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Abstract

In this review, we present the current state of the art of our understanding of the spectrum of excited strongly in-
teracting particles and discuss methods that allow for a systematic and model-independent calculation of the hadron
spectrum. These are lattice QCD and effective field theories. Synergies between both approaches can be exploited al-
lowing for deeper understanding of the hadron spectrum. Results based on effective field theories and hadron-hadron
scattering in lattice QCD or combinations thereof are presented and discussed. We also show that the often used
Breit-Wigner parameterization is at odds with chiral symmetry and should not be used in case of strongly coupled
channels.
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1. Introduction: QCD and excited states

For a mathematical concept to become a dogma in describing Nature it has to be confronted with observations. In
the realm of the microscopic building blocks of matter (∼ 10−10 m) such concepts are often far from the intuitive hu-
man experience, which is evolutionary engraved into logical concepts by dealing with everyday objects (∼ 100 m). For
example, the originally non-intuitive language of quantum mechanics1 is now an indisputable concept of any model of
nuclear and particle physics. In that, one of the major breakthroughs of quantum mechanics is associated with the cor-
rect description of the pattern of excited states of atomic spectra. Going five orders of magnitude deeper (∼ 10−15 m)
along this path, it has been discovered then that strongly interacting particles also build a complex spectrum of ground
(such as proton and neutron) and excited states, so-called hadrons. It is, therefore, believed that resolving the general
pattern and microscopic structure of this spectrum holds the key to the correct understanding of the strong interac-
tions. This is the topic of hadron spectroscopy that is at the heart of the present review. Currently, the most universal
language in addressing this area of research is the language of gauge field theories, which unifies the principles of
special relativity and quantum mechanics incorporating local (gauge) invariance. Quantum chromodynamics (QCD)
is a prime example of such a gauge theory describing the strong interaction.

Quantum chromodynamics is a truly remarkable theory passing all tests when compared to experiment for nearly
five decades. Its Lagrangian can be written in a single line

LQCD = −
1
4

Ga
µνG

µν,a +
∑

f

q̄ f (iD/ −M f )q f + . . . , (1.1)

1See, e.g., reflections of W. Heisenberg’s “Physics and Beyond: Encounters and Conversations” [1] on the early disputes on nature of quantum
mechanics
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where the ellipses denote the gauge-fixing and the θ-term, which will not be considered in what follows. Here,
Dµ = ∂µ− igAa

µλ
a/2 is the gauge-covariant derivative, Aa

µ (a = 1, . . . , 8) the gluon field, Ga
µν = ∂µAa

ν −∂νA
a
µ− ig[Ab

µ, A
c
ν]

the gluon field strength tensor, g is the SU(3) color gauge coupling, q f a quark spinor of flavor f ( f = u, d, s, c, b, t)
and M f is the diagonal quark matrix. The quarks come in two types, the light (q = u, d, s) and heavy (Q = c, b, t)
quark flavors, where light and heavy refers to the QCD scale ΛQCD ' 210 MeV (for N f = 5,MS, µ = 2 GeV). Note
that the top quark decays too quickly to participate in the strong interactions, so effectively Q = (c, b). In the absence
of the quark masses, ΛQCD is the only dimensionful parameter in QCD that is generated by dimensional transmutation
through the running of the strong coupling αs = g2/4π. The fundamental fields of QCD, the quarks and gluons,
have never been observed in isolation, which is called color confinement. They appear as constituents of the strongly
interacting particles, the hadrons. This particular feature makes QCD highly non-trivial but also very interesting.

The Lagrangian of QCD allows us to define two special limits, in which the theory can be analyzed in terms of
appropriately formulated effective field theories (EFTs). In the light quark ( f = u, d, s) sector, the effective Lagrangian
can be written in terms of left- (qL) and right-handed (qR) quark fields, such that

LQCD = q̄L iD/ qL + q̄R iD/ qR + O(m f /ΛQCD) . (1.2)

As can be seen, left- and right-handed quarks decouple, which is reflected in the chiral symmetry. It is explicitly
broken by the finite but small quark masses m f . Furthermore, chiral symmetry is spontaneously broken, leading to
the eight pseudo-Goldstone bosons, the pions, the kaons and the eta. These are indeed the lightest hadrons, with their
squared masses proportional to m f . The pertinent EFT is chiral perturbation theory (CHPT).

Matters are very different for the heavy c and b quarks, where the leading order Lagrangian takes the form

LQCD = Q̄ f iv · D Q f + O(ΛQCD/m f ) , (1.3)

with v the four-velocity of the heavy quark and Q f denotes a quark spinor of flavor f ( f = c, b). Note that to leading
order, this Lagrangian is independent of quark spin and flavor, which leads to SU(2) spin and SU(2) flavor symmetries,
called HQSS and HQFS, respectively. The pertinent EFT to analyze the consequences is heavy quark effective field
theory (HQEFT), which comes in different manifestations. Finally, in heavy-light systems, where heavy quarks act as
matter fields coupled to the light pions, one can combine CHPT and HQEFT.

By construction, EFTs are limited to certain energy regions. A more general non-perturbative method is lattice
QCD, where the Euclidean version of the theory is put on a four-dimensional space-time grid, characterized by a
given lattice spacing a and a finite volume, V = L3 × Lt, with L the spatial length (L = Na) and Lt the extension
in Euclidean time. Observables can be calculated by Monte Carlo simulations on the lattice. To make contact with
Nature, one must consider the continuum limit a → 0, the thermodynamic limit V → ∞ and often has to extrapolate
in the (light) quark masses down to the physical values. All this induces some systematic uncertainties, but also comes
with additional value. On the one hand, varying the quark masses allows one to pin down low-energy constants of
pertinent EFTs that can often only be determined approximately (or not at all) from continuum investigations and on
the other hand, the volume dependence of the measured energy levels encodes information about excited states, as
discussed in more detail below.

There are various reasons to consider excited states, which are the topic of this review. First, the spectrum of
QCD is arguably its least understood feature. The hadron spectrum has for a long time been a playground of the
constituent quark model, but we know now that this only captures certain symmetry properties of QCD, but not its
full dynamics. This is evident from the questions with respect to the nature of the XYZ and other “exotic” states,
where the word exotic appears between quotation marks, because this usually refers to states that can not be described
within the (conventional) quark model. It is very obvious that the quark model is much too simple, as it is, e.g., it does
not account for a whole class of important players in the hadron spectrum, the so-called hadronic molecules. Since
the beginning of this millennium, there has been a waste activity both experimentally and theoretically to pin down
the properties of these unusual (“exotic”) states, see the recent reviews [2–17]. Generally, QCD permits for a whole
set of bound states, which can roughly be categorized as compact states of quarks and antiquarks, states dynamically
generated from hadron-hadron (or three-hadron) interactions, hybrid states made from quarks and gluons as well as
glueballs, which are arguably the most exotic states QCD offers. Note, however, that in the limit of many colors
Nc → ∞, the glue sector completely decouples from the quark sector. It is also important to note that high-precision
data for spectrum studies have been and will be produced with ELSA at Bonn, MAMI at Mainz, CEBAF at Jefferson
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Figure 1: Spectrum of unflavored mesons (left) and light baryons (right) categorized by isospin I and total angular momentum and parity JP. Values
and uncertainty regions are taken from the current review of the Particle Data Group [18].

