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SU(N,) gauge theories in the strong coupling limit [1-5] can be described by integer variables
representing monomers, dimers and baryon loops. We demonstrate how the D-wave quantum
annealer [6, 7] can perform importance sampling on U(N.) gauge theory in the strong coupling
formulation of this theory [8]. In addition to causing a sign problem [9, 10] in importance
sampling, baryon loops induce a complex QUBO matrix which cannot be optimized by the D-
Wave annealer. Instead we show that simulating the sign-problem free quenched action on the
D-Wave is sufficient when combined with a sign reweighting method. As the first test on SU(3)
gauge theory, we simulate on 2 x 2 lattice and compare the results with its analytic solutions.
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1. Introduction

The SU(N.) gauge theory in the strong coupling limit has interesting features like the nuclear
liquid-gas transition [11]. Simulations are typically performed using the worm algorithm on a
classical computer. However, in the low temperature region the worm algorithm is notoriously
inefficient. This is unfortunate since investigations of the first order nuclear transition with heavy
quark masses requires simulations exactly in this regime. Since simulating on a quantum annealer
does not depend on the temperature, we develop an updating method on the D-wave quantum
computer using the QUBO formalism. While the worm algorithm updates one link or one site per
worm step, which scales inefficiently, the update algorithm using a quantum annealer can update
2 x 2, 4 x4 or 2* sub-volumes essentially all at once since the quantum annealer can sample
important configurations in a few microsecond or less. This feature of the quantum annealer
potentially provides a means for performing global updates on larger volumes, an algorithm of
which we are currently developing and investigating. Here we present the first results of SU(3) on
2 x 2 volume with periodic boundary condition.

2. QUBO matrix for SU(N,) gauge theory in the strong coupling limit

We have recently demonstrated that importance sampling for U (N,) gauge theory in the strong
coupling limit is feasible on D-wave quantum annealer [8]. Here we extend our study to SU(N,.)
by including baryon loops. The partition function of SU(N,) gauge theory using dual variables is
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Here, N_(¢) is the negative direction baryon segments and 17, (x) is the staggered phase.
We use the coordinate convention shown in Fig. 1 where the specific example of the 2 x 2 lattice is
given.

In Table 1 we provide all possible baryon configurations for the 2 X 2 volume with periodic
boundary conditions. The temporal direction baryon segments(N(¢)), winding number(w,) and
sign(o) on a baryon loop ¢, and occupied sites of each configuration are also provided. The sign
quenched weight of each configuration is

