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The electromagnetic form factors of the proton and the neutron in the timelike region are inves-
tigated. Electron-positron annihilation into antinucleon-nucleon (N̄N) pairs is treated in distorted
wave Born approximation, including the final-state interaction in the N̄N system. The latter is
obtained by a Lippmann-Schwinger equation for N̄N potentials derived within SU(3) chiral effec-
tive field theory. By fitting to the phase shifts and (differential) cross section data, a high quality
description is achieved. With these amplitudes, the oscillations of the electromagnetic form factors
of the proton and the neutron are studied. It is found that each of them can be described by two
fractional oscillators. One is characterized as ‘overdamped’ and dominates near the threshold, while
the other is ‘underdamped’ and plays an important role in the high-energy region. These two os-
cillators are essential to understand the distributions of polarized electric charges induced by hard
photons for the nucleons.

Introduction.– The electromagnetic form factors
(EMFFs) of the nucleons are an important topic in nu-
clear and particle physics. They parameterize the nu-
cleon’s response to a virtual photon and play a crucial
role in exploring the nucleon structure. The EMFFs
in the timelike region are accessible in the process of
electron-positron annihilation into antinucleon-nucleon
pairs. For reviews, see e.g. Refs. [1, 2]. Over the last
decade, quite a few measurements have been reported [3–
14] and the uncertainties have been greatly reduced as
compared to older data [15–22]. One interesting aspect
of these improved measurements was that they revealed
an apparent oscillatory behavior of the proton EMFFs
[3, 11]. This behavior, first strongly emphasized in [23],
has been the subject of many other theoretical studies
since then [24–33]. However, unlike the clear meaning of
the EMFFs in the spacelike region [34–36], a plausible
and generally accepted explanation for this remarkable
and unexpected feature is still missing. Very recently,
the BESIII Collaboration [13] provided the first high-
statistics measurement of the neutron EMFFs. Interest-
ingly, also an oscillatory behavior was observed over the
measured energy range of 2.0 − 3.2 GeV. Analyzing the
data, the BESIII Collaboration found that there should
be a phase difference in oscillations of the EMFFs be-
tween the proton and the neutron.

In the present work, we want to shed new light on these
oscillations by considering both the proton and neutron
EMFFs. In particular, we want to extend the study of
the oscillations to the low-energy region. Measurements
around the thresholds are difficult, and the analysis of the
EMFFs in Ref. [13] has been restricted to the energy re-

gion above 2 GeV. Meanwhile, there has been a strong in-
terest in the near-threshold region, both by theorists and
experimentalists. There are clear enhancements around
the thresholds, not only for e+e− → N̄N (antinucleon-
nucleon pair), but also in electron-positron annihilation
into other antibaryon-baryon pairs, see e.g. Refs. [37–39],
which can be attributed to the effects of the final-state
interaction (FSI) as in [28, 40]. Accordingly, we take
into account the N̄N FSI to obtain reliable predictions
for the EMFFs around the p̄p and n̄n thresholds. The
implemented FSI effects are based on an N̄N interac-
tion derived within chiral effective field theory (ChEFT).
For a detailed analysis of the behavior of the EMFFs,
we use fractional oscillation functions to fit the data and
our predictions from ChEFT, from the N̄N thresholds
to 3.2 GeV.

Formalism.– ChEFT provides a systematic way to deal
with the dynamics of the nucleon-nucleon interaction in
the low-energy region [41, 42]. This approach has also
been successfully extended to studies of the N̄N interac-
tion [43, 44]. To cover the energy region up to 2.2 GeV,
we consider N̄N potentials up to next-to-leading order
(NLO) within SU(3) ChEFT. The N̄N scattering ampli-
tudes are obtained by solving the Lippmann-Schwinger
equation [43, 44]. Based on these amplitudes, we con-
struct the e+e− → N̄N amplitudes in the framework of
the distorted wave Born approximation (DWBA) [37, 45–
47], where the FSI in the N̄N system is taken into
account[48]. Then we evaluate the EMFFs of nucleons
from threshold up to 2.2 GeV.

The differential cross section of e+e− → N̄N can be
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written in terms of the EMFFs as [45]

dσ

dΩ
=

α2β

4s
C(s)

[
|GN

M(s)|2(1 + cos2 θ)

+
4M2

N

s
|GN

E (s)|2 sin2 θ
]
, (1)

where β is a phase space factor, β = kN/ke with kN , ke
the three-momenta of nucleon, electron in the center-of-
mass frame, s is the Mandelstam variable, s = 4 (M2

N +
k2N ), and C(s) is the Sommerfeld-Gamow factor [45]. The
cross section is obtained from Eq.(1) by integration.