Lab, the LHCb experiment at CERN, the BESIII experiment at the BEPCII, Belle-II at KEK, GlueX at Jefferson
Lab and in the future with PANDA at FAIR and other labs worldwide. These data clearly pose a challenge for any
theoretical approach.

In what follows, we discuss theoretical approaches that will eventually unravel the physics behind the QCD spec-
trum. More precisely, we only consider methods that are 1) largely model-independent2, 2) can be systematically
improved, and 3) allow for uncertainty estimates. If one of these conditions is not fulfilled, a given method will
not be considered further, such as the Schwinger-Dyson approach, which is genuinely non-perturbative but lacks any
power counting scheme. Also, we eschew models here. So that leaves us with lattice QCD (LQCD) and EFTs or
combinations thereof. LQCD can get ground-states and some excited states at (almost) physical pion masses, but the
most distinctive feature of excited states are decays (or the fact that the excited states have a width). Consequently,
we will only consider LQCD studies of hadron-hadron scattering, that allow to extract the mass and the width of a
given resonance (this also means that we will not discuss any spectrum calculations based on two-point functions).
Furthermore, we will also show how the use of suitably tailored finite-volume EFTs can help in this daring endeavour.

This review is organized as follows: In Sect. 2, we define what is meant by a resonance. In Sect. 3, we discuss
the basics of lattice QCD, with an emphasis on the formalisms to extract resonances. Sect. 4 consider EFTs for
resonances, either as explicit fields or via some unitarization method. Sect. 5 contains the results on well separated
resonances, which are only a handful. Results for the more general case of resonances with multiple decay channels
(coupled channels) are collected and discussed in Sect. 6, where we also discuss the new phenomenon of the two-
pole structure first observed in case of the enigmatic Λ(1405). In Sect. 5 and Sect. 6 we consider publications until
end of May 2022. We summarize our results in Sect. 7. As it will become clear, we still far away from a precise
understanding of the hadron spectrum using the methods discussed here, but it is also remarkable to see the progress
that has been made in the last decade.

2. What is a resonance?

The Particle Data Group (PDG) [18] lists around 100 excited mesonic and around 50 confirmed (4 star) baryonic
states. The basic parameters of these states, the hadrons, are their mass and decay width shown for the unflavored
mesons and the lightest baryons in Fig. 1. Most of these states are actually not stable, they are, broadly speaking,

2The meaning of “largely” will become clear in what follows.
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resonances. From the classical mechanics of a periodically driven oscillator, a resonance is characterized by two
properties at the resonance frequency: a peak in the amplitude of the oscillator and a phase difference of 90◦ between
the driving force and the oscillator’s response.

This concept can be transferred to quantum mechanics, where the peak is observed in the cross section and the
phase-shift between asymptotic incoming and outgoing states. For the scattering of a plane wave (wave vector k ∈
R3, k := |k|) with a angular momentum ` the total cross section σ and phase-shift δ can be parameterized by the
Breit-Wigner formula [19] (note that we will encounter situations where this parameterization is inadequate, see e.g.
the discussion in Sect. 6.3.2)

σ(E) ∝
4π
k2 (2` + 1)

Γ2
`/4

(E − ER)2 + Γ2
`
/4

and tan δ ∝ −
Γ`

2(E − ER)
. (2.1)

This explains the name ’width’ for Γ representing twice the distance from the peak (at ER) to the half of the maximal
value of the total cross section. The enhancement of the cross section at E = ER is the very origin of the term
’resonance’, see, e.g., Ref. [19]. Closely related to this is the so-called Flatté parametrization [20] which allows to
address coupled-channel systems, see, e.g., Refs. [21–23] for more details and applications.

There are exemplary cases, like for instance the ρ-resonance, where it is to very good approximation sufficient
to consider the P-wave (` = 1) only. There, this quantum mechanical picture of a resonance can be carried over to
quantum field theory more or less directly. However, in general the concept of resonances needs to be generalized
to quantum field theories: the enhancement of the cross section can be seen as a manifestation of a new quantum
(resonance) field, which couples to asymptotically stable fields and acquires, thus, a finite width through self-energy
contributions Note in passing that often, an enhancement in the cross section is not seen due to the strong background
or coupled channel effects. This is most clearly seen in the P11 phase shift of pion-nucleon scattering, which is rather
small in the vicinity of the Roper resonance. A prime As an example, consider a theory with two types of fields, an
asymptotically stable pion (pseudo)scalar field and an unstable ρ vector field. Given the coupling of the latter to two
pions (gρππ), the ππ scattering amplitude in the P-wave (see below for a formal definitions) reads

TP(s) ∝
g2
ρππ

s − M2
ρ − Σ(s)

and Σ(s) =

∫
dk k4

(2π)3

g2
ρππ

2Ek(s − 4E2
k + iε)

, (2.2)

where s denotes the total energy squared and Ek =
√

M2
π + k2. Note that the self-energy contribution (Σ) is divergent

so that the quantities gρππ and Mρ need to be divergent as well since the full amplitude has to be finite. Over-subtracting
the self-energy integral and introducing new subtraction constants allows then to express the scattering amplitude in
terms of finite quantities only. These can be determined by fitting to experimental data as shown in Fig. 2 for the
case of two subtractions. We note further that often an enhancement in the cross section is not seen due to the strong
background or coupled-channel effects. This is most clearly seen in the P11 phase shift of pion-nucleon scattering,
which is rather small in the vicinity of the Roper resonance. Or as it is often stated: “Not every bump is a resonance
and not every resonance is a bump”, see, e.g., the discussion in Ref. [26]

The introduction of auxiliary (resonance) fields is a useful tool in many applications of hadron physics, see, e.g.,
Refs. [27–29] for recent applications to multihadron systems. However, there are many examples, such as f0(500)
or Λ(1405), where such a representation is not sufficient. The most universal and modern approach to resonances
deals directly with scattering amplitudes. In that, the so-called S -matrix – originally introduced by Heisenberg [30] –
relates the asymptotic in- (three-momenta p1, ..., pm) and outgoing (three-momenta p′1, ..., p′n) states as

〈p′1, ..., p′n|S |p1, ..., pm〉 = 〈p′1, ..., p′n|(1 + iT )|p1, ..., pm〉 , (2.3)

which defines the so-called T -matrix3. The S -matrix obeys crossing symmetry, i.e., the S -matrix element for a n→ m
transition can be converted analytically to the element describing n + 1 → m − 1 transitions etc.. Furthermore, and
crucial for the matter of the present review is the principle of analyticity. It is rooted in the requirement of causality [31,

3Note that the definition of the T -matrix varies in the literature. In particular, the definition includes at times a different sign or momentum
prefactor, which may have some technical advantages in some specific cases.

5



Two-parameter fit

Estabrooks et al.

Protopopescu et al.

300 400 500 600 700 800 900
0.0

0.5

1.0

1.5

2.0

2.5

+

+

+ ...