a
Sp = =log [1/(NeDN] = Ne D No(€)Togy = NelNe D wen (3)
4 4

where v = a/a, is the anisotropy [12] and Ny is the number of baryon occupied sites. The
configurations (18-33) have exactly the same weight but half of them have positive sign and the
other have negative sign. Hence the contribution from these configurations will be cancelled with
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Index ‘ o No(f) dewe 2O ‘ Baryon configuration ‘ Occupied sites ‘ Solution vector
1 0 0 1 (0,0,0,0,0,0,0,0) 0| (,0,0,0,0,0,0,0,0)
2 0 0 -1 (1,0,1,0,0,0,0,0) (n1,n) | (1,0,0,0,0,0,0,0,0)
3 0 0 -1 (-1,0,-1,0,0,0,0, 0) (n1,n) | (1,0,0,0,0,0,0,0,0)
4 0 0 -1 (0,0,0,0,1,0,1,0) (n3,ng) | (0,1,0,0,0,0,0,0,0)
5 0 0 -1 (0,0,0,0,-1,0,-1,0) (n3,nq) | (0,1,0,0,0,0,0,0,0)
6 2 1 1 (0,1,0,0,0,1,0,0) (ny1,n3) | (0,0,1,0,0,0,0,0,0)
7 2 -1 1 (0,-1,0,0,0,-1,0,0) (ny1,n3) | (0,0,0,1,0,0,0,0,0)
8 2 1 1 (0,0,0,1,0,0,0, 1) (np,nq) | (0,0,0,0,1,0,0,0,0)
9 2 -1 1 (0,0,0,-1,0,0,0,-1) (np,nq) | (0,0,0,0,0,1,0,0,0)
10 0 0 1 (1,0,1,0,1,0,1,0) (ny,np,n3,n4) | (1,1,0,0,0,0,0,0,0)
11 0 0 1 (-1,0,-1,0,1,0, 1, 0) (ny,np,n3,n4) | (1,1,0,0,0,0,0,0,0)
12 0 0 1 (1,0,1,0,-1,0,-1,0) (ny,np,n3,n4) | (1,1,0,0,0,0,0,0,0)
13 0 0 1 (-1,0,-1,0,-1,0, -1, 0) (ny,np,n3,n4) | (1,1,0,0,0,0,0,0,0)
14 4 2 1 (0,1,0,1,0,1,0, 1) (ny,np,n3,n4) | (0,0,1,0,1,0,0,0,0)
15 4 2 1 (0,-1,0,-1,0,-1,0,-1) (ny,n2,n3,n4) | (0,0,0,1,0,1,0,0,0)
16 4 0 1 (0,1,0,-1,0,1,0,-1) (ny,np,n3,n4) | (0,0,1,0,0,1,0,0,0)
17 4 0 1 (0,-1,0,1,0,-1,0, 1) (ny,n,n3,n4) | (0,0,0,1,1,0,0,0,0)
18 2 0 1 (0,0,-1,0,0,1,1,-1) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
19 2 0 1 (0,0,1,0,0,-1,-1, 1) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
20 2 0 1 (0,1,1,-1,0,0,-1,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
21 2 0 1 (0,-1,-1,1,0,0, 1,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
22 2 0 1 (1,-1,0,1,-1,0,0,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
23 2 0 1 (-1,1,0,-1,1,0,0, 0) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
24 2 0 1 (-1,0,0,0,1,-1,0, 1) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
25 2 0 1 (1,0,0,0,-1,1,0,-1) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
26 2 0 -1 (1,0,0,0,0,1,1,-1) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
27 2 0 -1 (-1,0,0,0,0,-1,-1, 1) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
28 2 0 -1 (-1,1,0,-1,0,0,-1,0) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
29 2 0 -1 (1,-1,0,1,0,0,1,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
30 2 0 -1 (0,-1,-1,1,-1,0,0, 0) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
31 2 0 -1 (0,1,1,-1,1,0,0,0) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
32 2 0 -1 (0,0,1,0,1,-1,0, 1) (ny,n,n3,n4) | (0,0,0,0,0,0,1,0,0)
33 2 0 -1 (0,0,-1,0,-1,1,0,-1) (ny,n2,n3,n4) | (0,0,0,0,0,0,1,0,0)
34 2 1 1 (0,1,1,0,0,0,-1, 1) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
35 2 1 1 (0,0,-1,1,0,1, 1, 0) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
36 2 1 1 (1,0,0,1,-1,1,0,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
37 2 1 1 (-1,1,0,0,1,0,0, 1) (ny,n,n3,n4) | (0,0,0,0,0,0,0,1,0)
38 2 1 -1 (-1,1,0,0,0,0,-1, 1) (ny,n,n3,n4) | (0,0,0,0,0,0,0,1,0)
39 2 1 -1 (1,0,0,1,0,1,1,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
40 2 1 -1 (0,0,-1,1,-1,1,0,0) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
41 2 1 -1 (0,1,1,0,1,0,0, 1) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,1,0)
42 2 -1 1 (0,-1,-1,0,0,0,1,-1) (ny,n,n3,n4) | (0,0,0,0,0,0,0,0, 1)
43 2 -1 1 (0,0,1,-1,0,-1,-1,0) (ny,n,n3,n4) | (0,0,0,0,0,0,0,0, 1)
44 2 -1 1 (-1,0,0,-1,1,-1,0,0) (ny,np,n3,n4) | (0,0,0,0,0,0,0,0, 1)
45 2 -1 1 (1,-1,0,0,-1,0,0,-1) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,0, 1)
46 2 -1 -1 (1,-1,0,0,0,0, 1, -1) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,0, 1)
47 2 -1 -1 (-1,0,0,-1,0,-1,-1,0) (ny,n,n3,n4) | (0,0,0,0,0,0,0,0, 1)
48 2 -1 -1 (0,0,1,-1,1,-1,0,0) (ny,n,n3,n4) | (0,0,0,0,0,0,0,0, 1)
49 2 -1 -1 (0,-1,-1,0,-1,0,0, -1) (ny,n2,n3,n4) | (0,0,0,0,0,0,0,0, 1)

