001018986 001__ 1018986
001018986 005__ 20250204113740.0
001018986 0247_ $$2doi$$a10.1002/cssc.202301398
001018986 0247_ $$2ISSN$$a1864-5631
001018986 0247_ $$2ISSN$$a1864-564X
001018986 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05055
001018986 0247_ $$2pmid$$a37975726
001018986 0247_ $$2WOS$$aWOS:001115627900001
001018986 037__ $$aFZJ-2023-05055
001018986 082__ $$a540
001018986 1001_ $$0P:(DE-HGF)0$$aVeenstra, Florentine LP$$b0
001018986 245__ $$aCO2 electroreduction to syngas with tunable composition in an artificial leaf
001018986 260__ $$aWeinheim$$bWiley-VCH$$c2024
001018986 3367_ $$2DRIVER$$aarticle
001018986 3367_ $$2DataCite$$aOutput Types/Journal article
001018986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708961235_11687
001018986 3367_ $$2BibTeX$$aARTICLE
001018986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018986 3367_ $$00$$2EndNote$$aJournal Article
001018986 500__ $$aBitte Post-print ergänzen
001018986 520__ $$aArtificial leaves (a-leaves) can reduce carbon dioxide into syngas using solar power and could be combined with thermo- and biocatalytic  technologies  to  decentralize  the  production  of  valuable  products.  By  providing  variable  CO:H2  ratios  on  demand,  a-leaves  could  facilitate  optimal  combinations  and  control  the  distribution  of  products  in  most  of  these  hybrid  systems.  However,  the  current  design   procedures   of   a-leaves   concentrate   on   achieving   high   performance  for  a  predetermined  syngas  composition.  This  study  demonstrates  that  incorporating  the  electrolyte  flow  as  a  design  variable     enables     flexible     production     without     compromising     performance.   The   concept   was   tested   on   an   a-leaf   using   a   commercial  cell,  a  Cu2O:Inx  cathodic  catalyst,  and  an  inexpensive  amorphous silicon thin-film photovoltaic module. Syngas with CO:H2ratio in the range of 1.8-2.3 could be attained with only 2% deviation from the optimal cell voltage and controllable solely by catholyte flow. These  features  could  be  beneficial  for  downstream  technologies  such as Fischer Tropsch synthesis and anaerobic fermentation.
001018986 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001018986 536__ $$0G:(EU-Grant)732840$$aA-LEAF - An Artificial Leaf:  a photo-electro-catalytic cell from earth-abundant materials for sustainable solar production of CO2-based chemicals and fuels (732840)$$c732840$$fFETPROACT-2016$$x1
001018986 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018986 7001_ $$0P:(DE-Juel1)190629$$aCibaka, Therese$$b1$$ufzj
001018986 7001_ $$0P:(DE-HGF)0$$aMartín, Antonio J$$b2
001018986 7001_ $$0P:(DE-Juel1)130302$$aWeigand, Daniel$$b3$$ufzj
001018986 7001_ $$0P:(DE-Juel1)130256$$aKirchhoff, Joachim$$b4$$ufzj
001018986 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b5$$ufzj
001018986 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b6$$ufzj
001018986 7001_ $$0P:(DE-HGF)0$$aPérez-Ramírez, Javier$$b7
001018986 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202301398$$gp. e202301398$$pe202301398$$tChemSusChem$$v1864-5631$$x1864-5631$$y2024
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/post%20print.docx$$yOpenAccess
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.pdf$$yRestricted
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.gif?subformat=icon$$xicon$$yRestricted
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-180$$xicon-180$$yRestricted
001018986 8564_ $$uhttps://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-640$$xicon-640$$yRestricted
001018986 909CO $$ooai:juser.fz-juelich.de:1018986$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001018986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190629$$aForschungszentrum Jülich$$b1$$kFZJ
001018986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130302$$aForschungszentrum Jülich$$b3$$kFZJ
001018986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130256$$aForschungszentrum Jülich$$b4$$kFZJ
001018986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b5$$kFZJ
001018986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b6$$kFZJ
001018986 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001018986 9141_ $$y2024
001018986 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001018986 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001018986 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001018986 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018986 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2022$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001018986 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2022$$d2024-12-20
001018986 920__ $$lyes
001018986 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001018986 9801_ $$aFullTexts
001018986 980__ $$ajournal
001018986 980__ $$aVDB
001018986 980__ $$aUNRESTRICTED
001018986 980__ $$aI:(DE-Juel1)IEK-5-20101013
001018986 981__ $$aI:(DE-Juel1)IMD-3-20101013