=

Figure 2: Left: A fit to experimental data from Refs. [24, 25] using twice subtracted self-energy of the ρ field, see Eq. (2.2). Green band represents
1-sigma statistical uncertainty region of the two-parameter fit, respectively. Right: Diagrammatic representation of the ρ resonance in ππ scattering
via a bare state (full line) and self-energy due to coupling to asymptotically stable pion fields (dashed line).

32] for physical processes and states that physical S -matrix elements are boundary values to an analytic functions in
all inner products of all involved momenta (p(′)

i p(′)
j ) or in closely related generalized Mandelstam variables, promoted

to their complex values. In that, the choice of variables is not unique but the number of independent ones is fixed.
First, since all in-/outgoing states are on the respective mass shell

(
p(′)

i
2 = m(′)2

i

)
only 3(m + n) combinations can be

independent. Furthermore, energy-momentum conservation and choice of the reference frame constrain the number
of independent invariants to 3(m + n)− 4− 6, see Ref. [33] for more details. Finally, following the latter reference the
S -matrix can be expressed as

S =
∑

i
in|i〉〈i|out for out〈i| j〉in = δi j and

∑
i

in|i〉〈i|in =
∑

j
out| j〉〈 j|out = 1 , (2.4)

i.e., using complete and orthonormal set of physical states. This obviously leads to the unitarity of the S -matrix,
S S † = S †S = 1, which physically ensures probability conservation [30]. It is notable that the number of physical
states depends on the energy of the system. For a generic two-body systems with identical particles of mass µ
(equivalently for other cases) and total energy squared s this yields schematically that

=
...

m states

N

∑
m=2

S S† (N)2 ≤ s/µ2 < (N + 1)2 . (2.5)

Overall, unitarity, analyticity and crossing symmetry are the main principles of S -matrix theory going beyond expan-
sion in Feynman diagrams. The pertinent matrix elements are expected to encode all information about the dynamics
of the system including the properties of the resonances as will be discussed below.

Unitarity of the S -matrix implies for the T -matrix that (T − T †) = iT †T , leading for a general n→ n transition to
the following condition on the matrix elements and invariant matrix element

M({p} → {p′}) = (2π)4δ(4)

 n∑
i=1

pi − p′i

 〈p′1 p′2|T |p1 p2〉 (2.6)

with

〈p′1, ..., p′n|(T − T †)|p1, ..., pn〉 = i
∫ N∏

i=1

d4ki

(2π)4 (2π)δ+(k2
i − m2)〈p′1, ..., p′n|T

†|{k}〉 , 〈{k}|T |p1, ..., pn〉 , (2.7)

M({p} → {p′}) −M∗({p′} → {p}) = i
∫ N∏

i=1

d4ki

(2π)4 (2π)δ+(k2
i − m2) (2π)4δ(4)

P −
N∑

i=1

ki

M∗({p′} → {k})M({p} → {k}) ,
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Figure 3: Representation of the Riemann surface for one (top row) and two (middle row) and three (bottom row) open two-body thresholds. The
value of |s| = ∞ is put for simplicity on the poles of the sphere and rim of the tori, respectively. Riemann Sheets are denoted by a sequence [±± ...]
as discussed in the main text. Yellow dots depict the position of the branch points.

where δ+(k2
i − m2) selects the positive energy solution, P denotes the total four momentum of the system, and the

size of the complete set of intermediate states (N) depends on the total energy of the system, see Eq. (2.5). The inte-
gration over intermediate momenta on the right-hand-side of the latter equation leads to another crucial and beautiful
implication for the structure of the S -matrix.

As an example, consider a simple case of 2→ 2 scattering of identical particles, where by limitations due to total
energy of the system or some quantum numbers only two-body intermediate states are allowed. Then, for the invariant
matrix elementM(p1, p2 → p′1, p′2) = (2π)4δ(4)(p1 + p2 − p′1 − p′2)〈p′1 p′2|T |p1 p2〉 and the corresponding partial wave

expansionM`(s) = 1/(64π)
∫ +1
−1 dzM(s, z)P`(z) the unitarity relation simply implies that

ImM−1
` (s) = −

2q(s)
√

s
θ
(√

s − 2m
)

with q(s) =

√
s
4
− m2 , (2.8)

where m denotes the mass of the involved field. This implies that a two-body system is described by a set of partial
wave amplitudes of the form

M`(s) =

√
s

2
1

K−1
`

(s) − iq
, (2.9)

for some real function K`(s) referred to as the K-matrix and related to observable two-particle phase-shifts as K−1
` (s) =

q(s) cot δ`. The key point is that due to multi-valuedness of the square root function, also the partial wave amplitude
is in general multivalued. The energy at which the multi-valuedness first occurs (lowest energy at which participating
states first go on-shell) is referred to as the branch point. Thus, the domain of the function T`(s) is extended from s ∈ C
to s ∈ C × C, representing a complex manifold referred to as the Riemann surface consisting of two Riemann sheets,
each covering C. Generalizing this, a partial wave amplitude covering m possible intermediate two-body channels
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Figure 4: Left: Unphysical [−−] Riemann sheet of the 3π system including resonance pole of the a1(1260) state. Double cut structure arises from
three-pions being on-shell as well as two pions forming a ρ-resonance. Figure adopted from Ref. [38]. Right: Pole movement of the f0(500)-
resonance as a function of the pion mass in terms of the physical pion mass (Mphys

π ). Black dots and gray band represent pole position resampled
with respect to the lattice QCD calculations at the unphysical pion masses [40–43].

is a complex-valued function on a 2m sheeted Riemann surface. Three examples of a one-, two- and three-channel
problem are shown in Fig. 3. There, individual sheets are shown together with a diffeomorphic mapping of those to
a three-dimensional manifolds of gender zero, one and three, respectively. The latter mapping demonstrates clearly
how all 2m Riemann sheets are connected to one-another. Any measured (experimentally or as a result of a numerical
lattice calculation) values are located on the real energy-axis of the so-called physical sheet, see the green-shaded
sheet denoted by [+ . . .+] referring to Sgn(Im (q(s))) in each two-body channel. Generalizing this notation, we denote
all sheets by the same type of sequence, see, e.g., Refs. [34, 35]. Specifically, the unphysical sheet connected to the
physical one between the first and second threshold is denoted by [− + . . .+], the one connected to the physical sheet
between the second and third threshold by [− − + . . .+] etc. .

Coming back to the matter of resonances, we recall that the S -matrix (and with it also the scattering amplitude T )
is a holomorphic function – smooth in a neighborhood of any complex-valued point – with respect to the discussed
complex-valued (e.g., generalized Mandelstam) variables. The only allowed exception to this is the presence of bound
states on the real axis below the production threshold. Furthermore, and as we have seen with explicit fields, excited
hadrons or resonances can be associated with poles in the complex plane. Thus, these poles can only be located
on the unphysical sheets of the analytically continued S -matrix. Typically, only closest to the physical axis located
sheets ([− + . . .+], [− − + . . .+], etc.) are searched for the resonances, as it is assumed that their influence on the
physical processes is anti-proportional to the direct (perpendicular to Re s) distance to the real energy axis. Of course,
in general more complex situations occur and poles on remote Riemann sheets can be of importance as well, see,
e.g., Refs. [35, 36]. So far we have discussed examples with two-body states only. However, when more particles
are present either in the in/out or intermediate states, the picture remains with the exception that if, e.g., two particles
subsystems interact resonantly additional branch cuts occur in the complex s-plane [37]. An example, of such a case
is the 3π system with IG(JPC) = 1−(1++) quantum numbers, where two of three pions form a resonant subsystem
corresponding to the ρ-meson, see, e.g., Refs. [38, 39]. This is depicted in the left panel of Fig. 4.

