001     1019009
005     20240610120840.0
024 7 _ |a 10.1103/PhysRevAccelBeams.26.014201
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05078
|2 datacite_doi
024 7 _ |a WOS:000912897300001
|2 WOS
037 _ _ |a FZJ-2023-05078
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Slim, J.
|0 P:(DE-Juel1)172927
|b 0
245 _ _ |a Quantum mechanical derivation of radio-frequency-driven coherent beam oscillations in storage rings
260 _ _ |a College Park, MD
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701935325_13786
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The study of the approach to the quantum ground state and the possibility to detect displacements of macroscopic bodies close to the quantum limit represent pressing challenges in modern physics. In the recent experiment of the JEDI Collaboration at the COSY storage ring, the coherent oscillations of a deuteron beam were detected with an amplitude of only one order of magnitude above the limit of the Heisenberg uncertainty principle of about 40 nm for the one-particle betatron motion. On the other hand, the much discussed search for the permanent electric dipole moment of the proton with an ultimate sensitivity of 10−29  e cm requires control of the position of the beam center of gravity with an accuracy of ≈5  pm. In this paper, we develop the full quantum mechanical treatment of the coherent beam oscillations with ultrasmall amplitudes. In agreement with the Ehrenfest theorem, we find a continuity of the description of the coherent betatron motion from the large classical amplitudes down to the deep quantum region below the one-particle Heisenberg limit. We argue that quantum mechanics does not preclude control of the beam center with subpicometer accuracy.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a srEDM - Search for electric dipole moments using storage rings (694340)
|0 G:(EU-Grant)694340
|c 694340
|f ERC-2015-AdG
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
693 _ _ |0 EXP:(DE-Juel1)JEDI-20170712
|5 EXP:(DE-Juel1)JEDI-20170712
|e Jülich Electric Dipole moment Investigations
|x 0
700 1 _ |a Nikolaev, N. N.
|0 P:(DE-Juel1)131271
|b 1
700 1 _ |a Rathmann, F.
|0 P:(DE-Juel1)131297
|b 2
|e Corresponding author
700 1 _ |a Wirzba, A.
|0 P:(DE-Juel1)131377
|b 3
773 _ _ |a 10.1103/PhysRevAccelBeams.26.014201
|g Vol. 26, no. 1, p. 014201
|0 PERI:(DE-600)2844143-6
|n 1
|p 014201
|t Physical review accelerators and beams
|v 26
|y 2023
|x 2469-9888
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019009/files/PhysRevAccelBeams.26.014201.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019009/files/PhysRevAccelBeams.26.014201.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019009/files/PhysRevAccelBeams.26.014201.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019009/files/PhysRevAccelBeams.26.014201.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019009/files/PhysRevAccelBeams.26.014201.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019009
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131377
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-14T15:01:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21