure 5.24 shows how much does the solution move over time as u(0.003, x) − u(0, x). The amplitude
of the difference is very steep and large in the areas the circle shrunk, resembling a cilinder. Because of
this, the choice of T = 0.003 is reasonable even though it may at first seem as the solution would not
significantly progress.

tolerance to reach ζ 10−5 10−9 10−12

no. of spatial points N 320 180 120
order in space κ 2 4 6
linear solver tolerance τ 10−7 10−11 10−14

Table 5.4.: Parameter choice to reach an error ∥r⃗es(k)
∥∞ < ζ in Test 1.

Figure 5.24.: u(0.003, x) − u(0, x)

Runtimes for scaling accross time steps are pre-
sented in Figure 5.25. We can see that the inex-
act Newton’s method is faster when it comes to
time-to-solution, however, both methods seem to
have roughly the same scaling, see Figure 5.26a.
Newton’s method being faster confirms our intu-
ition from Remark 3.8, and it is heavily due to
the number of iterations the parallel runs need
in order to converge. We also see that the
composite collocation problem iterations break
down for windows with L ≥ 16 parallel time
steps.

Another important observation is that the number
of iterations gets higher as the size of the parallel window grows. This is in contrast to when solving
linear problems where the number of outer iterations did not depend directly on the window size. This
is the price that has to be payed for having L terms treated explicitly. In the inexact Newton’s method,
these terms have a smaller amplitude, resulting in less iterations.

Test 2: The idea of this test is to compare the two approaches when the Lipshitz constant of fE is smaller,
so we choose ε = 1 and R = 1. Because ε is larger, we have more freedom of chosing the time step size
and the number of collocation points. Because of this, we can compare the scaling of the methods when
additionally parallelizing across the collocation points. For this, we fix the number of time steps L = 128
and again solve to reach three different tolerances ζ, accordingly changing time-space discretizations.

1Inexact Newton’s method does not converge for L = 128 time steps.

78

5.4. ParaDiag for nonlinear equations

Figure 5.25.: Runtimes for ε = 0.01 for the Allen–Cahn equation for the inexact Newton’s method and
the collocation problem iterations from Test 1. The numbers on the graphs present the
rounded average number of iterations a parallel block needs to converge.

(a) Speedup (b) Efficiency

Figure 5.26.: Strong scaling plots for the Allen–Cahn equation for Test 1.

Because we are adapting ∆T slightly differently, we choose the time domain as [0,T128] for each ζ. The
difference here is that the restriction ∆T < ε2, is more easily satisfied than in the previous test. The
parameter details can be found in Table 5.5.

tolerance to reach ζ 10−6 10−10 10−13

no. of spatial points N 1500 800 400
order in space κ 2 4 6
no. of collocation points M 1 2 3
time endpoint T128 0.001 0.1 0.4
linear solver tolerance τ 10−8 10−12 10−15

Table 5.5.: Parameter choice to reach an error ∥r⃗es(k)
∥∞ < ζ in Test 2.

We can see that in this case, in Figure 5.27a, the number of average iterations is closer together when
comparing Newton’s method and the collocation problem iterations, therefore, the scaling looks roughly
the same, see Figure 5.28a. In Figures 5.27b and 5.27c2, we can see that the collocation problem it-

2The fully parallel runs did not converge for L = 128 time steps.

79

5. Numerical results

erations need more iterations compared to what the inexact Newton’s method needs. This behavior is
again in line with Remark 3.8, where we see that for a ’less’ nonlinear fE , both methods resemble each
other more because the Lipschitz constants for these two approaches are more similar for ε = 1 than for
ε = 0.01. We can see that the methods can scale further when parallelizing across all collocation nodes.
The inexact Newton’s method still seems to be a more favorable approach, even though in every iteration
an average Jacobian is computed. It seems that when the Jacobian is a diagonal matrix (which in this
case it is), the communication cost is negligible and the tradeoff between communication and the number
of outer iterations is worth it.

(a) M = 1 (b) M = 2 (c) M = 3

Figure 5.27.: Runtimes for ε = 1 for the Allen–Cahn equation for the inexact Newton’s method and
the collocation problem iterations from Test 2. The numbers on the graphs present the
rounded average number of iterations a parallel block needs to converge. The gray curves
are runtimes with parallelism across time steps and the colored curves are parallel runs
across time steps and collocation nodes.

Remark 5.2
Even with iterative refinement, ParaDiag is still susceptible to
round-off errors, although they are damped with each iteration.
To reduce the number of outer iterations required, solving the
equation with an inner linear solver relative tolerance of τ̃ ≪ τ
may be effective. Here, τ represents the tolerance necessary for
the sequential approach to achieve ζ. If we select τ̃ such that
ζ ≈ τ̃/α, it may be possible to complete the computation in
a single iteration in some cases. To demonstrate this, we can
replicate the procedure of Test 2 for M = 1 collocation nodes,
using ParaDiag with tolerance τ̃ = 10−12. The plot on the right
illustrates the speedup that ParaDiag achieved over the sequ-
ential run, where the inner tolerance was τ = 10−8. Only one iteration was required for each parallel
window, resulting in a speedup of approximately 12.5. This represents an improvement over the pre-
viously reported speedup of about 8.5. This phenomenon seems to be an isolated behaviour since the
speedup observed in the test with M = 2 collocation nodes does not improve speedup, but reduces it.

Figure 5.28 presents the speedup and efficiency plots. We can see that ParaDiag can reach good speedups
for the limited number of time-steps it can converge on, with inexact Newton’s method outperforming the
collocation problem iterations. In the case of implicit Euler, the reached speedup is around 9 for inexact
Newton’s method and around 5.5 for the collocation problem iterations.

In case when M = 2 collocation nodes are used, inexact Newton’s method can reach a speedup of around
20 when parallel accross the time steps and 25 with additional parallelization in the colloation nodes.

80

5.4. ParaDiag for nonlinear equations

(a) M = 1 (b) M = 2 (c) M = 3

Figure 5.28.: Strong scaling plots for the Allen–Cahn equation for Test 2. The gray curves represent
scaling across time steps, whereas the colored curves present scaling across time steps and
across collocation nodes.

The efficiencies are then around 15% and 20%3 respectively.

In case when M = 3 collocation nodes are used, the maxmum speedup achieved is around 50 for the
inexact Newton’s method with an efficiency around 25%. When scaling across time steps, the wall clock
time drops from around 4000s to 180s and is reduced even more with additional parallelism across the
collocation nodes down to 80s. These are regarded as rather good results for parallel-in-time methods.
This particular run is composed of 2 parallel windows covering L = 64 time steps since a full paral-
lel run covering 128 time steps did not converge. Scaling for the collocation problem iterations was
compared to a sequential inexact Newton’s run because the underlying iteations simply exceeded ev-
ery reasonable computational time limit. This kind of comparison is still in the spirit of representing
speedup and efficiency because, if possible, the fastest known sequential method should be used for
comparison.

5.4.2. Boltzmann equation

The Boltzmann equation is a well-known model from the area of rarefied gas dynamics. It has a
form

ft + v fx =
1
ε

Q(f), (t, x, v) ∈ R+0 × R
3 × R3, (5.3)

3The efficiency for the inexact Newton’s method is around 101%. In theory, this should not be achievable, however, it
seems that the configuration of this specific run had more favorable memory layout. Another reason could be different caching
effects that take place in the two runs. A measurement error of ±3% can be expected for the runs that are not repeated multiple
times.