In summary, the modern approach to resonances utilizes the concept of the S -matrix. Induced by the requirement
of unitarity (probability conservation), analyticity (causality of physical processes) and crossing symmetry, it is fixed
on the real energy-axis by experimental or more recently lattice QCD results. When fixed, it is believed to contain
all information about the exited states of hadrons. Specifically, any state is described by a complex-valued position
of its pole on a given Riemann sheet. Such parameters are universal, i.e., they do not depend on the choice of a
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particular transition. Coupling to specific initial and final states is encoded in the residuum of the pole of a scattering
amplitude to such states. This interpretation naturally unites the concept of bound states (poles on the real energy-
axis on the physical Riemann sheet below production threshold), virtual states (poles on the real energy-axis on the
unphysical Riemann sheets) and resonances (complex energy poles on the unphysical Riemann sheets). Interestingly,
the transition between different regimes can be tested using lattice QCD calculations at different (unphysical) quark
masses. The prominent example in this regard is the long-debated scalar isoscalar mesonic f0(500), see the recent
review [44]. The pion mass dependence of the f0(500) pole has been studied extensively with methods based on
unitarity and chiral perturbation theory, see, e.g., Refs. [41, 45, 46]. The results of a recent study backed by lattice
QCD at unphysical pion masses [40–43] are shown in the right panel of Fig. 4.

3. Theoretical methods I: Lattice QCD

In this section we introduce Lattice QCD, the formulation of QCD in Euclidean space-time regularized by con-
fining the theory to a finite volume on a discrete hyper-cubic lattice. The main focus of this section is to familiarize
the reader with the relevant concepts but also to enable the reader to understand the systematics of this method. More
details can be found in textbooks on the topic of lattice field theory.

3.1. QCD on a lattice

We recall the renormalizable QCD Lagrangian that conserves parity and is invariant under time reversal, Eq. (1.1),
for a single quark flavor q

L = −
1
4

(Ga
µν)

2 + q̄(iγµDµ − mq)q . (3.1)

Here, q̄ = q†γ0 and
Ga
µν = ∂µAa

ν − ∂νA
a
µ + g f abcAb

µAc
ν (3.2)

is the field strength tensor. The structure constants of SU(3) are denoted by f abc, while g is the bare gauge coupling
constant and mq is the bare quark mass parameter. The the vector potential is denoted by A. This theory needs
regularisation and renormalization.

For the lattice regularisation we start in Euclidean space-time, i.e., after analytically continuing to purely imaginary
times t → −it. The Euclidean action then reads

S =

∫
d4x

[
1
4

(Ga
µν)

2 + q̄(γµDµ + mq)q
]
, (3.3)

with Euclidean γ-matrices satisfying
{γµ, γν} = 2 δµν . (3.4)

The Euclidean partition functionZ is then given by

Z =

∫
Dq̄DqDAe−S , (3.5)

with the Euclidean action being real and bounded from below. This allows one to interpret the exponential factor as a
probability weight and enables Monte Carlo integration methods to be applied.

In order to make such a Monte Carlo approach work in practice, the system is confined into a finite volume with
spatial extents asLk , k = 1, 2, 3, and temporal extent atL4. This hypercube is then discretized with lattice spacings
as in spatial and at in temporal directions. Denoting here and in the following Euclidean four-vectors by ~x, the set of
lattice sites can be written as

Λ = {~n : nµ = 0, 1, ..., Lµ − 1 ; µ = 1, 2, 3, 4} . (3.6)

In doing so the theory is regularized both in the infrared by the finite volume and the ultraviolet by the discretization.
Typically one chooses Lk = L, k = 1, 2, 3 and L4 = T in lattice simulations, a notation that we will also adopt where
possible.
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Furthermore, the fermionic fields q̄, q are defined only on the lattice sites q̄(~n) , q(~n) and the integral over the
volume becomes a sum ∫

d4x →
1

L1L2L3L4

∑
~n∈Λ

, (3.7)

and the functional integrals for the Grassmann valued fermionic fields read

Dq̄Dq →
∏
~n∈Λ

dq̄(~n) dq(~n) . (3.8)

The lattice gauge field is represented by SU(3)-valued fields Uµ(~n) ≡ U~n,µ in the fundamental representation, which
connect lattice sites ~n and ~n + µ̂, where µ̂ is the unit vector in direction µ. This allows one to also define the functional
integral over the gauge fields on the lattice by the transition∫

DA →

∫ ∏
~n∈Λ,µ

dU~n,µ , (3.9)

denoting the invariant Haar measure [47] by dU. The parallel transports U~n,µ are related to the gauge potential Aµ via

U~n,µ = eigaAµ(~n+µ̂/2) .

For the gauge fields usually periodic boundary conditions are used, though also open boundary conditions are used
to mitigate topological freezing [48]. For the fermionic fields boundary conditions are in general implemented by a
phase factor

q(~n + Lµµ̂) = eiθµq(~n) , (3.10)

with angles θµ ∈ [0, 2π[ , µ = 1, 2, 3, 4.

3.2. Lattice actions

It remains to discretize the different elements in the Euclidean action, while maintaining gauge invariance. For
convenience, we assume as = at = a here for the moment. The pure gauge part can be written in terms of the U-fields
as follows

S g = −
β

3

∑
~n

b0

∑
1≤µ<ν

Re Tr
(
U1×1
~n,µ,ν

)
+ b1

∑
µ,ν

Re Tr
(
U1×2
~n,µν

) . (3.11)

Here, the bare inverse coupling β = 6/g2, while U1×1
~n,µ,ν represents the so called plaquette loop

U1×1
~n,µ,ν = U~n,µU~n+µ̂,νU

†

~n+ν̂,µ
U†
~n,ν , (3.12)

which corresponds to the smallest closed loop in the µ−ν plane on a lattice. U1×2
~n,µν is defined analogously as the Wilson

loop in the µ − ν plane with edge lengths 1 and 2 in direction µ and ν, respectively.
The parameter choice b0 = 1, b1 = 0 corresponds to the original Wilson gauge action [49]. Up to corrections of

order a2 this action reproduces the continuum gauge action. Improved choices for b0, b1 have been introduced for
instance in Refs. [50, 51] on which most modern lattice QCD simulations are based on.

For the discretization of the Dirac operator Dµ there are many different choices possible, all differing by lattice
artefacts and symmetry properties. The most prominent ones are Wilson’s discretization [49], the so-called staggered
or Kogut-Susskind discretization [52, 53], the overlap [54, 55] and domain-wall discretizations [56, 57]. The latter
two allow for exact chiral symmetry on the lattice [58].