For a reliable description of the energy dependence of
the reaction amplitude, the FSI in the N̄N system should
be included. This is done within the DWBA. Accord-
ingly, one has the formula for the γN̄N vertices [37, 45]

f N̄N
L (k;Ek) = f N̄N,0

L (k) +
∑
L′

∫ ∞

0

dpp2

(2π)3
f N̄N,0
L′ (p)

× 1

2Ek − 2Ep + i0+
TL′L(p, k;Ek), (2)

where Ek =
√
s/2 =

√
k2 +M2

N . f N̄N,0
L (k) is the Born

term (or bare γN̄N vertex) and contains two constants,
Gp,0

E and Gn,0
E . They are complex due to the contri-

butions of inelastic channels, such as γ → ππ → N̄N .
The N̄N scattering amplitude TLL′(p, p′;Ek) for the

3S1-
3D1 coupled partial waves is solved from the Lippmann-
Schwinger equation (LSE)

TL′′L′(p′′, p′;Ek) = VL′′L′(p′′, p′)+∑
L

∫
dpp2

(2π)3
VL′′L(p

′′, p)
1

2Ek − 2Ep + i0+

× TLL′(p, p′;Ek), (3)

where p′, p, p′′ is the three-momentum of the ini-
tial, intermediate and final N̄N states, respectively.
VL′′L(p

′′, p′) is the N̄N interaction potential calculated
within SU(3) ChEFT up to NLO, including one/two
pseudoscalar boson exchanges (OBE/TBE) and contact
terms. The OBE/TBE potentials can be obtained via the
G-parity transformation from the relevant NN poten-
tials [44, 49], the contact terms are given by [43, 44, 50],
and the annihilation part is parameterized by an uni-
tarity approach [43, 44]. As in Refs. [37, 49, 51], the
LSE is regularized by an exponential regulator, fR(Λ) =
exp[−(p6 + p′6)/Λ6]. To explore the sensitivity to the
choice of cut-offs, we employed a range of values, i.e.,
Λ = [750 − 950] MeV, with steps of 50 MeV, which all
led to similar results. The quantitatively best description
was achieved with Λ = 850 MeV. For simplicity, we will
only show results for that cutoff here.

Results and discussion.– The low-energy constants
(LECs) and values for Gp,0

E and Gn,0
E are fixed by a com-

bined fit to the N̄N phase shifts and scattering lengths,
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FIG. 1. (Color online) Results for the effective EMFFs.
The data points are from ADONE73 [16], Fenice [17–19],
DM1 [20], DM2 [21], BABAR [3, 53], CMD-3 [4, 5], BE-
SIII [8, 10–13], SND [6, 7, 14], and PS170 [15].

as well as to e+e− ↔ N̄N (differential) cross sections
and EMFFs. Regarding the N̄N data, only the phase
shifts given by the PWA [52] in the very low-energy re-

gion are considered. The parameters GN,0
E are mainly

determined by fitting to the e+e− → N̄N data. With
the e+e− → N̄N amplitudes fixed, we can predict the
EMFFs. Here we consider the effective EMFFs, which
are defined by

|GN
eff(s)| =

√
σe+e−→N̄N (s)

4πα2β
3s C(s)[1 +

2M2
N

s ]
, (N = n, p) , (4)

as there are few differential cross section data that would
allow for a separation of the two complex EMFFs. The
results for |Gp

eff | and |Gn
eff | are shown in Fig. 1. The un-

certainty is estimated following Refs. [44, 50], generated
by one class of Bayesian naturalness priors [54]. As can
be seen, the effective EMFFs drop off rapidly right from
the N̄N threshold and then decrease more slowly with
increasing

√
s. The effective EMFF of the neutron is a

bit smaller than that of the proton. This may be caused
by the fact that the net charge of valence quarks of the
neutron is zero.
To study the oscillatory behavior of the EMFFs sug-

gested by the data in Refs. [3, 13], we introduce sub-
tracted form factors (SFFs) by subtracting the dipole
contribution [12, 13, 23]