81

5. Numerical results

and describes the evolution of a many-particle system with the particle distribution function f = f (t, x, v),
which varies with time t, position x, and velocity v. The parameter ε is a relaxation parameter propor-
tional to gas dilution and represents the nondimensional Knudsen number. The right-hand side of the
Boltzmann equation,

Q(f) =
∫
R3

∫
S2

[
f
(
v′
)

f
(
v′∗

)
− f (v) f (v∗)

]
B(cos θ, |v − v∗|)dΩdv∗, (5.4)

models two-body collisions, where {v, v∗} denote the pre-collision velocities of two colliding particles,
and {v′, v′∗} are the corresponding post-collision velocities. The nonnegative collision kernel B(cos θ, g)
measures the probability of collisions, where θ is the deflection angle and |v − v∗| is the magnitude of
the relative pre-collision velocity. The solid angle Ω is the unit vector along the relative post-collision
velocity v′ − v′∗.

Furthermore, as ε→ 0, the equation becomes stiff, introducing additional numerical stability difficulties
for explicit time stepping. Note that equation (5.3) describes a relaxation system, where the advection
operator in the left-hand side drives the particle system towards non-equilibrium, whereas the collision
operator in the right-hand side brings the solution towards the equilibrium, which follows a normal
distribution in v. For an equilibrium solution, the conservation of mass and momentum leads to the
relation f (v′) f (v′∗) = f (v) f (v∗) and the collision term vanishes. Thus, equation (5.4) is bounded as
ε→ 0.

It is challenging to solve the Boltzmann equation due to the high dimensionality and nonlinearity. Evalu-
ating the collision operator Q is the most costly part of the computation, and using the inexact Newton’s
method is not feasible. The scaling results with ParaDiag coupled with the collocation problem show
excellent results for the linear advection equation, a difficult problem for time-parallel integration. There-
fore, this example highlights the proposed IMEX approach’s capability of treating the collision operator
explicitly to solve the nonlinear Boltzmann equation.

We consider the equation of form

ft + v1 fx =
1
ε

Q(f), (t, x, v) ∈ [0, 1] × [0, 1] × [−8, 8]3, (5.5)

with periodic boundary conditions f (t, 1, v) = f (t, 0, v) and an initial condition

f (0, x, v) = ρ(x)
(

1
πT

)3/2

exp
(
−

(v − V)2

T (x)

)
,

where
ρ(x) = 1 + 0.1 sin(2πx), V = (1, 0, 0)T , T (x) =

1
ρ(x)
.

In this case, we adopt the hard-sphere molecule model [80, Chapter 2, p. 39] where the collision kernel
takes the form

B(|v − v∗|) = C|v − v∗|1/2.

In the initial condition, V is a vector representing the macroscopic velocity, while ρ and T are two scalars
that represent density and temperature, respectively. Equation (5.5) describes a traveling wave solution
in the gas. Even though the advection operator contains only one velocity component, the example is
enough to demonstrate how well time-parallel integration copes with similar problems.

To obtain the solution, we employ the upwind scheme to approximate spatial derivatives. A fast spec-
tral method to is used to solve the quadratic integral operator Q, which converts it into a summation

82

5.4. ParaDiag for nonlinear equations

of convolutions and then solves it using the discrete Fourier transform [81]. This part tends to be the
most costly one when solving the Boltzmann equation, and it was treated with the help of a Julia
library KitBase.jl4. We refer to the literature [82, 3] for details and implementation of this ap-
proach.

Figure 5.29.: Density in time points t = 0, 0.032 for
a value ε = 10−2.

In the simulation, we use 384 uniform points to
discretize the physical domain x and 72 × 36 × 36
velocity points. The spatial resolution that we fix
here is able to capture the wave structure in the
initial condition of the equation (5.5). For the
time discretization, we choose the implicit Euler
method with ∆T = 10−3 and solve for L = 32 time
steps5, where for the spatial discretization we use
a 1st order upwind scheme. For example, the time
discretization is not in the stability domain of the
explicit Euler method since ∆T is too large, result-
ing in solutions that blow up. The stopping crite-
rion is ∥r⃗es(k)

∥∞ < ζ = 10−4, with a linear solver
tolerance of τ = 10−6. These are reasonable toler-
ances since we expect the accuracy of the solution
to be ∆T ≈ ∆x ≈ O(10−3). Figure 5.29 illustates
the density of the solution in two different time
points, assuring that the solution evolves over time. The density is defined as

ρ :=
∫
R3

f v⊤dv.

Test 1: The relaxation parameter is set to ε = 10−2. First, we scale the problem by solving it parallel-
in-space, but sequentially in time. The collision term is appropriately computed embarrassingly parallel:
looping over each point xi available in the local memory of a corresponding core. Then, an additional
level of parallelism is added across time steps: we solve parallel in time and space for a block of nstep =

1, 2, . . . , 32 coupled time steps and propagate the solution in these blocks until reaching the total of 32
time steps. Figure 5.31 depicts the total runtimes when fixing the number of spatial cores to nspace =

16, 32, 64 and adding time parallelism. The number of cores nspace is chosen as the last number of cores
where petsc4py scales reasonably well. We can see that the wall clock time is not reduced between 32
and 128 cores.

Even though spatial parallelism begins to be less efficient, we can continue scaling further with time
parallelism. The speedup curves in Figure 5.31a differ more and more from the ideal scaling because
our time-parallel integrator is an iterative method. Having a larger parallel block translates to more
iterations for that block to converge. This is in line with the convergence Theorem 3.6, which states
that the bound for the contraction factor of the method scales linearly with the number of parallel time
steps. Table 5.6 summarizes the number of iterations per block. Following the structure of the colored
curves, one can see that having a block of 4 and 8 parallel steps does not provide speedup due to the
rising number of iterations. The time-parallel integration continues scaling for 16 and 32 coupled time
steps.

4The essential parts of the algorithm, namely the discrete Fourier transforms, were recoded into pyParaDaig directly. The
rest of the setup variables were copied from a file that was produced as a setup output from a Julia code. With this, one
does not have to use a code wrapper combining the two languages, which proved to lead to significant overheads and long

83

5. Numerical results

nstep 2 4 8 16 32
no. of block propagations 16 8 4 2 1

total no. of iterations 16 13 12 6 8
no. of iterations per time step 1 1.625 3 3 3

Table 5.6.: The number of iterations the method needs when handling L time-steps in parallel and propa-
gating them until covering 32 time-steps in total. We can observe that the number of iterations
per time step grows proportionally to the number of parallel steps.

Figure 5.30.: Wall clock times for the Boltzmann equation from Test 1. The petsc line stands for the
runs that solve the Boltzmann equation in space-parallel fashion, covering L = 32 time
steps sequentially in time. petsc(n) means that n cores are used for the parallelization
of the spatial problem, i.e., nspace = n. On top of spatial parallelism with n fixed cores,
parallelism across the time domain is added, covering L = 32 time steps.

In conclusion, the simulation’s runtime was significantly reduced by spatial scaling, from 2134 seconds to
approximately 169 seconds, resulting in a speedup of sspace = 12.6. The addition of time parallelization
further reduced the total runtime to approximately 31 seconds, utilizing 64 spatial cores. The overall
speedup achieved using 2048 cores was sspace+time ≈ 68. The efficiency achieved with 16 cores in space
was around 10%. For time-parallel integration methods, this result is important since speedup is obtained
also for a hyperbolic nonlinear problem.

Remark 5.3
The efficiency of spatial scaling decreases significantly for 2 and 4 cores. See Figure 5.31b. This is
due to the memory bandwidth limitations: the memory passed between cores is larger when using fewer
cores since the locally stored vectors are stored in larger chunks. Because of this, the efficiency is later
recovered for 8 or more cores.

compilation times. The overheads were in favor of time-parallel integration.
5The algorithm does not converge for L = 64 parallel time-steps.

84

5.4. ParaDiag for nonlinear equations

(a) Speedup (b) Efficiency

Figure 5.31.: Strong scaling plots for the Boltzmann equation for Test 1.