For as , at the gauge action needs to be split into one term involving only spatial loops and a second one involving
space-time loops, which requires the introduction of inverse couplings βs and βt. β (and βt and βs) are related to the
lattice spacing value(s) via the QCD β-function. For details we refer to Refs. [59].
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Most relevant for this review are discretizations based on the Wilson discretization. The corresponding part of the
action for a doublet of mass-degenerate Wilson type quarks q – which we interpret as a vector in space, time, spin and
colour – reads

S q = q̄
[
DW (U) + m0 + iµqγ5τ

3 +
i
4

cSWσ
µνF µν(U)

]
q , (3.13)

where µq is the bare twisted mass parameter and τ3 is the third Pauli matrix acting in flavor space. Furthermore, DW
represents the massless Wilson Dirac operator

DW(U) =
1
2

[
γµ(∇µ + ∇?µ ) − ar∇?µ∇µ

]
, (3.14)

with ∇µ and ∇?µ the gauge covariant forward and backward difference operators given by

∇µq(~n) = U~n,µ q(~n + µ̂) − q(~n) , ∇?µq(~n) = q(~n) − U†
~n−µ̂,µ q(~n − µ̂) , (3.15)

respectively. The Wilson parameter is usually set to r = 1 and m0 is the bare Wilson mass parameter. Finally, the
so-called Sheikoleslami-Wohlert improvement coefficient [60] is denoted by csw with F µν being a discretization of
the field strength tensor, see for instance Ref. [61].

With µq = 0 and cSW = 0 the action Eq. (3.13) corresponds to Wilson’s discretization. With only µq = 0 we have
so-called clover improved lattice fermions [62], which are with appropriate tuning of the value of cSW O(a) improved4,
i.e., lattice artefacts are coming at a2, while the pure Wilson discretization has artefacts proportional to a. With µq , 0
the discretization is called Wilson clover twisted mass fermions [63, 64], which has the property of automatic O(a)
improvement [65] independent of the choice for cSW for particular choices of m0 and µq (so-called maximal twist).

The different Wilson type discretizations come with their own advantages and disadvantages. This is to a large
extend a technical issue which for the scope of the present review merely affects the size of lattice artefacts. However,
also the symmetry properties of the actions differ, most notably for twisted mass fermions where isopsin and parity
symmetries are broken at the level of a2 lattice artefacts [65]. Moreover, the renormalization patterns are different:
for instance can the pion decay constant fπ be determined without the need of multiplicative renormalization in the
twisted mass formulation, while with Wilson and Wilson clover fermions this is not the case.

Further diversity in the lattice discretization comes by the usage of gauge field smearing in the covariant deriva-
tive. Smearing is used to reduce ultraviolet fluctuations in the gauge field and, thus, lattice artefacts in observables.
Typically so-called stout smearing [66] or HEX smearing [67] is used.

Finally, lattice QCD simulations are performed with different numbers of dynamical quark flavors: N f = 2,
N f = 2 + 1 and N f = 2 + 1 + 1 for simulations with mass degenerate up and down quarks plus strange or strange and
charm quarks. The not active quark flavors are in turn assumed to be infinitely heavy and, therefore, decoupled. The
number of flavors is particularly important, in the context of this review, to understand which decay channels are open
in a lattice calculation. For example, if strange quarks are not dynamically simulated, a sufficiently heavy resonance
made from up and down quarks cannot decay into two kaons.

Note that in order to prove positivity of the transfer matrix for Wilson’s discretization anti-periodic boundary con-
ditions in time for the fermionic fields are required [68]. This, in turn, is a prerequisite for the so-called Osterwalder-
Schrader reflection positivity, which is mandatory for the analytical continuation from Euclidean to Minkowski
space [69, 70].

3.2.1. Valence versus Sea Quarks
Lattice simulations can involve more than the lattice action used for the Monte Carlo simulations: valence quarks

can be added using a different discretization than the one used for the sea quarks. This is called a mixed action
approach. It is even possible to add valence quarks that are not present in the sea, in case of which one speaks about
partially quenched simulations.

Working in a mixed action situation can be useful if properties of the valence quarks are required or desirable,
which are too resource demanding for the full Monte Carlo simulation. Such properties can be for instance additional

4Note that this is on-shell improvement and additional, operator specific improvement coefficients might be required.
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symmetries or reduced lattice artefacts. It requires a matching procedure of sea and valence actions: typically one
computes one or several hadron masses with only sea and with only valence quarks and tunes the valence parameters
until sea and valence hadrons agree (within statistical uncertainties). Typical examples are valence quarks with exact
chiral symmetry on top of a sea action with the Wilson or staggered fermion discretization.

A partially quenched configuration is typically used to include strange or charm quarks in the valence sector that
are not present in a N f = 2 or N f = 2 + 1 sea action. This allows one for instance to study K-, D- and Ds-mesons
in lattice QCD simulations with N f = 2 dynamical quarks. It is important to realise that valence quarks not present
in the sea cannot annihilate. Still in some cases with saturated quantum numbers, such simplified calculations may
reflect the physical system, e.g., the recent calculation of K−K−K− scattering [71].

3.2.2. Heavy Quarks
As discussed in the introduction, heavy and light quarks are usually treated differently, which is also the case on

the lattice. The main reason is the following: every quark flavor comes with its quark mass parameter mq. In a lattice
simulations the relevant quantity is actually the quark mass in lattice units, i.e., amq. In order for the discretization
to be meaningful one would argue that amq � 1 should be fulfilled. The lattice spacing is typically around 0.1 fm.
Thus, for the charm quark amc ≈ 0.8, but for the bottom quark amb > 2. Even with a ∼ 0.05 fm, which is nowadays
used in some simulations, amb is above the cutoff. On the other hand, dynamical effects of quarks become less and
less important with increasing mass.

These are the main reasons why lattice simulations should be performed including at least up and down and strange
quarks dynamically. Since N f = 2 simulations are easier to perform and require less resources, they were explored
before simulating with N f = 2 + 1 dynamical flavors, and the corresponding simulations are still being analysed. For
the charm quark it is not entirely clear whether or not sea effects can be neglected. The main reason for not including
it in the dynamical simulation are potentially large lattice artefacts of O(amc). However, it is certain that the bottom
quark will not be included as a dynamical degree of freedom in lattice simulations in the near future.

We remark here that simulations with Wilson twisted mass quarks at maximal twist can only be performed either
in- or excluding a strange/charm doublet. However, so-called automatic O(a) improvement means that effects of
O(amc) are absent and the relevant lattice artefacts start at O((amc)2).

The question remains of how to treat charm and bottom quarks in the valence sector when studying heavy-light
mesons, where a charm or bottom quark is combined with one of the three light quarks, or when one is interested in
quarkonia. There are two strategies:

• Treat heavy quarks relativistically. While this appears to become more or less the standard for the charm quark,
the bottom requires either an improvement program, see Ref. [72]. Or clever strategies need to be devised [73].
In the latter case the idea is to construct suitable ratios with a well defined static limit. Computing these ratios
in the charm quark mass region and smoothly interpolating to the static limit allows one to compute B-physics
observables without being compromised by large systematic uncertainties stemming from amb > 1.

• Treat heavy quarks in an effective theory. The choices are heavy quark effective theory with expansion parameter
1/mq or non-relativistic QCD with the expansion parameter v denoting the modulus of the four velocity of the
heavy quark. HQEFT is appropriate for heavy-light systems, while NRQCD is more appropriate for quarkonia.

