001019020 001__ 1019020
001019020 005__ 20240709082204.0
001019020 0247_ $$2doi$$a10.1021/acsenergylett.3c02246
001019020 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05083
001019020 0247_ $$2WOS$$aWOS:001121890000001
001019020 037__ $$aFZJ-2023-05083
001019020 082__ $$a333.7
001019020 1001_ $$aWhang, Grace$$b0
001019020 245__ $$aTransition Metal Sulfide Conversion: A Promising Approach to Solid-State Batteries
001019020 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001019020 3367_ $$2DRIVER$$aarticle
001019020 3367_ $$2DataCite$$aOutput Types/Journal article
001019020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705054851_18579
001019020 3367_ $$2BibTeX$$aARTICLE
001019020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019020 3367_ $$00$$2EndNote$$aJournal Article
001019020 520__ $$aRechargeable Li-ion batteries play a critical role in the net zero picture spanning across the automotive industry, grid scale storage, and recycling infrastructure. With the rising demand for lithium-ion batteries in both the electric vehicle and stationary storage sector, challenges regarding resource availability and supply chain are expected. To reduce the inevitable growing pains of the changing global energy storage landscape, other alternative battery materials must be considered. For stationary power sources, the weight and volume requirements are less stringent than their electric vehicle counterparts offering the possibility to look at a wider range of battery chemistries and an opportunity to explore beyond Co- and Ni-based intercalation chemistries. In this Perspective, we explore the opportunity space for all solid-state batteries based on transition metal sulfide conversion chemistries for stationary energy storage applications.
001019020 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019020 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019020 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b1$$eCorresponding author
001019020 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.3c02246$$gp. 5264 - 5274$$n12$$p5264 - 5274$$tACS energy letters$$v8$$x2380-8195$$y2023
001019020 8564_ $$uhttps://juser.fz-juelich.de/record/1019020/files/revised_Manuscript.pdf$$yPublished on 2023-11-29. Available in OpenAccess from 2024-11-29.
001019020 8564_ $$uhttps://juser.fz-juelich.de/record/1019020/files/revised_Manuscript.gif?subformat=icon$$xicon$$yPublished on 2023-11-29. Available in OpenAccess from 2024-11-29.
001019020 8564_ $$uhttps://juser.fz-juelich.de/record/1019020/files/revised_Manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-11-29. Available in OpenAccess from 2024-11-29.
001019020 8564_ $$uhttps://juser.fz-juelich.de/record/1019020/files/revised_Manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-11-29. Available in OpenAccess from 2024-11-29.
001019020 8564_ $$uhttps://juser.fz-juelich.de/record/1019020/files/revised_Manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-11-29. Available in OpenAccess from 2024-11-29.
001019020 909CO $$ooai:juser.fz-juelich.de:1019020$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b1$$kFZJ
001019020 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019020 9141_ $$y2023
001019020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bACS ENERGY LETT : 2022$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2022$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001019020 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001019020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001019020 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019020 9801_ $$aFullTexts
001019020 980__ $$ajournal
001019020 980__ $$aVDB
001019020 980__ $$aUNRESTRICTED
001019020 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019020 981__ $$aI:(DE-Juel1)IMD-4-20141217