Figure 5.32.: Wall clock times for the Boltzmann
equation from Test 2 with varying ε.

Test 2: The second test examines convergence
for the same setup but for varying ε values. We
pick three different relaxation paramters ε = 8 ×
10−3, 10−2, 5 × 10−2, 10−16. A reasonable number
of cores for the spatial parallelization, concluding
from Test 1 is nspace = 32. We conduct the runs in
parallel across time steps in a windowed manner,
fixing the number of cores for spatial discretiza-
tion and covering a total of L = 32 time steps with
nstep = 1, 2, 4, . . . , 32.

Figure 5.32 compares the wall clock times of the
four runs. We can see how ParaDiag needs more
iterations as the relaxation parameter ε decreases.
This is in line with Theorem 3.6, which states that
the bound for the contraction factor increases pro-
portionally to η, the contraction factor of the underlying single time step collocation problem iterations.
On the other hand, the parameter η increases as ε decreases, increasing the total number of ParaDiag
iterations. The average number of iterations per run is given in Figure 5.33. As we have already seen for
the Allen–Cahn equation in Test 1 & 2 (Figures 5.25 & 5.27), we can see how the average number of it-
erations per block grows proportionally with the size of a parallel block nstep and inversely proportionally
to ε.

Overall, the results of Test 2 align with our theoretical understanding of the method. The larger the ampli-
tude of the explicit term in the iterations, the more difficult it becomes for the implicit left side to dampen
them. It is also clear that the scaling improves after a certain amount of parallel time steps. In other
words, there has to be a certain investment of cores handling the parallel block to make the scaling worth
it. The reason is that all the communication times of all parallel blocks and all iterations are accumu-
lated, degrading speedup. Still, given enough cores for parallelization across time steps, we can achieve
excellent scaling for the Boltzmann equation as a time-parallel method.

6ε = 5 × 10−3 does not converge.

85

5. Numerical results

Figure 5.33.: The average number of iterations for a ParaDiag block and wallclock times depending on
the relaxation parameter ε and the size of a parallel block nstep, covering L = 32 time
steps. The runs correspond to Test 2, and the colors of ε-labels correspond to the curves in
Fiure 5.32.

86

CHAPTER 6

Conclusion and outlook

6.1. Conclusion

In this thesis, we introduce ParDiag, a parallel-in-time integrator for linear problems that is based on
diagonalization. The method relies on an α-circulant preconditioner, which is applied in an "all-at-once"
fashion using a straightforward Richardson iteration. The diagonalization of this preconditioner leads to
an appealing time-parallel method without the need to find a suitable coarsening strategy and a promising
approach to treat hyperbolic-type equations.

We extend this idea to high-order collocation problems and analyze how to efficiently solve the lo-
cal problems for each time step in parallel: across the collocation nodes of the perturbed collocation
matrix, making this method doubly parallel-in-time. We propose a practical and applicable strategy
to adaptively select the crucial α-parameter for each iteration based on the convergence theory and
error bounds. However, depending on the size of the collocation problem, we show that some of
these values α lead to non-diagonalizable inner systems, which need to be avoided. We support our
claims with a benchmark and conclude that the strategy reduces the number of iterations and time-to-
solution.

By design, the α-circulant integrator works only for linear problems with constant coefficients. In order
to solve more complex, more realistic problems, they must be coupled to a nonlinear solver. A unifying
analysis of two time-parallel integrators for nonlinear problems is presented. One originates from the in-
exact Newton’s iterative method, while the motivation for the other lies in the implicit-explicit iteration,
where we treat the nonlinear terms explicitly. In comparison, when convergent, inexact Newton’s method
needs fewer iterations than when the nonlinearities are treated explicitly, leading to more speedup in the
first case. The fixed point iterations are carried out via iterative refinement since the α-adaptive strat-
egy cannot be trivially extended. The case with variable space-dependent coefficients can be extended
through the implicit-explicit iteration.

An open-source parallel implementation is shown, which is utilized to present actual parallel runs on
a high-performance computing system to support our theory. We estimate the expected speedup and

87

6. Conclusion and outlook

show actual parallel runs on a high-performance computing system to support our claims. We stress the
importance of choosing suitable test cases, after which we benchmark the proposed algorithm on four
test cases: the linear heat and advection equation and the nonlinear Allen-Cahn and Boltzmann equation.
For nonlinear equations, both preconditioners show promising scaling when convergent. The parallel
benchmarks demonstrate that our proposed approaches yield a significant decrease in time-to-solution,
even far beyond the point of saturation of spatial parallelization. As mentioned in the introductory Sec-
tion 1.2.3, we achieve significant speedups for hyperbolic-type equations, and our results are comparable
to the state-of-the-art parallel-in-time integrators such as MGRIT and PFASST, even outperforming them
in some cases.

6.2. Outlook

The diagonalization process in ParaDiag may produce ill-conditioned shifted systems. It is difficult to de-
rive a general theory investigating this issue since this occurrence is strongly problem-related. However,
the analysis could be provided for the discrete Laplacian, like in the case of the heat equation where this
matter arises. Even though the petsc4py-coupled implementation allows much flexibility with system
solvers and preconditioners, it was out of the scope of this work to try and test various combinations. It
is an interesting topic left for future work.

The theoretical framework for analyzing the IMEX iterations allows us to define the implicit-explicit
splitting in any way. This depends on the equation being solved, however, different definitions of
the explicit and implicit part may improve convergence. ParaDiag can also be used as an extension
for computing iterations where the explicit part is computed in time Tℓ−1 whereas the implicit part is
constructed in time Tℓ. The implementation of this time-stepping method is currently under construc-
tion.

Another exciting line of research is to apply the method for optimal control problems. PFASST was
tried out for this idea in [83], however, just for parabolic equations. ParaDiag is proposed as an approach
in [84] for wave equations, preconditioning the state and the adjoint equations in a coupled way of two
blocks for α = 1. The approach seems promising and has much potential since optimal control may
profit from a specific type of error control in each iteration.

Lastly, an idea of preconditioning the collocation problems as done in SDC may be performed inside
ParaDiag. One approach is to solve the shifted inner systems in an iterative SDC-like way. Another
approach is to directly incorporate the preconditioner for the collocation problem into the α-circulant
matrix, which would then bear the preconditioning matrices for the collocation problem instead of the
matrix Q. Because of this, the inner systems do not need to be solved via diagonalization of QG−1

ℓ , but
instead using triangular matrices that can be solved via forward/backward substitutions. Other candidates
are matrices that can easily be reduced to diagonal forms after the formation of the inner systems. So
far, no tests have been conducted, and whether the tradeoff of making each iteration computationaly even
cheaper provides more speedup is still being determined.

88

APPENDIX A

Spectral radius and the infinity norm of the iteration matrix

This segment presents findings regarding the iteration matrix’s spectral radius and infinity norm. Notwith-
standing being unreported, the outcomes are incorporated in the manuscript as they were obtained during
the research period. In the meantime, similar results have been published: bounds on the iteration matrix
norm from 2021 can be located in [57, Theorem 2.1], while the spectral radius examination from 2022
is available in [52, Theorem 2.1].

First, we need one important result.

Corollary A.1
If matrices B1, . . . ,Bn all commute, then the spectral radius of the product can be bound as

ρ(B1 . . .Bn) ≤ ρ(B1) . . . ρ(Bn).

Proof: Gelfand’s formula for the spectral radius is ρ(B) = limk→∞
∥∥∥Bk

∥∥∥ 1
k . Using the commuting property

of the matrices and submultiplacivity of matrix norms, the result is evident. □

Theorem A.2
Let R := C−1

α (Cα − C) define the iteration matrix of preconditioned Richardson iterations (2.18) corre-
sponding to the initial value problem (2.9)

ut = Au + b, u(T0) = u0 ∈ C
N .