In both cases, the zeroth-order Lagrangian reads in Euclidean space-time

L0 = q†+(−D0 + mq)q+ , (3.16)

with fields projected to quark (antiquark) fields q± = (1 ± γ0)q/2. In this static limit the propagator is just a straight
Wilson line. The Lagrangian Eq. (3.16) can be systematically improved to include higher order corrections in the
respective expansion parameter. We remark here that in Sect. 6, where we compile recent results, the lattice results
have been all obtained by treating the charm quark relativistically.

3.3. Resonances in a finite volume
In the previous subsection we discussed that Monte Carlo simulations are enabled by working in Euclidean space-

time. This has certain consequences for the observables, which can be investigated, even if Osterwalder-Schrader
reflection positivity holds. Generally speaking, observables connected to real time turn out to be problematic, such as
scattering amplitudes, as was pointed out long ago by Maiani and Testa [74].
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3.3.1. Lüscher’s method
A way out was found by Lüscher, who devised a method based on the works [75, 76] now coined as Lüscher

method [77, 78]. Generally speaking, the method is based on the observation that the energy spectrum of the lattice
Hamiltonian depends on the volume. And this dependence on the volume encodes information on the scattering
properties, because with decreasing volume the interaction probability increases.

In practice the situation is more complicated because there are different contributions to finite-volume induced
energy shifts. In particular, there are contributions which are for large enough L exponentially suppressed and of the
form exp(−Mπ · L) [79, 80]. These exponential finite-volume effects compete with those only power suppressed in
1/L, which are the ones related to infinite-volume scattering properties.

Lüscher’s method is by now well established and applicable for the case that the exponential finite-volume effects
are negligible compared to the power suppressed ones. A detailed summary of the two particle formalism can be found
in the recent review articles [81–83]. Most recently, the Lüscher method has been generalized also to the three-body
case [38, 71, 84–106], see also recent reviews [107, 108].

Instead of writing here the most general formalism, we will focus on the particular case of scattering of two equal
mass mesons below inelastic threshold. The observable to be determined from lattice data are phase-shifts δ`(k2) for
partial wave ` as a function of the squared scattering momentum k2. Lüscher’s method is formulated by means of the
following finite-volume quantisation condition

det
[
M`m,`′m′ (k2, L, pcm) − δ``′δmm′ cot

(
δ`(k2)

)]
= 0 , (3.17)

where the determinant acts in angular momentum space. The lattice input to this formula is encoded in the analytically
known matrix valued function M`m,`′m′ (k2, L, pcm), which contains the famous Lüscher Z-function and which is in
general not diagonal in angular momentum. M depends on the squared scattering momentum k2 (or equivalently the
scattering energy), the lattice extend L and the total momentum of the two particle system in the centre-of-mass frame
pcm, which is quantized due to finite volume

pcm =
2π
L
· d , d ∈ Z3 . (3.18)

Given the (lattice) energy level of the two body systems ECM in the centre-of-mass frame, the scattering momentum
is then given by

k2 =
E2

CM

4
− M2 , (3.19)

where M is the infinite-volume single meson mass value. Momentum sectors are usually classified5 by |d|2. The set
of equivalent momenta is denoted as

{d} ≡ {z ∈ Z3 , z2 = d2} . (3.20)

It becomes apparent that for each set of values {k2, L, |d|2} one value of δl can be determined. Therefore, in order to
determine the phase-shift for a dense as possible set of scattering momenta, significant effort was put into generalising
Lüscher’s formalism for different moving frames [109–111]. For two particle system the formalism is spelled out for
general spin in Ref. [112].

In principle, the matrix M is dense, because angular momentum is no longer a good quantum number even for
the zero-momentum case, because the continuum rotation groups is broken down to the octrahedal or cubic group.
All infinite-volume angular momenta fall, therefore, in one of the ten irreducible representations Γ of the octahedral
group. When considering also non-zero total momentum of the multi-particle system, symmetries are further reduced
to so-called little groups (or stabilisers) with corresponding irreducible representations. Every lattice irreducible
representation contains an infinite tower of continuum angular momenta, but not all.

Still, even this reduced amount of symmetry helps in simplifying Eq. (3.17): when operators are projected into
the lattice irreducible representations Γ (so-called subduction), the matrix M becomes block diagonal significantly
simplifying the calculation. We will not go into full details here, since this is rather technical, but refer to the original
literature [113–115].

5Note that the first ambiguity in using this nomenclature arises first at |d|2 =
√

22 + 22 + 1 =
√

32, which is usually too high for any practical
lattice calculations.
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3.3.2. The Michael-McNeile method
This method was developed in Ref. [116] and it is based on the assumption that it is sufficient to consider a two-

state transfer matrix T . Let us be specific and write the formalism for the ρ-resonance [117]. Here, the two relevant
states would be a ρ state and a two pion state. The method can easily be generalized to the ∆-resonance, for instance,
see Ref. [118]. The two-state transfer matrix reads then

T = e−aẼ
(
e−a∆/2 ax

ax e−a∆/2

)
, (3.21)

with x = 〈ρ|ππ〉 a transition amplitude. The ρ state is assumed to have energy Ẽ − ∆/2 and the ππ state Ẽ + ∆/2. The
transfer matrix T has eigenvalues λ = exp(−aE) with

E ≈ Ẽ ±

√
∆2

4
+ x2 . (3.22)

Alternatively, expressed this differently, the ρ energy Eρ and the ππ energy Eππ are related to Ẽ and ∆ via

Ẽ =
1
2

(Eρ + Eππ) , ∆ = Eππ − Eρ . (3.23)

Using the expectation, that this ρ state is predominantly created in a lattice calculation by a quark-antiquark bilinear
operator with the correct quantum numbers, while the two pion state is predominantly generated by an operator
consisting of two bilinears. From these, the energies Eππ and Eρ. can be measured.

Making the assumption that the energies of the two hadronic states, here ρ and ππ, are close, then the transition
amplitude can be determined from the following ratio of Euclidean correlation functions [116, 119]

〈ρ(0) ππ(t)〉√
〈ρ(0) ρ(t)〉〈ππ(0) ππ(t)〉

≈ xt + const . (3.24)

Then, using Fermi’s Golden Rule one can relate x to the width via

Γ = 2π〈x2〉ρ(E) , (3.25)

with ρ(E) the density of states and 〈x2〉 indicates the average over spatial directions. ρ(E) can be estimated, see
Ref. [117].

3.3.3. The HAL QCD method
The HAL QCD method was developed in Refs. [120–124]. We will only describe the basic idea here, referring to

the original works for more details. The HAL QCD method relies on the Nambu-Bethe-Salpeter wave function q(r),
which is used to define a non-local and energy independent potential U from

(Ek − H0)q(r) =

∫
dr′U(r, r′)q(r′) (3.26)

below inelastic threshold. Here Ek = k2/(2µ) with µ the reduced mass and H0 = −∇2/(2µ). Details on how to
implement this in the lattice QCD framework can be found in the aforementioned references. Note that it is well
known from nuclear physics that the used p/µ-expansion is not well converging.

