001019025 001__ 1019025
001019025 005__ 20240223132827.0
001019025 0247_ $$2doi$$a10.1103/PhysRevD.108.074501
001019025 0247_ $$2ISSN$$a2470-0010
001019025 0247_ $$2ISSN$$a2470-0037
001019025 0247_ $$2ISSN$$a2470-0029
001019025 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05088
001019025 037__ $$aFZJ-2023-05088
001019025 041__ $$aEnglish
001019025 082__ $$a530
001019025 1001_ $$0P:(DE-Juel1)188816$$aKim, Jangho$$b0$$eCorresponding author
001019025 245__ $$aU(N) gauge theory in the strong coupling limit on a quantum annealer
001019025 260__ $$aRidge, NY$$bAmerican Physical Society$$c2023
001019025 3367_ $$2DRIVER$$aarticle
001019025 3367_ $$2DataCite$$aOutput Types/Journal article
001019025 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701940755_1836
001019025 3367_ $$2BibTeX$$aARTICLE
001019025 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019025 3367_ $$00$$2EndNote$$aJournal Article
001019025 520__ $$aLattice QCD in the strong coupling regime can be formulated in dual variables, which are integer-valued. It can be efficiently simulated for modest finite temperatures and finite densities via the worm algorithm, circumventing the finite density sign problem in this regime. However, the low temperature regime is more expensive to address. As the partition function is solely expressed in terms of integers, it can be cast as a combinatorial optimization problem that can be solved on a quantum annealer. We will first explain the setup of the system we want to study and then present its reformulation suitable for a quantum annealer, and in particular the D wave. As a proof of concept, we present first results obtained on D wave for gauge group U(1) and U(3), and outline the next steps towards gauge groups SU(3). We find that in addition, histogram reweighting greatly improves the accuracy of our observables when compared to analytic results.
001019025 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019025 536__ $$0G:(GEPRIS)443914323$$aDFG project 443914323 - Symmetrie-verletzende hadronische Wechselwirkungen in der Gitter-QCD (A10*) (443914323)$$c443914323$$x1
001019025 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019025 7001_ $$0P:(DE-Juel1)159481$$aLuu, Thomas$$b1
001019025 7001_ $$0P:(DE-HGF)0$$aUnger, Wolfgang$$b2
001019025 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.108.074501$$gVol. 108, no. 7, p. 074501$$n7$$p074501$$tPhysical review / D$$v108$$x2470-0010$$y2023
001019025 8564_ $$uhttps://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.pdf$$yOpenAccess
001019025 8564_ $$uhttps://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.gif?subformat=icon$$xicon$$yOpenAccess
001019025 8564_ $$uhttps://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019025 8564_ $$uhttps://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019025 8564_ $$uhttps://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019025 909CO $$ooai:juser.fz-juelich.de:1019025$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188816$$aForschungszentrum Jülich$$b0$$kFZJ
001019025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b1$$kFZJ
001019025 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bielefeld University$$b2
001019025 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019025 9141_ $$y2023
001019025 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001019025 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-22
001019025 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019025 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001019025 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019025 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
001019025 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-08-22
001019025 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-02-05
001019025 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2024-02-05
001019025 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
001019025 980__ $$ajournal
001019025 980__ $$aVDB
001019025 980__ $$aUNRESTRICTED
001019025 980__ $$aI:(DE-Juel1)IAS-4-20090406
001019025 9801_ $$aFullTexts