Let Φ1, . . . ,ΦM denote the M implicit stages obtained by solving the collocation problem of order M
with a step size ∆T defined in (2.8) for the equation

Ut = AU, U(T0) = IN . (A.1)

If α
∥∥∥ΦL

M

∥∥∥ < 1, where L is the number of time steps, then

ρ(R) ≤
α
∥∥∥ΦL

M

∥∥∥
1 − α

∥∥∥ΦL
M

∥∥∥ (A.2)

89

A. Spectral radius and the infinity norm of the iteration matrix

holds for any norm ∥ · ∥. Furthermore, if α
∥∥∥ΦmΦ

L−1
M

∥∥∥
∞
< 1, for 1 ≤ m ≤ M, then

∥R∥∞ ≤
αmaxm

{
∥Φm∥∞, ∥Φm∥∞∥ΦM∥

L−1
∞

}
1 − αmaxm

∥∥∥ΦmΦ
L−1
M

∥∥∥
∞

.

Proof: For simplicity let us define T := C−1
collH. Then, the preconditioner can be rewritten as

Cα = (IL ⊗ Ccoll)


IMN -αT
-T IMN

. . .
. . .

-T IMN

︸ ︷︷ ︸
=:Tα

.

The inverse of Tα is

T−1
α =

(
IL ⊗

(
IMN − αTL

)−1
)


IMN αTL−1 αTL−2 . . . αT
T IMN αTL−1 . . . αT2

T2 T IMN . . . αT3

...
...

...
. . .

...

TL−1 TL−2 TL−3 . . . IMN


, (A.3)

which can be checked directly. The easiest way to derive the inverse is using the inverse of the Toeplitz
matrices which has a closed form and generalizing it to block matrices. The condition α

∥∥∥ΦL
M

∥∥∥ < 1
verifies the existence of inverse of the matrix IMN − αTL. To clarify this, T is a solution of CcollT = H.
From here we can conclude that it has a form

T =


0 . . . 0 T1M

0 . . . 0 T2M
...
. . .

...
...

0 . . . 0 TMM

 ,
otherwise the collocation problem is not well defined. Entries TmM are exactly the implicit stages for
the equation (A.1) corresponding to one propagation of the method. Consequently, we have TmM = Φm.
Calculating the powers of T gives

Tk =


0 . . . 0 Φ1Φ

k−1
M

0 . . . 0 Φ2Φ
k−1
M

...
. . .

...
...

0 . . . 0 Φk
M

 ,
from where we see that the matrix IMN − αTL is nonsingular if IN − αΦ

L
M is nonsingular. This is a direct

consequence of the Binet-Cauchy theorem and the condition α
∥∥∥ΦL

M

∥∥∥ < 1 is sufficient. Using the inverse
T−1
α (A.3) yields

R = T−1
α

(
IL ⊗ C−1

coll

)
(Cα − C) = T−1

α


0 . . . -αT
...
. . .

...

0 . . . 0

 ,

90

and multiplying these block matrices gives

R = −α
(
IL ⊗

(
IMN − αTL

)−1
) 

0 . . . 0 T
0 . . . 0 T2

...
. . .

...
...

0 . . . 0 TL

 . (A.4)

Thus the nonzero eigenvalues of R are the same as for the matrix −α
(
IMN − αTL

)−1
TL, therefore the

spectral radius of the iteration matrix is

ρ(R) = αρ
((

IMN − αTL
)−1

TL
)
.

Furthermore, matrices
(
IMN − αTL

)−1
and TL commute since

TL = TL
(
IMN − αTL

) (
IMN − αTL

)−1
=

(
IMN − αTL

)
TL

(
IMN − αTL

)−1

and thus (
IMN − αTL

)−1
TL = TL

(
IMN − αTL

)−1
.

Note that T is singular and the commuting property is not obvious. The spectral radius can now be
bounded as

ρ(R) ≤ αρ
((

IMN − αTL
)−1

)
ρ
(
TL

)
due to Gelfand’s corollary A.1. Here, ρ

(
TL

)
≤

∥∥∥ΦL
M

∥∥∥ and since the inverse of a block triangular matrix
is known, we have

ρ
((

IMN − αTL
)−1

)
= max

{
1, ρ

((
IN − αΦ

L
M

)−1
)}

≤ max
{
1,

∥∥∥∥∥(IN − αΦ
L
M

)−1
∥∥∥∥∥}

≤
1

1 − α
∥∥∥ΦL

M

∥∥∥ ,
where the last inequality holds beacuse α

∥∥∥ΦL
M

∥∥∥ < 1. This completes the proof regarding the bound for
the spectral radius. It remains to show the norm bound. Revisiting equation (A.4) gives

∥R∥∞ ≤ α
∥∥∥∥∥(INM − αTL

)−1
∥∥∥∥∥
∞

max
{
∥T∥∞, . . . ,

∥∥∥TL
∥∥∥
∞

}
.

The condition α
∥∥∥ΦmΦ

L−1
M

∥∥∥
∞
< 1 is equivalent to α

∥∥∥TL
∥∥∥
∞
< 1 because

∥∥∥TL
∥∥∥
∞
= maxm

∥∥∥ΦmΦ
L−1
M

∥∥∥
∞

,
hence ∥∥∥(INM − αTL)−1

∥∥∥
∞
≤

1
1 − αmaxm

∥∥∥ΦmΦ
L−1
M

∥∥∥ .
The second factor can be bound as

max
{
∥T∥∞, . . . ,

∥∥∥TL
∥∥∥
∞

}
≤ max

m

{
∥Φm∥∞, ∥Φm∥∞∥ΦM∥∞, . . . , ∥Φm∥∞∥ΦM∥

L−1
∞

}
≤ max

m

{
∥Φm∥∞, ∥Φm∥∞∥ΦM∥

L−1
∞

}
.

The last inequality holds because it summarizes the cases when ∥ΦM∥∞ ≤ 1 or ∥ΦM∥∞ > 1. This
completes the second part of the proof. □

91

A. Spectral radius and the infinity norm of the iteration matrix

Remark A.3
For stiff problems, if the underlying collocation method from Theorem A.2 is stable, meaning ∥ΦM∥ < 1,
then the condition α

∥∥∥ΦL
M

∥∥∥ < 1 is automatically satisfied for any α < 1. Consequently, ρ(R) ≤ α
1−α .

The proof of Theorem A.2 provides an intuition of the convergence behavior. The approximation ΦM

is essentially an approximation of e∆TA of some order depending on the quadrature. The bound can be
interpreted as

ρ(R) ≲
α
∥∥∥eL∆TA

∥∥∥
1 − α

∥∥∥eL∆TA
∥∥∥ . (A.5)

The same can be concluded for the bound ∥R∥∞ since for a very small step size, we get ΦmΦ
L−1
M ≈ ΦL

M.
For a sufficiently small parameter α, we may say that the contraction factor of preconditioned Richardson
iterations (2.18) is o(α).

92

APPENDIX B

Bounds for the norm of the collocation matrix

On function spaces, there is a natural scalar product. For integrable functions f , g : R → R a scalar
product can be defined as

⟨ f , g⟩ =
∫ 1

0
f g. (B.1)

This allows us to define orthogonality on function spaces. The family of orthogonal polynomials can be
used to construct high-order Gaussian-quadrature rules. Let∫ 1

0
p(s)ds =

M∑
i=1

wi p(ti) (B.2)

define a quadrature rule, where some points ti may be fixed while other are roots of an orthogonal polyno-
mial. Then, the right sum computes the integral correctly for polynomials of degree 2M − 2 or less. De-
pending on the choice of these points, we get different quadrature rules such as Legendre, Radau, Lobatto,
etc. The integration weights wi are positive, and the integration points ti are inside the integration interval
[85]. In our case, without loss of generality, we will assume that ti ∈ [0, 1].