3.3.4. Optical potential methodology
Yet another methodology aims in extracting global properties of scattering amplitudes from the finite-volume

spectrum without mapping out scattering quantities (cot δ) for each individual energy eigenvalue. This relatively new
approach relies the so-called ordered double limit [125] (limImE→0+ limL→∞), with E denoting the total energy of the
system. Such an approach was first introduced in Ref. [126]. As demonstrated there on synthetic lattice data, it
indeed allows to access scattering amplitudes without usual complication when dealing with multi-channel or multi-
particle systems. For related works see Refs. [106, 127–129]. Typically, the price to pay for the universality of
such an approach is a much more dense finite-volume spectrum required as an input compared to that of traditional
quantization condition methodology, see Sect. 3.3.1.
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3.4. Lattice Energy Levels

As pointed out above, the important input from a lattice calculation are energy levels of single- and multi-particle
hadron systems, like for instance a single pion and two pions. Energy levels are determined from Euclidean correlation
functions C(t, p), which are constructed from expectation values

C(t − t′, p) = 〈 O(t, p)†O′(t′, p) 〉 , (3.27)

where O,O′ are (multi-)local operators with certain quantum numbers. By using the time evolution operator, in-
variance under translations in time and by inserting a complete set of energy eigenstates, one can show that these
correlation functions exhibit the following dependency on Euclidean time t

C(t, p) ∝
∑

n

e−En(p)·t . (3.28)

This dependence must be modified in the presence of (e.g., periodic) boundary conditions, see below. From the
exponential decay of these correlation functions at large enough Euclidean times the ground state can be extracted,
if the statistical precision allows. However, as mentioned before one needs to determine as many energy levels as
possible to estimate phase shifts for as many as possible scattering momenta. Therefore, one applies the so-called
generalized eigenvalue method [130–133] for which one needs to solve a generalized eigenvalue problem (GEVP). It
consists of defining a suitable list of independent operators Oi(t, p) for i = 1, . . . , n for given quantum numbers. Using
these operators, a correlator matrix

Ci j(t − t′, p) = 〈Oi(t, p)† O j(t′, p)〉 (3.29)

can be computed. Next, one solves the generalized eigenvalue problem

C(t, p) η(k)(t, t0) = λ(k)(t, t0) C(t0, p) η(k)(t, t0) (3.30)

for eigenvectors η(k) and eigenvalues λ(k) , k = 1, . . . , n. For the eigenvalues one can again show that

λ(k)(t, t0) ∝ e−Ek(t−t0) . (3.31)

Apart from allowing one to determine more than the ground state (if statistical precision permits), the generalized
eigenvalue method makes it possible to analytically estimate the residual systematic effects introduced by using a
correlator matrix of finite size while infinitely many states contribute theoretically [131–133]. Eq. (3.31) holds for
large t. The corrections due to t , ∞ are of the order exp(−∆Et), where ∆E depends on the choice of t0. For t0 > t/2
one has ∆E = En+1 − Ek, while otherwise ∆E = minl,k |El − Ek |. Clearly, the former is favourable, but also often
unfeasible. Note that matrix elements can also be computed using the generalized eigenvalue method using then both
the eigenvalues λ(k) and -vectors η(k).

The operators Ok are usually constructed by resembling the quark content of hadronic states. For mesons a single-
hadron state is usually constructed from h(x) ∝ q̄DΓq(x), with q quark fields and where D and Γ represent here
generically one or several covariant derivatives and γ-structures, respectively, which need to be adjusted to match the
desired quantum numbers. For baryonic states the quark content needs to be adjusted accordingly. Single-hadron
operators with certain fixed momentum values h(t, p) can constructed from the h(x) by Fourier transforming. Multi-
hadron operators can then be constructed from the single-hadron operators straightforwardly.

Estimating all the correlations needed for the construction of the correlator matrix Eq. (3.29) requires significant
computational resources and different methods have been designed to reduce this effort as much as possible. A widely
used method is dubbed distillation [134, 135], which makes it particularly easy to build a large operator basis.

3.5. Scale Setting and Renormalisation

Lattice QCD simulations are performed with very few relevant input parameters: the bare quark masses and the
inverse square coupling β. In particular, the lattice spacing a is not an input parameter, but must be fixed in the so-
called scale setting procedure: for each quark mass parameter and the lattice spacing one physical observable like a
hadron mass, a decay constant or ratios thereof are needed. In principle, arbitrary choices for scale setting quantities
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are possible, but different choices will only affect lattice artefacts. For more details and an overview we refer to
Ref. [136].

However, it is important to point out that lattice results obtained at finite lattice spacing by different groups are
not readily comparable: they might differ by lattice artefacts. This needs to be kept in mind when lattice data is
interpreted. In principle, only continuum extrapolated results can be compared reliably.

The Lüscher method formulated above represents a finite-volume method, but it does not include effects from
discretising space-time. Thus, the finite-volume lattice energy levels E(L, a), which are used as input to the Lüscher
method, differ from their continuum counter parts E(L) by lattice artefacts

E(L, a) = E(L) + O(am) ,

of a certain order m ≥ 1, usually m = 1 or m = 2 depending on the lattice action used. In principle, one would need
to perform an extrapolation of the finite-volume energy levels to the continuum limit a → 0 first and then apply the
Lüscher method. However, this is impractical as it would require to take this limit at fixed value of aL and fixed values
of the renormalized quark masses. Therefore, for small enough lattice spacing values one assumes the following series
one can expand

M(E(L, a)) = M(E(L)) + O(am) ,

which means in practice one extracts phase-shifts equal to their continuum counterparts only up to lattice artefacts.
One more comment is in order here: since QCD is a quantum field theory, observables may require multiplication

by renormalisation constants Z(1/a) when the cutoff 1/a is removed in order to remove divergencies. This is not
relevant for the Lüscher method because energy levels do not require renormalisation since they are eigenvalues of
the lattice Hamiltonian.

3.6. Systematic Uncertainties

Since lattice QCD simulations are based on Monte Carlo methods, all lattice results come with statistical un-
certainties. However, when interpreting lattice QCD results one also should always keep the possible systematic
uncertainties in mind, most importantly those that are not quantified by the authors. In general, a complete lattice
calculation should control the following effects

• lattice artefacts: the discretization needs to be removed by taking the limit a → 0. Depending on the lattice
action used, leading lattice artefacts are of order a or order a2.

If such an extrapolation cannot be performed, because there are only fewer than three lattice spacing values
available, or the range in lattice spacing values is too small, one can still estimate the effects parametrically.
With a being a length scale, there are certain natural scales available in QCD which can be combined with a to a
dimensionless combination: firstly, there is ΛQCD and correction of order (aΛQCD)m can be expected with m = 1
or m = 2. If both, a and ΛQCD are known, the order of the expected effect can be computed. Other dimensionless
combinations are amq with mq the light, strange or charm quark mass. In particular the combination with the
charm quark mass amc can be quite sizable.

• finite-volume effects: the dependence on the finite volume needs to be investigated and in principle an extrap-
olation to the thermodynamic limit, i.e., infinite volume, needs to be performed. finite-volume effects strongly
depend on the quantity under investigation and often guidance from effective field theory is available [79, 80].

