001018738 001__ 1018738
001018738 005__ 20250204113740.0
001018738 0247_ $$2doi$$a10.1109/JSTARS.2023.3336926
001018738 0247_ $$2ISSN$$a1939-1404
001018738 0247_ $$2ISSN$$a2151-1535
001018738 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05019
001018738 0247_ $$2WOS$$aWOS:001127459900006
001018738 037__ $$aFZJ-2023-05019
001018738 082__ $$a520
001018738 1001_ $$0P:(DE-Juel1)191384$$aDelilbasic, Amer$$b0
001018738 245__ $$aA Single-Step Multiclass SVM Based on Quantum Annealing for Remote Sensing Data Classification
001018738 260__ $$aNew York, NY$$bIEEE$$c2024
001018738 3367_ $$2DRIVER$$aarticle
001018738 3367_ $$2DataCite$$aOutput Types/Journal article
001018738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704188999_26656
001018738 3367_ $$2BibTeX$$aARTICLE
001018738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018738 3367_ $$00$$2EndNote$$aJournal Article
001018738 520__ $$aIn recent years, the development of quantum annealers has enabled experimental demonstrations and has increased research interest in applications of quantum annealing, such as in quantum machine learning and in particular for the popular quantum Support Vector Machine (SVM). Several versions of the quantum SVM have been proposed, and quantum annealing has been shown to be effective in them. Extensions to multiclass problems have also been made, which consist of an ensemble of multiple binary classifiers. This work proposes a novel quantum SVM formulation for direct multiclass classification based on quantum annealing, called Quantum Multiclass SVM (QMSVM). The multiclass classification problem is formulated as a single quadratic unconstrained binary optimization problem solved with quantum annealing. The main objective of this work is to evaluate the feasibility, accuracy, and time performance of this approach. Experiments have been performed on the D-Wave Advantage quantum annealer for a classification problem on remote sensing data. Results indicate that, despite the memory demands of the quantum annealer, QMSVM can achieve an accuracy that is comparable to standard SVM methods, such as the one-versus-one (OVO), depending on the dataset (compared to OVO: 0.8663 vs 0.8598 on Toulouse, 0.8123 vs 0.8521 on Potsdam). More importantly, it scales much more efficiently with the number of training examples, resulting in nearly constant time (compared to OVO: 85.72s vs 248.02s on Toulouse, 58.89s vs 580.17s on Potsdam). This work shows an approach for bringing together classical and quantum computation, solving practical problems in remote sensing with current hardware.
001018738 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001018738 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001018738 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x2
001018738 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x3
001018738 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018738 7001_ $$0P:(DE-HGF)0$$aLe Saux, Bertrand$$b1
001018738 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b2$$ufzj
001018738 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
001018738 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b4
001018738 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2023.3336926$$gp. 1 - 12$$p1434 - 1445$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v17$$x1939-1404$$y2024
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/A_Single-Step_Multiclass_SVM_Based_on_Quantum_Annealing_for_Remote_Sensing_Data_Classification.pdf$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/FINAL%20VERSION.pdf$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/A_Single-Step_Multiclass_SVM_Based_on_Quantum_Annealing_for_Remote_Sensing_Data_Classification.gif?subformat=icon$$xicon$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/A_Single-Step_Multiclass_SVM_Based_on_Quantum_Annealing_for_Remote_Sensing_Data_Classification.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/A_Single-Step_Multiclass_SVM_Based_on_Quantum_Annealing_for_Remote_Sensing_Data_Classification.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/A_Single-Step_Multiclass_SVM_Based_on_Quantum_Annealing_for_Remote_Sensing_Data_Classification.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/FINAL%20VERSION.gif?subformat=icon$$xicon$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/FINAL%20VERSION.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/FINAL%20VERSION.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018738 8564_ $$uhttps://juser.fz-juelich.de/record/1018738/files/FINAL%20VERSION.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018738 8767_ $$d2023-12-01$$eAPC$$jPublish and Read$$zIEEE Token
001018738 909CO $$ooai:juser.fz-juelich.de:1018738$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001018738 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001018738 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001018738 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001018738 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001018738 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001018738 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
001018738 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018738 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
001018738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:38:59Z
001018738 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:38:59Z
001018738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:38:59Z
001018738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2022$$d2024-12-19
001018738 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE J-STARS : 2022$$d2024-12-19
001018738 9141_ $$y2024
001018738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191384$$aForschungszentrum Jülich$$b0$$kFZJ
001018738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b2$$kFZJ
001018738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
001018738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b4$$kFZJ
001018738 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001018738 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001018738 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001018738 980__ $$ajournal
001018738 980__ $$aVDB
001018738 980__ $$aI:(DE-Juel1)JSC-20090406
001018738 980__ $$aAPC
001018738 980__ $$aUNRESTRICTED
001018738 9801_ $$aAPC
001018738 9801_ $$aFullTexts