Table 1: All possible baryon configurations on 2 x 2 lattice.
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Figure 1: The coordinate convention used in this proceedings.

sufficiently large statistics. The same occurs for the configurations (34-41) and (42-49). These
configurations therefore just add noise to our stochastic simulations. Therefore only configurations
(1-17) are taken into account in this simulation and the size of solution vector is reduced from 9
qubits to 6 qubits. As the 3 qubits are reduced, the validity rate is also increased from 0.5% to 2%.
Since configurations within (10-13) and (14-17) are combinations of certain two configurations
within (2-9), we do not explicitly include them in the construction of the weight matrix that follows.

The action part of QUBO matrix can be written in block form,

“)

=
Il
o o

0
M
0

o o

The matrices D and M are provided by Egs. (26),(28),(30), and in Ref. [8]. The baryon matrix B
in Eq. 4 is diagonal with components

41og(N,.!)
41log(N.!)
diag(B) = 2log(N.!) —2N_.logy — Noyau 5)
2log(N.!) —2N.logy + N.yau
21log(N.!) — 2N .logy — Noyau
| 21og(N¢!) = 2N logy + Neyau |

The constraint matrix also has additional modifications since baryon loops cannot co-exist with
monomers or dimers at the same site or bond in the strong coupling limit. This changes by including
gauge corrections, and in this case mesonic and baryonic objects can co-exist [11, 13, 14]. This
scenario, however, is not covered in these proceedings.
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Each row corresponds to the site ny, ns, n3, nq. For example, the first column of baryon part
(3,3,0,0)7 corresponds to configurations (2-3) in the Table 1 and they occupy the sites n1 and n;.
When if b; = 1, for example, monomers at those sites ny, no or dimers at the bonds k1, k3, k3, k¢
must be 0 to satisfy the constraint.

3. Results

We measure two observables: the chiral condensates and baryon density. These quantities are
expressed in dual variables as

— 1
<l//90> = W Zx:nx (8)
1
B) =5 ;w ©)

The presence of baryon loops induces a sign problem. Within the QUBO formalism this would
correspond to a QUBO Matrix with complex components. Unfortunately the quantum annealer
cannot accept complexed-valued QUBO matrices at this time. To circumvent this deficiency, we
simulate instead using the sign-quenched action and apply the sign reweighting method to our

observables,
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Figure 2: Left: chiral condensate (blue) and baryon density (orange) as a function of the chemical potential
ap at quark mass amg = 0.5, and temperature 7 = 1.0 on 2 X 2 lattice. The circle points are D-wave raw
data and the cross points are reweighted data. Right: the average sign problem.



Testing importance sampling on a quantum annealer for strong coupling SU(3) gauge theory Jangho Kim

We also applied the reweighting method [15] used in Ref. [8] and present the results in Fig. 2.

The blue and orange solid lines are the analytic solutions of the chiral condensate and baryon
density, respectively. The circle points are the D-wave raw data. The reweighting method is shown
by the cross data points. Here the results are improved drastically agree well with their analytic
solutions. The averaged sign presented in Fig. 2 is a residual sign as (18-49) configurations have
already been resummed. By this resummation, the sign problem becomes very mild.

4. Conclusion

We present the results of SU(3) gauge theory in the strong coupling limit on the 2 X 2 lattice.
We find that importance sampling of SU(3) is possible on the D-wave quantum annealer as well as
for U(N.) gauge theory as demonstrated in Ref. [8]. We plan to extend our method to the larger
2% volume with fixed boundary conditions. Fixed boundary conditions reduces drastically both the
size of the solution vector and the number of baryon configurations such that all possible baryon
configurations with a given boundary condition can be included by adding only a few qubits to the
solution vector. For simulating even larger volumes our strategy entails using D-wave to update
configurations first on a 2% sub-volume with a specific boundary condition. Both even sites and
then odd sites of the sub-volume will be updated, and the process will be repeated on adjacent sub-
volumes with boundaries dictated by updates on prior sub-volumes. In this manner we anticipate
less correlated data compared to traditional, classical updating schemes.
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