GN
osc(s) = |GN

eff(s)| −GN
D(s) , (5)

whereGD is the dipole expression for the nucleon [12, 23].
Combining our ChEFT amplitudes up to 2.2 GeV and
the data sets at higher energies, a complete description
of the SFFs from the threshold up to 3.2 GeV is possible.
Then what is the underlying physics behind these

SFFs? It is found that the fractional oscillation func-
tions [55] can fit the SFFs rather well [56]. Notice that
with ordinary oscillators of exponential and trigonomet-
ric functions (see, e.g., Ref. [23]), one can not describe the
oscillation well from threshold up to 2 GeV, as there is a
substantial enhancement near the threshold. We suggest

GN
osc(p̃) = G0,N

osc,1(0)ẼαN
1 ,1(−ω2

1 p̃
αN

1 )
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+G0,N
osc,2(0)ẼαN

2 ,1(−ω2
2(p̃+ pN0 )α

N
2 ) , (6)

with the Mittag-Leffler function Ẽα,β(z) given by [57].
The subscripts 1, 2 are for two kinds of oscillators. Here,
p̃ is the momentum of the antinucleon in the rest-frame
of the nucleon [23], p̃ ≡

√
E2

N −M2
N , E ≡ s/(2MN )−

MN . The momentum shift (pN0 ) describes the ‘phase de-
lay’ of the oscillation between the proton and neutron for
the second oscillator. Consequently, one can set pp0 = 0
and pn0 ̸= 0, where the latter will be fixed by a fit. ω1,2

are the oscillation frequencies for the two oscillators, and
we set each of them to be the same for proton and neu-
tron, as inspired by Ref. [13]. This is reasonable since
the proton and neutron are isospin doublets. αN

1,2 are the

damping factors. When α = 1, one has Ẽ1,1(z) = ez, and
the fractional oscillation will restore to a normal ‘over-
damped’ oscillation. It is also required that αp

2 = αn
2

to ensure that the oscillations of proton and neutron are
the same, but only the phase and modulus are different.
G0,N

osc,1,2(0) are initial values for the two different oscilla-
tors. As shown in Eq. (5), they are combined together
and we haveG0,p

osc(0) = 0.1918 andG0,n
osc(0) = 0.3138 given

by ChEFT. Hence, we only need two independent initial
values. Specifically, the equations of motions of the frac-
tional oscillators are given by

GN
osc(p̃) = GN

osc,1(p̃) +GN
osc,2(p̃),

GN
osc,j(p̃) = G0,N

osc,j −
ω2
j

Γ(αN
j )

∫ p̃+pN
0

0

(p̃+ pN0 − t)α
N
j −1

×GN
osc,j(t)dt . (7)

where the subscripts ‘j=1,2’ are the two oscillators. The
fit parameters are shown in Fig.I.

Parameters proton neutron

β(10−2) 6.020±0.034 17.453±0.023

α1 1.263±0.002 1.060±0.001

α2 1.880±0.001 1.880±0.001

ω1(10
−2) 5.371±0.015 5.371±0.015

ω2(10
−3) 7.472±0.022 7.472±0.022

p0 (MeV) 0 1035.93±2.44

TABLE I. The fit parameters of the fractional oscillators. No-
tice that α2 and ω2 of underdamped oscillators are the same
for the proton and neutron. The errors of the parameters are
taken from MINUIT.

The SFFs based on the very recent data sets [3, 7, 12–
14] and our predictions from ChEFT are described rather
well with two fractional oscillators, see the graphs in
Fig. 2. The data points of Refs. [10, 11] are also su-
perimposed for the reader’s convenience. The first term
in Eq. (6) dominates the oscillation behavior around the
threshold, and then it decreases rapidly with increasing
energy. Its oscillation is similar to an ‘overdamped vi-
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FIG. 2. (Color online) Results for the SFFs GN
osc(p̃) with

fractional oscillation functions. See Eqs. (5,6). The yellow
dotted lines are the thresholds. The uncertainty bands are
estimated from bootstrap [58], within 1 σ.

bration’, where the magnitude decreases quickly with-
out obvious fluctuations. Indeed we have αp

1 = 1.26 and
αn
1 = 1.06, close to one. Therefore, we call this an ‘over-

damped’ oscillator. The second term (αp
2 = αn

2 = 1.88)
describes a much slower decreasing oscillatory behavior
and dominates in the high-energy region, named as ‘un-
derdamped’ oscillator.

