
Spectral Deferred Corrections (SDC)

Why pySDC?

Continuous Integration

Parallel-in-Time

Ongoing Projects

Become a Collaborator!

pySDC: Prototyping Spectral Deferred Corrections
 Thomas Baumann , Thibaut Lunet , Daniel Ruprecht , Robert Speck , Lisa Wimmer1,2 2 2 1 3

Initial value problem in Picard form:

 u (t) = u (t0) + ∫
t

t0

f (u (τ)) dτ
Discretize with spectral quadrature:

 u = u0 + ΔtQF (u)

Preconditioning
• Picard iteration:

• Precondition with simpler (lower triangular) quadrature rule :

• Popular preconditioners: Implicit Euler or LU-decomposition for stiff problems

uk+1 = uk + (u0 − (I − ΔtQF) (uk))
QΔ

(I − ΔtQΔF) (uk+1) = u0 + Δt (Q − QΔ) F (uk)

Properties
• Order can be equal to iteration count, depending on preconditioner
• Parallel-in-time extensions easy due to iterative nature
• Very malleable by choice of preconditioner(s): IMEX, Multi-implicit, Boris-SDC, …

Contact: r.speck@fz-juelich.de, t.baumann@fz-juelich.de
Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany. Hamburg University of Technology, Institute of Mathematics, Chair Computational Mathematics, Germany. Bergische Universität Wuppertal, Germany1 2 3

Enforce PEP8 standard

Build website and coverage report

Automated testing in different environments of
core functionality and projects

PFASST: SDC + Parareal + -Correction
• Assemble steps into composite collocation problem
• Solve in parallel on fine grid
• Compute -correction on fine grid
• Solve serially on coarse grid, augmented by -correction
• Add coarse grid correction to fine solution

 Space-time multigrid for the composite collocation problem

τ
N

τ
τ

→

Time-to-solution: 👎, but time-to-simulation: 👍⟹

0.0 0.5 1.0 1.5 2.0

t

°8

°6

°4

°2

0

2

4

6

Fault in bit 0

u§

u§
t

u

ut

Fault

0.0 0.5 1.0 1.5 2.0

Fault in bit 12

Resilience and Adaptivity in SDC
• Transfer concepts from embedded Runge-Kutta to SDC
• Gain computational efficiency by adaptive resolution in time
• Gain resilience against soft faults by controlling the local error
• Also works in multi-step Block Gauß-Seidel SDC
• Image: Fault in sign bit sends van der Pol off its trajectory

GPU Acceleration of pySDC
• Replace NumPy with CuPy for spatial solvers
• Measured speedup on NVIDIA Tesla V100

vs. AMD EPYC 7742
• Enables solving very large problems
• So far only tested single GPU and time-serial
• Image: High resolution 2D Allen-Cahn problem

≈ 100

Test your SDC-related method with various available problems
or

test your problem with various available SDC-related methods!

What is pySDC?
• Python implementation of various flavours of SDC, all the way to PFASST
• Implements only time stepping and leaves spatial part to NumPy, PETSc or FEniCS
• Intended for prototyping: Test algorithms before implementing them in production codes
• Actively developed and involved in many ongoing PinT projects

pySDC offers
• Comprehensive tutorials from running examples to implementing new algorithms
• Many example problems: ND heat equation, Allen-Cahn, Van der Pol, Penning Trap, …
• Parallel algorithms available in MPI and pseudo-parallel implementations
• Well-documented and well-tested core library and projects
• Separation of concerns: Work on your method or problem without awareness of the entire code

Ideas for projects
• Implement ParaDiag for single-level PinT using diagonalization
• Add multi-GPU support in space and space-time GPU capabilities
• Enhance PETSc and FEniCS interfaces and add more
Always open for Bachelor, Master, … theses!

Diagonal SDC
• Diagonal preconditioner allows parallel update of

collocation nodes in SDC iterations
• Options for generating diagonal preconditioners:

- Diagonal elements of
- Diagonal implicit Euler
- Minimize spectral radius of SDC iteration matrix
- …?

Q

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the European Union’s Horizon 2020 research and
innovation programme and Belgium, France, Germany, and Switzerland. This project also received funding from the German Federal Ministry of Education and Research (BMBF) grant 16HPC048.

HiRSE_PS

Inverse of diagonal component 1

In
ve

rs
e

of
 d

ia
go

na
l c

om
po

ne
nt

 2

GitHub: https://github.com/Parallel-in-Time/pySDCWebsite: https://parallel-in-time.org/pySDC