Let the collocation matrix be defined as in (2.7). In order to compute lower and upper bounds for
∥Q∥∞, we first have to understand what a matrix-vector product Qx means. The product behaves
as

Qx =



∑M
j=1 x j

∫ t1
0 c j(s)ds∑M

j=1 x j
∫ t2

0 c j(s)ds
...∑M

j=1 x j
∫ tM

0 c j(s)ds

 =


∫ t1
0

∑M
j=1 x jc j(s)ds∫ t2

0
∑M

j=1 x jc j(s)ds
...∫ tM

0
∑M

j=1 x jc j(s)ds

 ,
where ci are the Lagrange polynomils defined in (2.3). This motivates us to construct a one-to-one map
from a vector x ∈ RM to a polynomial p ∈ PM−1, where p :=

∑M
j=1 x jc j. This is uniquely defined because

the polynomial p passes through M points (ti, xi) and is of degree M−1. Then, the sum
∫ ti

0
∑M

j=1 x jc j(s)ds

is nothing more than
∫ ti

0 p(s)ds, and we can conclude that multiplying a vector with a matrix Q is as
computing integrals of a corresponding polynomial.

93

B. Bounds for the norm of the collocation matrix

Now, we are interested in computing the norm ∥Q∥∞. By definition, the norm is

∥Q∥∞ = max
∥x∥∞=1

∥Qx∥∞, (B.3)

but the infinity norm of a matrix can also be computed as

∥Q∥∞ = max
1≤i≤M

M∑
j=1

|Qi j| = max
1≤i≤M

M∑
j=1

∣∣∣∣∣ ∫ ti

0
c j(s)ds

∣∣∣∣∣,
which is the maximum row-sum of the absolute values of its entries. From this, we can see that

ti =
∣∣∣∣∣ ∫ ti

0
1ds

∣∣∣∣∣ = ∣∣∣∣∣ ∫ ti

0

M∑
j=1

c j(s)ds
∣∣∣∣∣

=

∣∣∣∣∣ M∑
j=1

∫ ti

0
c j(s)ds

∣∣∣∣∣
≤

M∑
j=1

∣∣∣∣∣ ∫ ti

0
c j(s)ds

∣∣∣∣∣
≤

M∑
j=1

|Qi j| ≤ ∥Q∥∞.

This gives a lower bound: tM ≤ ∥Q∥∞.

Furthermore, we will redefine the definition of the matrix norm (B.3) in a way that we do not compute
the maximum over all vectors x for which ∥x∥∞ = 1, but over uniquely defined polynomials p since
RM ∋ x 7→ p ∈ PM−1 is a one-to-one map, as discussed above. Proving ∥Q∥∞ ≤ 1 is then equivalent to
proving that

max
1≤i≤M

∣∣∣∣∣ ∫ ti

0
p(s)ds

∣∣∣∣∣ ≤ 1 (B.4)

holds, for p ∈ PM−1 and max1≤i≤M |p(ti)| = 1.

B.1. Exact quadrature for degree 2M − 2 or higher

First, using the integral Cauchy–Bunyakovsky–Schwarz inequality on the scalar product defined as in
(B.1), we can get an upper bound on

∣∣∣ ∫ ti
0 p(s)ds

∣∣∣ as

∣∣∣∣∣ ∫ ti

0
p(s)ds

∣∣∣∣∣2 = ∣∣∣∣∣ ∫ ti

0
p(s) · 1ds

∣∣∣∣∣2 ≤ ∣∣∣∣∣ ∫ ti

0
p2(s)ds

∣∣∣∣∣∣∣∣∣∣ ∫ ti

0
12ds

∣∣∣∣∣ (B.5)

≤ ti

∫ ti

0
p2(s)ds (B.6)

≤ ti

∫ 1

0
p2(s)ds. (B.7)

94

B.2. Gauss–Lobatto nodes

Since p2 ∈ P2M−2, using the quadrature rule (B.2) which correctly computes integrals of polynomials of
degree 2M − 2, we get∫ 1

0
p2(s)ds =

M∑
i=1

wi p2(ti) ≤
(M∑

i=1

wi

)
︸ ︷︷ ︸
=1

max
1≤i≤M

p2(ti) = max
1≤i≤M

p2(ti).

Because we are computing (B.4) over polynomials which satisfy max1≤i≤M |p(ti)| = 1, we know that
max1≤i≤M p2(ti) = 1, thus ∫ 1

0
p2(s)ds ≤ max

1≤i≤M
p2(ti) = 1. (B.8)

Now (B.7) + (B.8) yield ∣∣∣∣∣ ∫ ti

0
p(s)ds

∣∣∣∣∣2 ≤ ti.

In conclusion,

ti ≤
∣∣∣∣∣ ∫ ti

0
p(s)ds

∣∣∣∣∣ ≤ √ti.

This proves that tM ≤ ∥Q∥∞ ≤
√

tM ≤ 1 holds for nodes originating from the Gaussian quadrature that
integrate polynomials of degree 2M − 2 exactly.

B.2. Gauss–Lobatto nodes

The Gauss–Lobatto quadrature integrates polynomials of degree 2M − 3 exactly, therefore, the same
argument as for ∥Q∥∞ ≤ 1 does not hold. However, we will show this is still true for M ≥ 2. The
Gauss-Lobatto quadrature on [0, 1] is defined as∫ 1

0
p(s)ds =

M∑
i=1

wi p(ti) + RM, (B.9)

where RM = −cp(2M−2)(ξ), c ≥ 0, ξ ∈ [0, 1], see [85] for details. If we manage to bound
∫ 1

0 p2(s)ds ≤ 1,
then using the same train of thought and arguments as in (B.7), we are done.

Let p2(s) = as2M−2 + . . . , where a > 0. We can write∫ 1

0
p2(s)ds =

∫ 1

0

(
p2(s) − as2M−2)ds +

∫ 1

0
as2M−2ds.

The polynomial p2(s)−as2M−2 is of degree 2M−3 and can be computed with quadrature (B.9) as∫ 1

0

(
p2(s) − as2M−2)ds =

M∑
i=1

wi
(
p2(ti) − at2M−2

i
)
.

This yields ∫ 1

0
p2(s)ds =

M∑
i=1

wi
(
p2(ti) − at2M−2

i
)
+

∫ 1

0
as2M−2ds (B.10)

≤ 1 − a
M∑

i=1

wit2M−2
i +

∫ 1

0
as2M−2ds, (B.11)

95

B. Bounds for the norm of the collocation matrix

where the inequality holds because
∑M

i=1 wi p2(ti) ≤ 1 for max1≤i≤M |p(ti)| ≤ 1. Now using the quadrature
(B.9) on a polynomial t2M−2 yields∫ 1

0
s2M−2 =

M∑
i=1

wit2M−2
i − c(2M − 2)!

which in combination with (B.11) gives∫ 1

0
p2(s)ds ≤ 1 − ac(2M − 2)! ≤ 1,

since ac ≥ 0. This proves that tM ≤ ∥Q∥∞ ≤
√

tM ≤ 1 is also true for the Gauss-Lobatto quadra-
ture.

B.3. Conclusion

This shows that tM ≤ ∥Q∥∞ ≤
√

tM ≤ 1 holds for nodes originating from the Gaussian quadrature
that integrates polynomials of degree 2M − 2 exactly, and it is also true for the Gauss-Lobatto quadra-
ture.

96

Bibliography

[1] J. Nievergelt, “Parallel methods for integrating ordinary differential equations,” Commun. ACM,
vol. 7(12), p. 731–733, 1964.

[2] G. Čaklović, R. Speck, and M. Frank, “A parallel-in-time collocation method using
diagonalization: theory and implementation for linear problems,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.12571v1

[3] T. Xiao, “Kinetic. jl: A portable finite volume toolbox for scientific and neural computing,” Jour-
nal of Open Source Software, vol. 6, no. 62, p. 3060, 2021.