To see clearly the contributions of each oscillator, we
draw the individual contributions at the bottom of Fig. 2.
As can be seen, the ‘underdamped’ oscillators start from
different positions for the proton and the neutron, while
they have the same period function, corresponding to a
translation/delay on the momentum/energy. This con-
firms the ‘phase delay’ proposed in Ref. [13]. For the
‘overdamped’ oscillators, that of the proton still shows
‘oscillation’ around the threshold, whereas that of the
neutron only decreases. This is consistent with the fixed
damping factors, αp

1 > αn
1 . Further, they dominate in

the low-energy region.

Compared with the regular oscillator proposed in
Refs. [13, 23], our fractional oscillators can not only de-
scribe well the oscillation behavior above 2 GeV, but also
in the energy region close to the threshold. Interest-
ingly, the fractional oscillators describe the data in the
energy region of [1.9, 2.0] GeV even better than ChEFT,
as shown in Fig. 2. This confirms the reliability of our
model. Further, the EMFFs also have an ‘overdamped’
behavior around the threshold, which has not been re-
alized before. It shows that the FSI of the antinucleon-
nucleon pair very near the threshold should be strong.

The fractional oscillation equation (with 1 < αN
j < 2)

is in the middle of two limits: diffusion (αN
j = 1) and

wave equations (αN
j = 2). The diffusion solution of a

multi-particle system is caused by nonuniform distribu-
tions of, for example, density, while a wave usually moves
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FIG. 3. (Color online) The Fourier transformation of the
EMFFs in the range of r ∈ [0.1, 2] fm.

with a constant period in a uniform medium. Our frac-
tional oscillators reveal the distributions of the higher or-
der polarized electric charges for the nucleons [59], which
can be divided into two parts: The ‘quadrupole’ contri-
bution from the underdamped oscillation, also called uni-
form distributions for simplicity; And the ‘octupole’ con-
tribution from the overdamped oscillation, called nonuni-
form distributions.

We perform the Fourier transformation on the EMFFs
to study the distributions (DN

eff(r)) of the polarized elec-
tric charges for the nucleons, including individual contri-
butions of the dipoles and the oscillators. One has [23]

DN
eff(r) =

1

(2π)3

∫
d3r⃗ GN

eff(p̃) exp(−i⃗̃p · r⃗). (8)

Here, r is the distance between the polarized electric
charges and the nucleons. As shown in Fig. 3, the dipole
contribution is almost the same as that of the total one at
short distances: r < 0.5 fm for the proton and r < 0.2 fm
for the neutron. The difference between them in the
range 0.2 < r < 0.5 fm for the neutron is noticeable, as
we lack enough precise data to fix the solutions (and the
dipole formula). The overdamped and the underdamped
contributions are much smaller. In the long-distance re-
gion, all of them are rather small.

In the middle range of 0.5−1.5 fm the totalD(r)’s have
a wave shape around 1 fm, the typical length scale of the
strong interactions. This is due to the underdamped os-
cillators, as shown in Fig. 3. More specifically, when r
decreases, the distributions of polarized electric charges
of the proton would climb to a positive peak and then
fall to a negative trough (positive out side and negative
inside, the same as charge screening), while the opposite
situation occurs for the neutron. This is because the pro-
ton has uud valence quarks, while the neutron contains
udd. The vacuum polarization would be enhanced as r
decreases. Hence, for the proton the polarized charges

would be increased in the positive direction. However,
for the neutron, there are more d quarks, and their po-
larization is stronger than the u quarks. Thus, the net
polarized charges are not zero but enhanced in the neg-
ative direction. Also, the polarization of u quarks will
cancel parts of the d quarks, so it has smaller magni-
tudes for the ‘peak’ and ‘trough’, compared with that
of the proton. When r continues to decrease, the anti-
screening of gluons would drive the polarized quarks to
be free, and the uniform distributions will be restored
gradually. The discussions above also explain the phase
difference in the oscillations between the proton and neu-
tron, where the peaks are shifted by roughly 0.1 fm. As
r decreases from 1 to 0.5 fm, the distributions of the
overdamped oscillators will decrease to negative values
or rise in the positive direction for the proton and the
neutron, respectively. This is consistent with the fact
that the nonuniform distributions are from higher order
polarization effects and are opposite to the uniform one.

To test the stability of our fractional model, we also use
other functions for the background to obtain the SFFs,
and then fit our fractional oscillators to them. It is found
that the oscillation is still apparent, and our fractional
model describes the new SFFs well, see the discussion
in the Supplementary material. The dynamics of the
fractional oscillation model should be further studied in
the future.

