Home > Publications database > CO2 electroreduction to syngas with tunable composition in an artificial leaf > print |
001 | 1018986 | ||
005 | 20250204113740.0 | ||
024 | 7 | _ | |a 10.1002/cssc.202301398 |2 doi |
024 | 7 | _ | |a 1864-5631 |2 ISSN |
024 | 7 | _ | |a 1864-564X |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-05055 |2 datacite_doi |
024 | 7 | _ | |a 37975726 |2 pmid |
024 | 7 | _ | |a WOS:001115627900001 |2 WOS |
037 | _ | _ | |a FZJ-2023-05055 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Veenstra, Florentine LP |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a CO2 electroreduction to syngas with tunable composition in an artificial leaf |
260 | _ | _ | |a Weinheim |c 2024 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708961235_11687 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Bitte Post-print ergänzen |
520 | _ | _ | |a Artificial leaves (a-leaves) can reduce carbon dioxide into syngas using solar power and could be combined with thermo- and biocatalytic technologies to decentralize the production of valuable products. By providing variable CO:H2 ratios on demand, a-leaves could facilitate optimal combinations and control the distribution of products in most of these hybrid systems. However, the current design procedures of a-leaves concentrate on achieving high performance for a predetermined syngas composition. This study demonstrates that incorporating the electrolyte flow as a design variable enables flexible production without compromising performance. The concept was tested on an a-leaf using a commercial cell, a Cu2O:Inx cathodic catalyst, and an inexpensive amorphous silicon thin-film photovoltaic module. Syngas with CO:H2ratio in the range of 1.8-2.3 could be attained with only 2% deviation from the optimal cell voltage and controllable solely by catholyte flow. These features could be beneficial for downstream technologies such as Fischer Tropsch synthesis and anaerobic fermentation. |
536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 0 |
536 | _ | _ | |a A-LEAF - An Artificial Leaf: a photo-electro-catalytic cell from earth-abundant materials for sustainable solar production of CO2-based chemicals and fuels (732840) |0 G:(EU-Grant)732840 |c 732840 |f FETPROACT-2016 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Cibaka, Therese |0 P:(DE-Juel1)190629 |b 1 |u fzj |
700 | 1 | _ | |a Martín, Antonio J |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Weigand, Daniel |0 P:(DE-Juel1)130302 |b 3 |u fzj |
700 | 1 | _ | |a Kirchhoff, Joachim |0 P:(DE-Juel1)130256 |b 4 |u fzj |
700 | 1 | _ | |a Smirnov, Vladimir |0 P:(DE-Juel1)130297 |b 5 |u fzj |
700 | 1 | _ | |a Merdzhanova, Tsvetelina |0 P:(DE-Juel1)130268 |b 6 |u fzj |
700 | 1 | _ | |a Pérez-Ramírez, Javier |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1002/cssc.202301398 |g p. e202301398 |0 PERI:(DE-600)2411405-4 |p e202301398 |t ChemSusChem |v 1864-5631 |y 2024 |x 1864-5631 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018986/files/post%20print.docx |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.pdf |y Restricted |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.gif?subformat=icon |y Restricted |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-1440 |y Restricted |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-180 |y Restricted |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/1018986/files/ChemSusChem%20-%202023%20-%20Veenstra%20-%20CO2%20Electroreduction%20To%20Syngas%20With%20Tunable%20Composition%20In%20An%20Artificial%20Leaf.jpg?subformat=icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1018986 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)190629 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130302 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130256 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130297 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130268 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEMSUSCHEM : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEMSUSCHEM : 2022 |d 2024-12-20 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|