[4] G. Čaklović, “The infinity norm bounds and characteristic polynomial for high order RK
matrices,” 2022. [Online]. Available: https://arxiv.org/abs/2203.04086

[5] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids,” Math. Comp.,
vol. 51, pp. 699–706, 1988.

[6] M. J. Gander, “50 Years of Time Parallel Time Integration,” in Multiple Shooting and Time Do-
main Decomposition Methods, ser. Contributions in Mathematical and Computational Sciences,
T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, Eds. Springer, Cham, 2015, vol. 9.

[7] B. W. Ong and J. B. Schroder, “Applications of time parallelization,” Computing and Visualization
in Science, vol. 23, no. 1-4, Sep. 2020.

[8] M. Schreiber, N. Schaeffer, and R. Loft, “Exponential integrators with parallel-in-time rational ap-
proximations for the shallow-water equations on the rotating sphere,” Parallel Computing, vol. 85,
pp. 56–65, 2019.

[9] W. C. Agboh, D. Ruprecht, and M. R. Dogar, “Combining Coarse and Fine Physics for
Manipulation using Parallel-in-Time Integration,” in International Symposium on Robotics
Research, 2019. [Online]. Available: https://arxiv.org/abs/1903.08470

[10] J. Steiner, D. Ruprecht, R. Speck, and R. Krause, “Convergence of Parareal for the Navier-Stokes
equations depending on the Reynolds number,” in Numerical Mathematics and Advanced Appli-
cations - ENUMATH 2013, Lecture Notes in Computational Science and Engineering, A. Abdulle,
S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds., vol. 103. Springer International Pub-
lishing, 2015, p. 195–202.

[11] A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias, “Parallel-in-time integration of kine-
matic dynamos,” Journal of Computational Physics: X, vol. 7, 2020.

97

https://arxiv.org/abs/2103.12571v1
https://arxiv.org/abs/2203.04086
https://arxiv.org/abs/1903.08470

Bibliography

[12] S. Friedhoff, J. Hahne, and S. Schöps, “Multigrid-reduction-in-time for Eddy Current problems,”
in Proceeding in Applied Mathematics and Mechanics, 2019.

[13] D. Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Ap-
plication of the parareal algorithm to simulations of ELMs in ITER plasma,” Computer Physics
Communications, vol. 235, pp. 246–257, 2019.

[14] J. L. Lions and Y. Maday and G. Turinici, “ A "parareal" in time discretization of PDE’s,” Comptes
Rendus de l’Académie des Sciences, Série I, vol. 332 (7), p. 661–668, 2001.

[15] K. Burrage, “Parallel methods for ODEs,” Advances in Computational Mathematics, vol. 7, pp.
1–3, 1997.

[16] M. J. Gander and S. Vandewalle, “Analysis of the Parareal Time-Parallel Time-Integration
Method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007.

[17] M. J. Gander and E. Hairer, “Nonlinear Convergence Analysis for the Parareal Algorithm,” in
Domain Decomposition Methods in Science and Engineering XVII. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 45–56.

[18] M. J. Gander, “Analysis of the parareal algorithm applied to hyperbolic problems using charac-
teristics,” SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, no. 42, pp.
21–36, 2008.

[19] D. Ruprecht, “Wave propagation characteristics of Parareal,” Computing and Visualization in Sci-
ence, vol. 19(1), pp. 1–17, 2018.

[20] X. Dai and Y. Maday, “Stable Parareal in Time Method for First and Second-Order Hyperbolic
Systems,” SIAM Journal on Scientific Computing, vol. 5(1), p. A52–A78, 2013.

[21] M. J. Gander and M. Petcu, “Analysis of a Krylov Subspace Enhanced Parareal Algorithm for
Linear Problem,” ESAIM, vol. 25, p. 114–129, 2008.

[22] D. Ruprecht and R. Krause, “Explicit parallel-in-time integration of a linear acoustic-advection
system,” Computers & Fluids, vol. 59(0), p. 72–83, 2012.

[23] J. Angel, S. Götschel, and D. Ruprecht, “Impact of spatial coarsening on Parareal convergence,”
2021. [Online]. Available: https://arxiv.org/abs/2111.10228

[24] T. M. Masthay and S. Perugini, “Parareal algorithm implementation and sim-
ulation in Julia,” 2017. [Online]. Available: https://github.com/saverioperugini/
Parareal-Implementation-and-Simulation-in-Julia

[25] LLNL, “XBraid: Parallel multigrid in time,” 2014. [Online]. Available: https://computing.llnl.
gov/projects/parallel-time-integration-multigrid

[26] “LibPFASST,” version v1.1. [Online]. Available: https://github.com/libpfasst/LibPFASST

[27] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, and J. Schroder, “Parallel Time Integration
with Multigrid,” SIAM Journal on Scientific Computing, vol. 36 (6), p. C635–C661, 2014.

[28] J. Hahne and S. Friedhoff, “PyMGRIT: Multigrid-reduction-in-time in Python v1.0,” 2020,
release 1.0. [Online]. Available: https://github.com/pymgrit/pymgrit

[29] A. J. Howse, H. D. Sterck, R. D. Falgout, S. MacLachlan, and J. Schroder, “Parallel-In-Time
Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equa-
tions,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A538–A565, 2019.

98

https://arxiv.org/abs/2111.10228
https://github.com/saverioperugini/Parareal-Implementation-and-Simulation-in-Julia
https://github.com/saverioperugini/Parareal-Implementation-and-Simulation-in-Julia
https://computing.llnl.gov/projects/parallel-time-integration-multigrid
https://computing.llnl.gov/projects/parallel-time-integration-multigrid
https://github.com/libpfasst/LibPFASST
https://github.com/pymgrit/pymgrit

Bibliography

[30] O. A. Krzysik, H. D. Sterck, S. P. MacLachlan, and S. Friedhoff, “On selecting coarse-grid
operators for Parareal and MGRIT applied to linear advection,” 2019. [Online]. Available:
https://arxiv.org/abs/1902.07757

[31] H. D. Sterck, S. Friedhoff, O. A. Krzysik, and S. P. MacLachlan, “Multigrid reduction-in-time
convergence for advection problems: A Fourier analysis perspective,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.01526v1

[32] H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Efficient multigrid
reduction-in-time for method-of-lines discretizations of linear advection,” 2023. [Online].
Available: https://arxiv.org/abs/2209.06916v2

[33] H. D. Sterck, R. D. Falgout, and O. A. Krzysik, “Fast multigrid reduction-in-time for
advection via modified semi-Lagrangian coarse-grid operators,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.13382v1

[34] M. Emmett and M. Minion, “Toward an efficient parallel in time method for partial differential
equations,” Communications in Applied Mathematics and Computational Science, vol. 7, no. 1,
pp. 105–132, 2012. [Online]. Available: https://doi.org/10.2140/camcos.2012.7.105

[35] A. Dutt, L. Greengard, and V. Rokhlin, “Spectral Deferred Correction Methods for Ordinary Dif-
ferential Equations,” BIT Numerical Mathematics, vol. 40, p. 241–266, 2000.

[36] M. Bolten, D. Moser, and R. Speck, “A multigrid perspective on the parallel full approximation
scheme in space and time,” Numerical Linear Algebra with Applications, vol. 24, 2077.

[37] M. Bolten, D. Moser, and R. Speck., “Asymptotic convergence of the parallel full approximation
scheme in space and time for linear problems,” Numerical Linear Algebra with Applications, vol.
25(6), p. e2208, 2018.