To study the origin of the oscillation, we use the poten-
tial of ChEFT described above in the low-energy region
(2mp − 2.2 GeV), and the relativistic potential of one-
gluon exchanges (OGEs) between quark and antiquark
pairs [60] in the high energy region (2.2− 3.2 GeV) with
only constituent quarks, uud for the proton and ūūd̄ for
the antiproton considered. This is compatible with the
fact that there are not many sea quarks, and leads to
the perturbative QCD behavior of the EMFFs. Also, we
do not consider OGEs between internal quarks of a nu-
cleon/antinucleon. Taking the potentials into Eqs.(2,3),
we obtain the amplitudes and extract the EMFFs. Fi-
nally, we get the SFFs. They have similar behavior to
the fractional oscillations. Especially, the overdamped
oscillation is dominated by the ChEFT potential, and
the underdamped one is mainly caused by the s−channel
OGEs. This gives clear clues about how the oscillation
is generated. See Supplementary material for details.

Summary.– In this Letter, we investigate the EMFFs
of the nucleons in the timelike region. The FSI in the
antinucleon-nucleon system has been taken into account
in distorted wave Born approximation, based on an N̄N
interaction derived within SU(3) ChEFT up to NLO.
The experimental data of (differential) cross sections of
e+e− → N̄N as well as the phase shifts of N̄N scatter-
ing are fitted to fix the free parameters. A high-quality
description of the e+e− → N̄N data has been obtained.
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A more detailed analysis of the EMFFs of the nucleon
suggested that the oscillations seen for the proton and
the neutron should be considered as a combined effect of
two fractional oscillators. One is ‘overdamped’, dominat-
ing near the threshold, implying strong FSI effect close
to the threshold. The other one is ‘underdamped’, domi-
nating in the high-energy region, which also confirms the
‘phase delay’ of oscillations between the proton and the
neutron. Our model of two fractional oscillators can de-
scribe well the EMFFs from threshold up to 3.2 GeV,
which eventually sheds new light on the inner structure
and dynamics of the nucleon: The ‘underdamped’ oscil-
lation is caused by uniform distributions of higher order
polarized electric charges induced by hard photons for
the nucleons, which also generates the phase difference
in the oscillations between the proton and the neutron.
The ‘overdamped’ oscillation is caused by the nonuniform
distributions. With a combined potential of ChEFT and
the relativistic quark model, the fractional oscillation can
be reproduced.
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Supplemental material

Vacuum polarization for the nucleon.– The timelike EMFFs of nucleons are obtained through the processes of the
e+e− → γ∗ → N̄N or N̄N → γ∗ → e+e−. The momenta in the center-of-mass frame (CMF) of nucleon and the
anti-nucleon are given as

pe+ = (
√
s/2,−p⃗e) , pe− = (

√
s/2, p⃗e) , pγ∗ = (

√
s, 0) , pN̄ = (

√
s/2,−p⃗N ) , pN = (

√
s/2, p⃗N ) .

Notice that by crossing symmetry, the out-going/in-going antinucleon is equal to an in-going (out-going) nucleon
with minus momentum −pN̄ . To see the underlying physics of the timelike EMFFs, we change from the CMF to the
rest-frame of the nucleon. One has

pN,in = (mN , 0) , pN,out = (−EN ,−⃗̃p ) , pγ∗,out = (
s

2mN
, ⃗̃p ) ,

with ⃗̃p and EN as defined in the main text. In the timelike region, the energy range of EN is [mN ,∞) and that of
the momentum p̃ is [0,∞). The latter implies that the Fourier transformation is performed in the whole momentum
space and it is complete. It indicates that a nucleon at rest emits a hard virtual photon (with energy above 2mN and

momentum ⃗̃p) and finally its energy becomes negative. Of course, by crossing symmetry, it also indicates a nucleon
(with negative energy) absorbs a hard virtual photon,

pN,in = (−mN , 0) , pγ∗,in = (
s

2mN
, ⃗̃p ) , pN,out = (EN , ⃗̃p ) .

