Home > Publications database > U(N) gauge theory in the strong coupling limit on a quantum annealer > print |
001 | 1019025 | ||
005 | 20240223132827.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.108.074501 |2 doi |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0037 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-05088 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-05088 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kim, Jangho |0 P:(DE-Juel1)188816 |b 0 |e Corresponding author |
245 | _ | _ | |a U(N) gauge theory in the strong coupling limit on a quantum annealer |
260 | _ | _ | |a Ridge, NY |c 2023 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1701940755_1836 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Lattice QCD in the strong coupling regime can be formulated in dual variables, which are integer-valued. It can be efficiently simulated for modest finite temperatures and finite densities via the worm algorithm, circumventing the finite density sign problem in this regime. However, the low temperature regime is more expensive to address. As the partition function is solely expressed in terms of integers, it can be cast as a combinatorial optimization problem that can be solved on a quantum annealer. We will first explain the setup of the system we want to study and then present its reformulation suitable for a quantum annealer, and in particular the D wave. As a proof of concept, we present first results obtained on D wave for gauge group U(1) and U(3), and outline the next steps towards gauge groups SU(3). We find that in addition, histogram reweighting greatly improves the accuracy of our observables when compared to analytic results. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 443914323 - Symmetrie-verletzende hadronische Wechselwirkungen in der Gitter-QCD (A10*) (443914323) |0 G:(GEPRIS)443914323 |c 443914323 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Luu, Thomas |0 P:(DE-Juel1)159481 |b 1 |
700 | 1 | _ | |a Unger, Wolfgang |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.1103/PhysRevD.108.074501 |g Vol. 108, no. 7, p. 074501 |0 PERI:(DE-600)2844732-3 |n 7 |p 074501 |t Physical review / D |v 108 |y 2023 |x 2470-0010 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019025/files/PhysRevD.108.074501.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1019025 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188816 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159481 |
910 | 1 | _ | |a Bielefeld University |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-08-22 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-02-05 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2022 |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-02-05 |
915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2024-02-05 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV D : 2022 |d 2024-02-05 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|