001018695 001__ 1018695
001018695 005__ 20250204113740.0
001018695 0247_ $$2doi$$a10.1002/adbi.202300428
001018695 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04989
001018695 0247_ $$2pmid$$a38015104
001018695 0247_ $$2WOS$$aWOS:001119680100001
001018695 037__ $$aFZJ-2023-04989
001018695 082__ $$a570
001018695 1001_ $$0P:(DE-Juel1)173912$$aWang, Jiali$$b0$$eFirst author
001018695 245__ $$aExpressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells
001018695 260__ $$aWeinheim$$bWiley-VCH$$c2024
001018695 3367_ $$2DRIVER$$aarticle
001018695 3367_ $$2DataCite$$aOutput Types/Journal article
001018695 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736765180_23768
001018695 3367_ $$2BibTeX$$aARTICLE
001018695 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018695 3367_ $$00$$2EndNote$$aJournal Article
001018695 520__ $$aOptogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
001018695 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001018695 7001_ $$0P:(DE-Juel1)184312$$aPlatz-Baudin, Eric$$b1$$ufzj
001018695 7001_ $$0P:(DE-Juel1)145698$$aNoetzel-Reiss, Erik$$b2$$ufzj
001018695 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3$$ufzj
001018695 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b4$$eCorresponding author$$ufzj
001018695 773__ $$0PERI:(DE-600)3027224-5$$a10.1002/adbi.202300428$$n3$$p2300428$$tAdvanced biology$$v8$$x2366-7478$$y2024
001018695 8564_ $$uhttps://juser.fz-juelich.de/record/1018695/files/Advanced%20Biology%20-%202023%20-%20Wang%20-%20Expressing%20Optogenetic%20Actuators%20Fused%20to%20N%E2%80%90terminal%20Mucin%20Motifs%20Delivers%20Targets%20to.pdf$$yOpenAccess
001018695 8564_ $$uhttps://juser.fz-juelich.de/record/1018695/files/Advanced%20Biology%20-%202023%20-%20Wang%20-%20Expressing%20Optogenetic%20Actuators%20Fused%20to%20N%E2%80%90terminal%20Mucin%20Motifs%20Delivers%20Targets%20to.gif?subformat=icon$$xicon$$yOpenAccess
001018695 8564_ $$uhttps://juser.fz-juelich.de/record/1018695/files/Advanced%20Biology%20-%202023%20-%20Wang%20-%20Expressing%20Optogenetic%20Actuators%20Fused%20to%20N%E2%80%90terminal%20Mucin%20Motifs%20Delivers%20Targets%20to.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018695 8564_ $$uhttps://juser.fz-juelich.de/record/1018695/files/Advanced%20Biology%20-%202023%20-%20Wang%20-%20Expressing%20Optogenetic%20Actuators%20Fused%20to%20N%E2%80%90terminal%20Mucin%20Motifs%20Delivers%20Targets%20to.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018695 8564_ $$uhttps://juser.fz-juelich.de/record/1018695/files/Advanced%20Biology%20-%202023%20-%20Wang%20-%20Expressing%20Optogenetic%20Actuators%20Fused%20to%20N%E2%80%90terminal%20Mucin%20Motifs%20Delivers%20Targets%20to.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018695 8767_ $$d2023-12-18$$eHybrid-OA$$jDEAL
001018695 909CO $$ooai:juser.fz-juelich.de:1018695$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001018695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173912$$aForschungszentrum Jülich$$b0$$kFZJ
001018695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184312$$aForschungszentrum Jülich$$b1$$kFZJ
001018695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145698$$aForschungszentrum Jülich$$b2$$kFZJ
001018695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
001018695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b4$$kFZJ
001018695 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001018695 9141_ $$y2024
001018695 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001018695 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001018695 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001018695 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001018695 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001018695 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
001018695 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001018695 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-27$$wger
001018695 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001018695 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018695 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV BIOL-GER : 2022$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001018695 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001018695 920__ $$lyes
001018695 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001018695 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x1
001018695 980__ $$ajournal
001018695 980__ $$aVDB
001018695 980__ $$aI:(DE-Juel1)IBI-3-20200312
001018695 980__ $$aI:(DE-Juel1)IBI-2-20200312
001018695 980__ $$aAPC
001018695 980__ $$aUNRESTRICTED
001018695 9801_ $$aAPC
001018695 9801_ $$aFullTexts