Inserting the γ∗NN̄ vertex into the left graph of Fig. A, one finds that the vacuum polarization around the nucleon is
recovered, see the discussion below. The radius r introduced by the Fourier transformation of Eq. (10) indicates the

N N

e

N N

e− e−

FIG. A. Feynman diagrams to illustrate the charge screening (on the left side) and the elastic e− p scattering in the spacelike
region.

distance between the virtual photon and the nucleon at rest. In contrast, the elastic ep scattering describes nucleon at
rest (with energy mN ) absorbing a virtual photon (pγ = (Ee,f −Ee,i, p⃗γ)) and starting to move with a small velocity.
When p2γ goes to zero, the Fourier transformation of the spacelike EMFFs are converted to the electromagnetic (EM)
distributions of the static nucleon.

For the timelike region, we take the vacuum polarization of an electron as an example, where one only needs to
change the nucleon into the electron for Fig.A. When probed closely, the electron will polarize the vacuum around,
known as charge screening. Specifically, as shown by the shadow vertex in Fig.A, the ingoing electron emit photons,
and the photons can be annihilated (polarized) into electron-anti-electron pairs (and less quark-anti-quark pairs), but
with more anti-electrons towards themselves and more electrons forward. In the rest-frame of the ingoing electron, one
will find that it emits a virtual photon (timelike if the polarized electron-positrons appear) and has negative energy
for the outgoing electron. The negative energy will be temporary as the probe (for instance, a photon) will transfer

https://doi.org/10.1103/PhysRevD.60.032002
https://doi.org/10.1103/PhysRevD.60.032002
https://doi.org/10.1103/PhysRevLett.79.1209
https://doi.org/10.1103/PhysRevLett.79.1209
https://doi.org/10.1103/PhysRevD.77.056007
https://doi.org/10.1103/PhysRevD.77.056007
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energy to the outgoing electron and finally the energy is positive. These considerations are quite similar to that of
the nucleon in the timelike region as discussed above. If one performs the Fourier transformation of Eq. (10) on the
EMFFs of the electron, the momentum of the photon has been changed into the distance between the photon and
the electron. This r can also be recognized as the distance between the electron and the polarized electric charges, as
the photon will be annihilated into the polarized electron-positron pairs. At the end, one obtains the distributions of
the polarized electric charges for the electron.

Going back to the EMFFs of the nucleons in the timelike region, it is realized that the EMFFs indicate that the
nucleon (at rest) emits a virtual photon, and the photon will be annihilated into polarized electron-positron pairs,
quark-anti-quark pairs, etc. The electron-positron pairs would dominate as they are much lighter than other charged
particles. By performing Fourier transformation in Eq. (10), one obtains r as the distance between the polarized
particles and the nucleon. Further, considering that a nucleon is composed of clouds of quarks and gluons, the
virtual photon can be emitted from the valence quarks directly, where the EM interactions would dominate. Also, it
can be emitted from the sea quarks where both EM and strong interactions are involved. Therefore, both EM and
strong interactions will affect the distributions of the polarized electric charges. In addition, the photons emitted by
the nucleon are limited to the hard photons (Eγ∗ > 2mN ). At the end of the day, one concludes that the Fourier
transformation on the EMFFs of the nucleons in the timelike region, as given in Eq. (10), represents the distributions
of the polarized electric charges generated by hard photons for the nucleon. More specifically, the dipole, underdamped
oscillation, and overdamped oscillation are for the leading order, next-to-leading order, and next-to-next-to-leading
order polarizations.

The origin of the oscillations.– As is well known, it is difficult to calculate the NN̄ interaction in perturbative
QCD. However, some QCD-based phenomenological models can be applied to explore the underlying physics and to
shed light on the question of how to generate the fractional oscillation. The strategy is as follows: we construct a
whole potential of NN̄ scattering, where the low energy part is taken from ChEFT as given in the main text, while
the high-energy part is taken from the one-gluon exchange (OGE) within a constituent quark model [60, 62]

Veff(r⃗) =d

3∑
i=1

6∑
j=4

(Gij
eff(r⃗) + Sij

eff(r⃗)) ,

Gij
eff(r⃗) =

(
1 +

p2

EiEj

)1/2

G̃(r)

(
1 +

p2

EiEj

)1/2

+ δ
1/2+ϵso(v)

ij

3(S⃗i + S⃗j) · L⃗
2m2

1

r

∂G̃(r)