[38] P. Benedusi, M. Minion, and R. Krause, “An experimental comparison of a space-time
multigrid method with PFASST for a reaction-diffusion problem,” 2021. [Online]. Available:
https://arxiv.org/abs/2006.12883

[39] R. Speck, “Algorithm 997: pysdc - prototyping spectral deferred corrections,” ACM Transactions
on Mathematical Software, vol. 45, no. 3, pp. 1–23, 2019.

[40] “PFASST++,” version v0.5.0. [Online]. Available: https://github.com/Parallel-in-Time/PFASST

[41] M. J. Gander and S. Güttel, “PARAEXP: A Parallel Integrator for Linear Initial-Value Problems,”
SIAM Journal on Scientific Computing, vol. 35(2), p. C123–C142, 2013.

[42] T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for
solving wave propagation problems via the direct construction of an approximate time-evolution
operator,” IMA Journal of Numerical Analysis, vol. 36(2), p. 688–716, 2016.

[43] P. J. van der Houwen and B. P. Sommeijer, “Iterated Runge–Kutta Methods on Parallel
Computers,” SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 5, pp. 1000–1028,
1991. [Online]. Available: https://doi.org/10.1137/0912054

[44] ——, “Parallel iteration of high-order Runge-Kutta methods with stepsize control,” Journal of
Computational and Applied Mathematics, vol. 29, no. 1, pp. 111–127, 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/037704279090200J

99

https://arxiv.org/abs/1902.07757
https://arxiv.org/abs/2208.01526v1
https://arxiv.org/abs/2209.06916v2
https://arxiv.org/abs/2203.13382v1
https://doi.org/10.2140/camcos.2012.7.105
https://arxiv.org/abs/2006.12883
https://github.com/Parallel-in-Time/PFASST
https://doi.org/10.1137/0912054
https://www.sciencedirect.com/science/article/pii/037704279090200J

Bibliography

[45] A. Iserles and S. Nørsett, “On the Theory of Parallel Runge—Kutta Methods,” IMA
Journal of Numerical Analysis, vol. 10, no. 4, pp. 463–488, 1990. [Online]. Available:
https://doi.org/10.1093/imanum/10.4.463

[46] R. Speck, “Parallelizing spectral deferred corrections across the method,” Computing
and Visualization in Science, vol. 19, p. 75–83, 2018. [Online]. Available: https:
//doi.org/10.1007/s00791-018-0298-x

[47] Y. Maday and E. M. Rønquist, “Parallelization in time through tensor-product space-time solvers,”
2007.

[48] M. J. Gander, L. Halpern, J. Rannou, and J. Ryan, “A direct time parallel solver by diagonalization
for the wave equation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A220–A245,
2019.

[49] D. Bertaccini and M. Ng, “Block ω-circulant preconditioners for the systems of differential equa-
tions,” CALCOLO, vol. 40, p. 71–90, 2003.

[50] X. L. Lin and M. K. Ng, “An all-at-once preconditioner for evolutionary partial differential
equations,” 2020. [Online]. Available: https://arxiv.org/abs/2002.01108

[51] E. McDonald, J. Pestana, and A. Wathen, “Preconditioning and Iterative Solution of All-at-Once
Systems for Evolutionary Partial Differential Equations,” SIAM Journal on Scientific Computing,
vol. 40, no. 2, pp. A1012–A1033, 2018.

[52] S. L. Wu, T. Zhou, and Z. Zhou, “Spectral Analysis for a Preconditioned All-at-Once System
from First-Order and Second-Order Evolutionary Problems,” SIMAX, vol. 43, no. 3, pp. 1331–
1353, 2022.

[53] S. L. Wu, “Toward parallel coarse grid correction for the parareal algorithm,” SIAM Journal on
Scientific Computing, vol. 40, no. 3, pp. A1446–A1472, 2018.

[54] M. J. Gander and S. L. Wu, “Convergence analysis of a periodic-like waveform relaxation method
for initial-value problems via the diagonalization technique.” Numerische Mathematik, vol. 143,
p. 489–527, 2019.

[55] ——, “A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Prob-
lems,” SIAM J. Numer. Anal., vol. 58(5), p. 2981–3009, 2020.

[56] J. Liu and S. L. Wu, “A Fast Block α-Circulant Preconditioner for All-at-Once Systems From
Wave Equations,” SIMAX, vol. 41(4), pp. 1912–1943, 2020.

[57] S. L. Wu, T. Zhou, and Z. Zhou, “Stability implies robust convergence of a class of preconditioned
parallel-in-time iterative algorithms,” 2021. [Online]. Available: https://arxiv.org/abs/2102.04646

[58] M. J. Gander, J. Liu, S. L. Wu, X. Yue, and T. Zhou, “ParaDiag: parallel-in-time algorithms
based on the diagonalization technique.” [Online]. Available: https://arxiv.org/abs/2005.09158

[59] “Diagonalization-based Parallel-in-Time Methods.” [Online]. Available: https://parallel-in-time.
org/methods/paradiag.html

[60] G. Čaklović, “pyParaDiag,” 2021. [Online]. Available: https://github.com/caklovicka/pyParaDiag

[61] R. Schöbel and R. Speck, “PFASST-ER: combining the parallel full approximation scheme in
space and time with parallelization across the method,” Computing and Visualization in Science,
vol. 23, no. 1-4, Sep. 2020.

100

https://doi.org/10.1093/imanum/10.4.463
https://doi.org/10.1007/s00791-018-0298-x
https://doi.org/10.1007/s00791-018-0298-x
https://arxiv.org/abs/2002.01108
https://arxiv.org/abs/2102.04646
https://arxiv.org/abs/2005.09158
https://parallel-in-time.org/methods/paradiag.html
https://parallel-in-time.org/methods/paradiag.html
https://github.com/caklovicka/pyParaDiag

Bibliography

[62] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, ser. Springer Series in Computational Mathematics. Springer, Berlin, Hei-
delberg, 1996.

[63] H. Brunner, Volterra Integral Equations An Introduction to Theory and Applications, ser. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
2017.

[64] E. McDonald, “All-at-once solution of time-dependent PDE problems,” Ph.D. dissertation, Uni-
versity of Oxford, 2016.

[65] E. McDonald, J. Pestana, and A. Wathen, “Preconditioning and Iterative Solution of All-at-Once
Systems for Evolutionary Partial Differential Equations,” SIAM Journal on Scientific Computing,
vol. 40(2), pp. A1012–A1033, 2018.

[66] R. E. Cline, R. J. Plemmons, and G. Worm, “Generalized inverses of certain Toeplitz matrices,”
Linear Algebra and its Applications, vol. 8(1), pp. 25–33, 1974.

[67] F. B. Hildebrand, Introduction to numerical analysis. New York : McGraw-Hill, 1956.

[68] M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, “A direct solver for time parallelization,” in
Domain Decomposition Methods in Science and Engineering XXII. Cham: Springer International
Publishing, 2016, pp. 491–499.

[69] M. J. Gander, L. Halpern, J. Rannou, and J. Ryan, “A Direct Time-parallel Solver by Diagonal-
ization for the Wave Equation,” SIAM J. Sci. Comput., vol. 41(1), pp. A220–A245, 2019.

[70] M. L. Minion, “Semi-Implicit Spectral Deferred Correction Methods For Ordinary Differential
Equations,” Communications in Mathematical Sciences, vol. 1, no. 3, pp. 471–500, 2003.

[71] D. Ruprecht and R. Speck, “Spectral Deferred Corrections with Fast-wave Slow-wave Splitting,”
SIAM Journal on Scientific Computing, vol. 38, no. 4, 2016.

[72] J. Huang, J. Jia, and M. Minion, “Accelerating the convergence of spectral deferred correction
methods,” Journal of Computational Physics, vol. 214, no. 2, pp. 633–656, 2006.

[73] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Englewood Cliffs, N.J. : Prentice-Hall,
1963.

