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Initial value problem in Picard form:

 u (t) = u (t0) + ∫
t

t0

f (u (τ)) dτ
Discretize with spectral quadrature:

 u = u0 + ΔtQF (u)

Preconditioning
• Picard iteration:

• Precondition with simpler (lower triangular) quadrature rule :

 

• Popular preconditioners: Implicit Euler or LU-decomposition for stiff problems

uk+1 = uk + (u0 − (I − ΔtQF) (uk))
QΔ

(I − ΔtQΔF) (uk+1) = u0 + Δt (Q − QΔ) F (uk)

Properties
• Order can be equal to iteration count, depending on preconditioner
• Parallel-in-time extensions easy due to iterative nature
• Very malleable by choice of preconditioner(s): IMEX, Multi-implicit, Boris-SDC, …

Contact: r.speck@fz-juelich.de, t.baumann@fz-juelich.de
Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany. Hamburg University of Technology, Institute of Mathematics, Chair Computational Mathematics, Germany. Bergische Universität Wuppertal, Germany1 2 3

Enforce PEP8 standard

Build website and coverage report

Automated testing in different environments of 
core functionality and projects

PFASST: SDC + Parareal + -Correction
• Assemble  steps into composite collocation problem
• Solve in parallel on fine grid
• Compute -correction on fine grid
• Solve serially on coarse grid, augmented by -correction
• Add coarse grid correction to fine solution

 Space-time multigrid for the composite collocation problem
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Time-to-solution: 👎, but time-to-simulation: 👍⟹
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Resilience and Adaptivity in SDC
• Transfer concepts from embedded Runge-Kutta to SDC
• Gain computational efficiency by adaptive resolution in time
• Gain resilience against soft faults by controlling the local error
• Also works in multi-step Block Gauß-Seidel SDC
• Image: Fault in sign bit sends van der Pol off its trajectory

GPU Acceleration of pySDC
• Replace NumPy with CuPy for spatial solvers
• Measured speedup  on NVIDIA Tesla V100 

vs. AMD EPYC 7742
• Enables solving very large problems
• So far only tested single GPU and time-serial
• Image: High resolution 2D Allen-Cahn problem
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Test your SDC-related method with various available problems 
or

test your problem with various available SDC-related methods!

What is pySDC?
• Python implementation of various flavours of SDC, all the way to PFASST
• Implements only time stepping and leaves spatial part to NumPy, PETSc or FEniCS
• Intended for prototyping: Test algorithms before implementing them in production codes
• Actively developed and involved in many ongoing PinT projects

pySDC offers
• Comprehensive tutorials from running examples to implementing new algorithms
• Many example problems: ND heat equation, Allen-Cahn, Van der Pol, Penning Trap, …
• Parallel algorithms available in MPI and pseudo-parallel implementations
• Well-documented and well-tested core library and projects
• Separation of concerns: Work on your method or problem without awareness of the entire code

Ideas for projects
• Implement ParaDiag for single-level PinT using diagonalization
• Add multi-GPU support in space and space-time GPU capabilities
• Enhance PETSc and FEniCS interfaces and add more
Always open for Bachelor, Master, … theses!

Diagonal SDC
• Diagonal preconditioner allows parallel update of 

collocation nodes in SDC iterations
• Options for generating diagonal preconditioners:

- Diagonal elements of 
- Diagonal implicit Euler
- Minimize spectral radius of SDC iteration matrix
- …?
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GitHub: https://github.com/Parallel-in-Time/pySDCWebsite: https://parallel-in-time.org/pySDC