∂r
δ
1/2+ϵso(v)

ij

+ δ
1/2+ϵc
ij

2S⃗i · S⃗j

3m2
∇2G̃(r)δ

1/2+ϵc
ij − δ

1/2+ϵt
ij

3S⃗i · r̂S⃗j · r̂ − S⃗i · S⃗j

3m2

(
∂2

∂r2
− 1

r

∂

∂r

)
G̃(r)δ

1/2+ϵt
ij ,

Sij
eff(r⃗) =S̃ − δ

1/2+ϵso(s)
ij

(S⃗i + S⃗j) · L⃗
2m2

1

r

∂S̃(r)

∂r
δ
1/2+ϵso(s)
ij . (B1)

where the subscripts i and j represent quarks and anti-quarks in the nucleons/anti-nucleons, respectively. Ei,j , S⃗i,j

are energy and spin operators, respectively. L⃗ is the orbital angular momentum between the quark and the anti-quark.
The factor d describes the polarization of the quark. G̃ and S̃ are the smeared results of the Coulomb and linear
confinement potential, which are given as

G̃ =F⃗i · F⃗j

3∑
k=1

αk

r
erf(τkijr) ,

S̃ =− 3

4
F⃗i · F⃗j

{
br

[
e−σ2

ijr
2

√
πσij

+

(
1 +

1

2σ2
ijr

2
erf(σijr)

)]
+ c

}
. (B2)

The factors δ
1/2+ϵk
ij in Eq.(B1) are given as

δ
1/2+ϵk
ij =

(
m2

EiEj

)1/2+ϵk

,

where k = c, t, so(v), so(s), i.e., contact, tensor, vector spin-orbit, and scalar spin-orbit. The typical Feynmann
diagrams of the OGE are shown in Fig.B. We have assumed that the OGEs happen only between the quarks in the
nucleon and the antiquarks in the antinucleon. The OGE of two quarks or antiquarks in the nucleon or antinucleon is
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q

q̄

q

q̄

q q

q̄ q̄

FIG. B. The Feynman diagram of quark interaction in nucleon anti-nucleon scattering

not considered. Also, OGE is for a pair of quark-antiquark only, while the other two quarks/antiquarks are observators
and do not interact simultaneously. Notice that the expected value of the color matrix elements for the s−channel
exchanges are given as ⟨F⃗i · F⃗j⟩ = − 1

9 , while for the t-channel exchanges, one has ⟨F⃗i · F⃗j⟩ = 0. Only s channels of
OGEs contribute, and there are five Feynman diagrams for pp̄ → pp̄ and nn̄ → nn̄, and four Feynman diagrams for
pp̄ ↔ nn̄.

With the constructed potentials, we need to transform them from the coordinate space to the momentum space to
solve the Lippmann-Schwinger equation. The Fourier transformation is

VOGE(q⃗) =

∫
d3r

(2π)3
e−iq⃗·r⃗VOGE(r⃗) , (B3)

where q = |p⃗′ − p⃗|. The partial wave projection is also performed in the potential to get the information of the
3S1− 3D1 coupled channel scatterings. Notice that the OGE potential is of short-distance range, so we use the upper
limit of rc =1.5 fm for the radius (

∫ rc
0

dr) to integrate Eq. (B3). The ChEFT potential dominates the low-energy
region, with the cut-off Λ = 850 MeV (corresponding to

√
s = 2.2 GeV) as used in the main text. Meanwhile, the

OGE potential V OGE dominates the high-energy region, i.e., from 2.2 GeV up to 3.2 GeV. Then the total potential
have following form

V tot(p, p′) = V ChEFT(p, p′)f(p, p′,Λ) + V OGE(p, p′)f̃(p, p′,Λ)f(p, p′,Λ′) . (B4)

The regulator functions multiplied by the potentials are chosen as [44]

f(p, p′,Λ) = exp

(
−p6 + p′6

Λ6

)
, f̃(p, p′,Λ) =

[
1− exp

(
−p2 + p′2

Λ2

)]4
, (B5)

where the former is to suppress the high energy interaction and the latter to suppress the low energy interaction.
Notice that one has Λ = 850 MeV and Λ′ = 1500 MeV, corresponding to the upper limits of our analysis,

√
s =2.2

GeV and 3.2 GeV, respectively. These regulator functions are needed to avoid double counting between the potentials
of ChEFT and OGE, where in the low-energy region the scattering has already been well described by ChEFT, and
in the high-energy region, the OGE potentials describe the interactions well. The amplitude T tot, which can describe
the energy region from threshold to 3.2 GeV, is obtained by solving the LES in Eq. (3). Since the high energies (above
2.2 GeV) are considered, the Born term in the DWBA approach needs to be re-fixed. We take the following form

f0,N̄N
L,tot (k;Ek) = f0,N̄N

L,ChEFT(k;Ek)f(k,Λ) + f0,N̄N
L,OGE(k;Ek)f̃(k,Λ)f(k,Λ

′) . (B6)

With the regulator functions f(k,Λ) = exp
(
− k6

Λ6

)
and f̃(k,Λ) =

[
1− exp

(
− k2

Λ2

)]4
.

