JULICH

J Forschungszentrum

pySDC: Prototyping Spectral Deferred Corrections

Thomas Baumannl’z, Thibaut Lunetz, Daniel Rupreohtz, Robert Speckl, Lisa Wimmer-

Spectral Deferred Corrections (SDC)

~ N)
Initial value problem in Picard form:
t Discretize with spectral quadrature:
u () =u(fy) + [f(u()de u = u, + ArQF (u)
I

. J y
4)

Preconditioning

* Picard iteration:

u“tl = uf + (uo — (I — AtQF) (uk))
- Precondition with simpler (lower triangular) quadrature rule Q:
(I — A1Q,F) (u**!) = uy+ At (Q — Q,) F (u)

- Popular preconditioners: Implicit Euler or LU-decomposition for stiff problems
g Y,
4)

Properties

- Order can be equal to iteration count, depending on preconditioner

- Parallel-in-time extensions easy due to iterative nature

 Very malleable by choice of preconditioner(s): IMEX, Multi-implicit, Boris-SDC, ...
g Y,

Why pySDC?

-

N
What is pySDC?
- Python implementation of various flavours of SDC, all the way to PFASST
 Implements only time stepping and leaves spatial part to NumPy, PETSc or FEniCS
* Intended for prototyping: Test algorithms before implementing them in production codes
- Actively developed and involved in many ongoing PinT projects
. J
~)
pySDC offers
- Comprehensive tutorials from running examples to implementing new algorithms
- Many example problems: ND heat equation, Allen-Cahn, Van der Pol, Penning Trap, ...
- Parallel algorithms available in MPI and pseudo-parallel implementations
- Well-documented and well-tested core library and projects
- Separation of concerns: Work on your method or problem without awareness of the entire code
\ Y,
(-)
P — Time-to-solution: -, but time-to-simulation: ==
\ _/

Continuous Integration

r
ci_pipeline.yml
on: pull_request

Matrix: user_cpu_tests_linux

@ 16 jobs completed

Show all jobs

@ lint 1m 21s

@ post-

processing 2m 20s

|

[

Build website and coverage report

J

(

@ user_libpressio_tests 4m 42s

Matrix: user_cpu_tests_macos

@ 4 jobs completed

Show all jobs

Automated testing in different environments of
core functionality and projects

~\

Enforce PEP8 standard

T)
g () CI pipeline for pySDC |passing | openssf best practices fin progress 91% codecov 73% j DOI 10.5281/zenodo.7766942 5

Parallel-in-Time

~)
PFASST: SDC + Parareal + 7-Correction \ coarse
- Assemble N steps into composite collocation problem : ;Ziep
- Solve in parallel on fine grid E Conrse
- Compute 7-correction on fine grid § fe
- Solve serially on coarse grid, augmented by 7-correction § comum
- Add coarse grid correction to fine solution)
— Space-time multigrid for the composite collocation problem @ , & p & p & p 6
g Y,
~)
| Diagonal SDC
~ - Diagonal preconditioner allows parallel update of
Q E collocation nodes in SDC iterations
f f_f - Options for generating diagonal preconditioners:
;" El - Diagonal elements of O
- Diagonal implicit Euler
) L - Minimize spectral radius of SDC iteration matrix
% 1 2 3 4 s 6 1 8§ O -7
Inwerse of diagonal component 1
- Y,

Ongoing Projects

Fault in bit O

Resilience and Adaptivity in SDC
 Transfer concepts from embedded Runge-Kutta to SDC

- Gain computational efficiency by adaptive resolution in time

+ Gain resilience against soft faults by controlling the local error -2 - m R
—4 -

- Also works in multi-step Block GauBB-Seidel SDC —_ \
- Image: Fault in sign bit sends van der Pol off its trajectory - Fault Y

GPU Acceleration of pySDC
- Replace NumPy with CuPy for spatial solvers
"« Measured speedup =~ 100 on NVIDIA Tesla V100
vs. AMD EPYC 7742
"« Enables solving very large problems
* « So far only tested single GPU and time-serial

° » Image: High resolution 2D Allen-Cahn problem

Test your SDC-related method with various available problems
or
test your problem with various available SDC-related methods!
g Y,

Ideas for projects

 Implement ParaDiag for single-level PinT using diagonalization

- Add multi-GPU support in space and space-time GPU capabilities
- Enhance PETSc and FEnICS interfaces and add more

. Always open for Bachelor, Master, ... theses! SCAN M E

(Website: https://parallel-in-time.org/pySDC GitHub: https://github.com/ParaIIeI-in-Time/pySDCj

()
r_/—— * * * \| SPONSORED BY THE
F_’ * * q ‘7: 112 n L " _— Federal Ministry
— W * - ,;_HJ"_LLA L 0P HIRSE PS TIME_ N % of Education
t L G j — ——;J and Research
U —
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the European Union’s Horizon 2020 research and
k innovation programme and Belgium, France, Germany, and Switzerland. This project also received funding from the German Federal Ministry of Education and Research (BMBF) grant 16HPC048. W,

Contact: r.speck@fz-juelich.de, t.baumann@fz-juelich.de
Jtilich Supercomputing Centre, Forschungszentrum Julich, Germany. 2Hamburg University of Technology, Institute of Mathematics, Chair Computational Mathematics, Germany. 3Bergische Universitat Wuppertal, Germany

Member of the Helmholtz Association

