TY  - CONF
AU  - Herten, Andreas
TI  - Many Cores, Many Models: GPU Programming Model vs. Vendor Compatibility Overview
PB  - ACM New York, NY, USA
M1  - FZJ-2023-05040
SP  - 1019–1026
PY  - 2023
N1  - arXiv: https://arxiv.org/abs/2309.05445 HTML-version of table: https://x-dev.pages.jsc.fz-juelich.de/models/ Data repository: https://github.com/AndiH/gpu-lang-compat
AB  - In recent history, GPUs became a key driver of compute performance in HPC. With the installation of the Frontier supercomputer, they became the enablers of the Exascale era; further largest-scale installations are in progress (Aurora, El Capitan, JUPITER). But the early-day dominance by NVIDIA and their CUDA programming model has changed: The current HPC GPU landscape features three vendors (AMD, Intel, NVIDIA), each with native and derived programming models. The choices are ample, but not all models are supported on all platforms, especially if support for Fortran is needed; in addition, some restrictions might apply. It is hard for scientific programmers to navigate this abundance of choices and limits. This paper gives a guide by matching the GPU platforms with supported programming models, presented in a concise table and further elaborated in detailed comments. An assessment is made regarding the level of support of a model on a platform.
T2  - SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis
CY  - 12 Nov 2023 - 17 Nov 2023, Denver, CO (USA)
Y2  - 12 Nov 2023 - 17 Nov 2023
M2  - Denver, CO, USA
LB  - PUB:(DE-HGF)8 ; PUB:(DE-HGF)7
DO  - DOI:10.1145/3624062.3624178
UR  - https://juser.fz-juelich.de/record/1018971
ER  -