These new potentials can describe the data of e+e− → N̄N well, and we extract the Gosc, see Fig.C. With this
potential, we can now solve the amplitudes from NN̄ threshold up to 3.2 GeV. And then the DWBA method is
used to obtain the e+e− → NN̄ amplitude. The cross sections and effective form factor are refitted to fix the
parameters, such as d in Eq. (B1), b, c in Eq.(B2), and ϵc, ϵt, ϵso(v), ϵso(s) in Eq.(A). One can see that the combined
interactions between the low-energy potential from ChEFT and the high-energy potential from OGE can roughly
generate the oscillation behavior of the fractional model. Notice that without the one-gluon interaction, there would
not be oscillations in the high-energy region. Hence, from it, we recognize that the OGE potential is essential to
the oscillation (underdamped) in the high-energy region. In contrast, in the low-energy region, the ChEFT potential
dominates the generation of the overdamped oscillation.

SFFs with different background functions.– In the main text, the background is fixed to be a dipole function, i.e.,
the same as what is used by the experimentalists. However, it would be interesting to consider different forms and
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FIG. C. The results for Gosc.

check whether the oscillation of the SFFs still exists. The dipole functions for the proton and neutron in the main
text are given as [63],

|F p
1 (q

2)| = Ap

(1 + q2/m2
a)(1− q2/q20)

2
, |Fn

1 (q
2)| = An

(1− q2/q20)
2
, (C1)

where the parameters are fixed by the experiment [12], Ap=7.7, An = 3.5 ± 0.1, m2
a=14.8 (GeV/c)2 and q20=0.71

(GeV/c)2.
Since the new datasets are included in this analysis, e.g., the data from BESIII [10–12] and SND [14], we refit the

data and obtain the following parameters for the dipole functions, Ap = 8.56, m2
a = 10.20 GeV2, An = 3.53. See the

black solid lines in Fig. D, named as ‘BG 1’.
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FIG. D. The background contributions to EMFFs of the proton and neutron, with different background functions in
Eqs. (C1,C2).

There are other functions in the literature [25, 64–67] that can be considered for describing the background. Here
we explore some of them and we refit the data to fix the parameter, resulting in different kinds of backgrounds. The
concrete functions considered are

|F2(q
2)| = An,p

2

(q2)2 log2(q2/Λ2
2n,p)

,

|F3(q
2)| = An,p

3

(q2)2[log2(q2/Λ2
3n,p) + π2]

,

|F4(q
2)| = An,p

4

(1− q2/m2
4p,n)(2− q2/m̃2

4p,n)
, (C2)
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with fitting parameters of Ap
2 = 32.1 GeV4, Λ2p = 0.53 GeV, An

2 = 235 GeV4, and Λ2n = 0.016 GeV for ‘BG 2’. See
the magenta dashed lines in Fig. D. The fitting parameters for ‘BG 3’ are given as Ap

3 = 72.8 GeV4, Λ3p = 0.49 GeV,
An

3 = 210 GeV4, and Λ3n = 0.028 GeV. The background contributions are shown by the blue dash-dotted lines in
Fig. D. The fitting parameters of ‘BG 4’ are given as

Ap
4 = 2.20, m2

4p = 1.35GeV2, m̃2
4p = 0.68GeV2,

An
4 = 11.48, m2

4n = 0.57GeV2, m̃2
4n = 0.29GeV2.

See the green dash-dot-dotted lines in Fig. D.
To test the stability of the oscillation, we fit our fractional oscillators to the SFFs subtracted by the four background

functions discussed above. The results are shown in Fig. E. The purple dashed lines are the SFFs calculated by ChEFT
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FIG. E. Results for the fractional oscillators fitted to the SFFs, considering different functions for the background.

in the low energy region. The black solid lines are the new fitting results for the fractional oscillators. One can see
that the fractional oscillations are still obvious, and they describe the experimental data and the results of ChEFT
well. This indicates that our fractional oscillation model is stable.
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