[74] S. Götschel, M. Minion, D. Ruprecht, and R. Speck, “Twelve Ways to Fool the Masses When
Giving Parallel-in-Time Results,” in Parallel-in-Time Integration Methods, B. Ong, J. Schroder,
J. Shipton, and S. Friedhoff, Eds. Cham: Springer International Publishing, 2021, pp. 81–94.

[75] L. Dalcin, P. Kler, R. Paz, and A. Cosimo, “Parallel Distributed Computing using Python,” Ad-
vances in Water Resources, vol. 34, pp. 1124–1139, 2011.

[76] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May,
L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini,
H. Zhang, and H. Zhang, “PETSc Users Manual,” 2020. [Online]. Available: http:
//www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

[77] P. Thörnig, “Jureca: Data centric and booster modules implementing the modular supercomputing
architecture at jülich supercomputing centre,” Journal of large-scale research facilities JLSRF,
vol. 7, 10 2021.

101

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

Bibliography

[78] M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, “Interweaving PFASST
and parallel multigrid,” SIAM Journal on Scientific Computing, vol. 37, pp. S244–S263, 2015.
[Online]. Available: 10.1137/14097536X

[79] J. Zhang and Q. Du, “Numerical Studies of Discrete Approximations to the Allen–Cahn Equation
in the Sharp Interface Limit,” SIAM Journal on Scientific Computing, vol. 31, no. 4, pp. 3042–
3063, 2009.

[80] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University
Press, 1972.

[81] C. Mouhot and L. Pareschi, “Fast algorithms for computing the Boltzmann collision operator,”
Mathematics of computation, vol. 75, no. 256, pp. 1833–1852, 2006.

[82] T. Xiao, “A flux reconstruction kinetic scheme for the Boltzmann equation,” Journal of Computa-
tional Physics, vol. 447, p. 110689, 2021.

[83] S. Götschel and M. L. Minion, “Parallel-in-Time for Parabolic Optimal Control Problems Using
PFASST,” in Domain Decomposition Methods in Science and Engineering XXIV, ser. DD 2017.,
2018, pp. 363 – 371.

[84] S. L. Wu and J. Liu, “A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control
of Wave Equations,” SIAM Journal on Scientific Computing, vol. 42, no. 3, pp. A1510–A1540,
2020. [Online]. Available: https://doi.org/10.1137/19M1289613

[85] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Integration. Springer, Berlin, Heidelberg,
2006, pp. 379–422.

[86] Dalcin, Lisandro and Mortensen, Mikael and Keyes, David E, “Fast parallel multidimensional
FFT using advanced MPI,” Journal of Parallel and Distributed Computing, 2019.

[87] G. A. Staff and E. M. Rønquist, “Stability of the parareal algorithm,” in Science and Engineer-
ing, Lecture Notes in Computational Science and Engineering, e. a. R. Kornhuber, Ed., vol. 40.
Springer, Berlin, 2005, p. 449–456.

[88] M. J. Gander and S. Vandewalle, “On the Superlinear and Linear Convergence of the Parareal
Algorithm,” in Domain Decomposition Methods in Science and Engineering, Lecture Notes in
Computational Science and Engineering, O. Widlund and D. Keyes, Eds., vol. 55. Springer
Berlin Heidelberg, 2007, p. 291–298.

[89] J. Hahne, S. Friedhoff, and M. Bolten, “Pymgrit: A python package for the parallel-in-time
method mgrit,” 2020. [Online]. Available: http://arxiv.org/abs/2008.05172v1

[90] G. Xie and Y. Li, “Parallel Computing for the Radix-2 Fast Fourier Transform,” in 2014 13th
International Symposium on Distributed Computing and Applications to Business, Engineering
and Science, 2014, pp. 133–137.

[91] G. HortonStefan and S. Vandewalle, “A Space-Time Multigrid Method for Parabolic Partial Dif-
ferential Equations,” SIAM Journal on Scientific Computing, vol. 16(4), p. 848–864, 1995.

[92] Jülich Supercomputing Centre, “JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Super-
computing Centre,” Journal of large-scale research facilities, vol. 5, no. A135, 2019.

[93] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, p. 856–869, 1986.

102

10.1137/14097536X
https://doi.org/10.1137/19M1289613
http://arxiv.org/abs/2008.05172v1

Bibliography

[94] B. W. Ong, R. D. Haynes, and K. Ladd, “Algorithm 965: RIDC Methods: A Family of Parallel
Time Integrators,” ACM Trans. Math. Softw., vol. 43, no. 1, 2016.

[95] M. Emmett and M. L. Minion, “Toward an Efficient Parallel in Time Method for Partial Differen-
tial Equations,” Communications in Applied Mathematics and Computational Science, vol. 7, pp.
105–132, 2012.

[96] C. Gräser, R. Kornhuber, and U. Sack, “Time discretizations of anisotropic Allen–Cahn
equations,” IMA Journal of Numerical Analysis, vol. 33, no. 4, pp. 1226–1244, 03 2013. [Online].
Available: https://doi.org/10.1093/imanum/drs043

[97] LLBL, “Website for PFASST codes,” 2018. [Online]. Available: https://pfasst.lbl.gov/codes

[98] “References.” [Online]. Available: https://parallel-in-time.org/references/

[99] J. C. Butcher, Runge–Kutta Methods. John Wiley & Sons, Ltd, 2016, ch. 3, pp. 143–331.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119121534.ch3

[100] ——, “On the implementation of implicit Runge-Kutta methods,” BIT Numerical Mathematics,
vol. 16, p. 237–240, 1976.

[101] M. J. Gander and S. Vandewalle, “Analysis of the Parareal Time-Parallel Time-Integration
Method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007.

[102] L. Xuelei, M. K. Ng, and H. Sun, “A Separable Preconditioner for Time-Space Fractional Caputo-
Riesz Diffusion Equations,” Numerical Mathematics: Theory, Methods and Applications, vol. 11,
no. 4, pp. 827–853, 2018.

103

https://doi.org/10.1093/imanum/drs043
https://pfasst.lbl.gov/codes
https://parallel-in-time.org/references/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119121534.ch3

	Figures, Tables, and Algorithms
	Introduction to time-parallel integration
	Coarsening methods
	Parareal
	Multigrid reduction in time
	Parallel Full Approximation Scheme in Space and Time

	Single-level methods
	ParaExp
	Diagonalization-based methods
	Contribution and outline

	The ParaDiag method for linear equations
	Collocation methods
	General definition
	Collocation methods as a subclass of Runge–Kutta methods
	High-order methods

	The linear composite collocation problem
	The ParaDiag approach for the linear composite collocation problem
	Diagonalization of
	Parameter selection
	Convergence
	Bounds for computation errors
	Choosing the sequence

	Extensions to nonlinear equations
	The collocation problem iterations: a single time step
	The composite collocation problem iterations
	Convergence of the composite collocation iterations
	Iterative refinement

	Implementation
	Parallelization strategies
	Employing the parallelization strategy
	Computing discrete Fourier transforms
	Solving decoupled problems
	Computing the residual
	Computing average Jacobians

	Code structure
	Setting up a problem class
	main.py

	Computational complexity and speedup analysis
	The linear case
	Iterative refinement

	Numerical results
	Parallel scaling
	How to compare time-parallel methods and codes
	Presenting numerical results with ParaDiag
	Setting up the right test cases

	ParaDiag for linear equations
	Heat equation
	Advection equation

	ParaDiag for nonlinear equations
	Allen–Cahn equation
	Boltzmann equation

	Conclusion and outlook
	Conclusion
	Outlook

	Spectral radius and the infinity norm of the iteration matrix
	Bounds for the norm of the collocation matrix
	Exact quadrature for degree or higher
	Gauss–Lobatto nodes
	Conclusion

	Bibliography