• extrapolation to physical pion mass: often lattice QCD simulations are performed at unphysically large values
of the pion mass. If this is the case an extrapolation to physical pion mass value needs to be performed. For this
there is often guidance from chiral perturbation theory [137, 138] available.

The Flavour Lattice Averaging Group (FLAG) has developed guidelines – so called quality criteria – which can be
found in Ref. [139]. They might help to judge the reliability of a given lattice QCD calculation. Apart from these
general systematic effects, there are systematic effects particular to the calculation of hadronic resonances from lattice
QCD, which we quickly discuss in the following:
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• As mentioned before exponential finite-volume effects must in principle be negligible compared to the power
suppressed ones in order to apply Lüscher’s method. This requires a delicate balance, because for larger L also
the desired effects become smaller quickly. Moreover, there are ways to reduce the influence of such exponential
finite-volume effects [140, 141].

• We have discussed above that for the generalized eigenvalue method a list of appropriate operators must be
chosen. The actual choice is important for several reasons. First of all the operators need to have overlap with
the desired states. It turned out to be important to include both single- and multi-hadron operators, discussed
for instance in Refs. [81, 142]. Otherwise, energy levels might be missed leading to a wrong interpretation of
the lattice results, as shown explicitly for πN scattering in the Roper channel in Ref. [143].

• The second point related to the generalized eigenvalue method and the operator choice is the estimation of en-
ergies based on the Euclidean time dependence of the eigenvalues Eq. (3.31). For too small t-values residual
excited state contaminations due to the finite size of the correlator matrix Eq. (3.29) make a reliable deter-
mination of the energy level impossible. On the other hand, at too large Euclidean times statistical noise is
generally exponentially increasing. Moreover, with periodic boundary conditions in time there are so-called
thermal pollution effects distorting the signal at large Euclidean time [111].

3.7. Example: The ρ-resonance
We will close this section with the example of the ρ-resonance. More precisely, we consider the ρ0 decaying into

π+π− pair. We will discuss the simplest possible case with only P-wave contributions included and all higher partial
waves neglected. For the ρ-resonance this appears to be a relatively good approximation. Moreover, we concentrate
on the elastic region with energy levels between 2Mπ and 4Mπ.

The most basic set of fermionic interpolating operators can be constructed from two types of operators. First, a
single ρ0 interpolator

OΓ(t, x) =
1
√

2
(ū(t, x) Γ u(t, x) − d̄(t, x) Γαβ d(t, x)) , (3.32)

with Γ ∈ {iγi, γ0γi}. This operator projects to an isospin |1, 0〉 state with quantum numbers JPC = 1−−. Second, a two
pion operator projecting to isospin I = 1

Oππ(t, x1, x2) =
1
√

2
[Oπ+ (t, x1)Oπ− (t, x2) − Oπ− (t, x1)Oπ+ (t, x2)] . (3.33)

Here, we have used
Oπ+ (t, x) = d̄(t, x) γ5u(t, x) , Oπ− (t, x) = ū(t, x)γ5d(t, x) . (3.34)

Each of these operators can be projected to definite momentum via a Fourier transformationO(t, p) =
∑

x O(t, x) exp(ixp).
These operators are actually sufficient to study the case of zero total momentum pcm = 0. Since we are interested

in the P-wave case, the two pions then need to have opposite equal non-zero momentum. One then builds a correlator
matrix for instance from the operators O1 = Oiγ1 (t, p = 0), O2 = Oγ0γ1 (t, p = 0), and O3 = Oππ(t, p1, p2 = −p1) with,
e.g., p1 = 2π/L(1, 0, 0). More operators can be included with larger modulus of p1 to increase the correlator matrix.
Moreover, one can include operators with γ2 and γ3 for the single particle operator.

This correlator matrix is used to solve the generalized eigenvalue problem Eq. (3.30) and determines the interacting
energy levels Ecm of the two pion system. At this point one needs to take care of so-called thermal pollution when
working with periodic boundary conditions. In general, the leading contribution from thermal states to this two pion
system reads

εt(t, p1, p2) ∝ e−Eπ(p1)T e−(Eπ(p2)−Eπ(p1))t + e−Eπ(p2)T e−(Eπ(p1)−Eπ(p2))t . (3.35)

Here, Eπ(p) corresponds to the single pion energy at momentum p. This term comes about because in the two particle
system, one of the two pions can propagate via the boundary. For the special case we are discussing here, we have
p1 = −p2, and thus εt ∝ exp(−Eπ(p1T )) is independent of t. However, depending on the value of T , the constant will
distort the form of the correlator for t-values around T/2. The constant can be removed by considering the discrete
derivative in Euclidean time of the correlator matrix instead of the correlator matrix itself

C̃(t) = C(t + 1) − C(t) .
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Figure 5: Energy spectrum of a I = 1, ` = 1, ππ system at physical pion mass in a finite cubic volume of side length aL (a = 0.1 fm). The spectrum
is obtained from Eq. (3.17) using Breit-Wigner parametrization of the phase-shifts with PDG parameters [18]. Periodic boundary conditions are
applied and projection to the T1g irrep are performed.

The element of C̃ will have a sinh (cosh) form in time, if it was cosh (sinh) in C. But the constant will be absent in C̃.
In addition, taking this difference can reduce correlation of different time-slices significantly, see, e.g., Ref. [144, 145].

In general, the thermal pollution contributions is time-dependent, calling for more sophisticated measures, which
can be found in the literature. Most importantly, one may use weighting and shifting [115], where one first divides by
the (known) time-dependent part in the pollution (weighting), then applies the derivative from above (shifting). Other
possibilities include the usage of appropriate ratios [146], which are, however, often not compatible with the GEVP.

The pion mass Mπ can be determined directly from the Euclidean correlation functions of the operators Oπ± (t, p)
without solving a GEVP.

We have restricted ourselves to very few operators for this example. Of course, there are many more operators
which can be included in the list. These become typically more difficult to construct, because they contain for instance
derivatives. However, they will improve on the one hand the accuracy to which the energy levels can be estimated.
And on the other hand more energy levels become accessible.

For the zero total momentum case considered here the Eq. (3.17) reduces to

cot(δ1) =
Z(1; q2)
π3/2q

, q = k
L
2π

, (3.36)

with k(Ecm) defined in Eq. (3.19) with M ≡ Mπ and the Lüscher zeta function

Z(1; q2) =
1
√

4π

∑
~d∈Z3

(
|~d|2 − q2

)−s
. (3.37)

Now, one is left to solve Eq. (3.36) numerically for the phase-shift δ1 with Ecm and Mπ as input. Obviously, the
procedure can be inverted, predicting the finite-volume spectrum, assuming a specific form of the ππ interaction
determining the left-hand-side of Eq. (3.36). For the simple case of Breit-Wigner parametrization discussed in the
beginning of this review, the predicted spectrum is depicted in Fig. 5. The distinctive feature of the so-called avoided
level crossing is evident there [147].

4. Theoretical methods II: EFTs for resonances

Chiral perturbation theory (CHPT) is the low-energy effective field theory (EFT) of QCD [137, 138, 148]. First
and foremost, it is the theory of the Goldstone bosons, the pions in the two-flavor (u, d) case and the pions, the
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kaons and the eta in the three-flavor (u, d, s) sector. It has enjoyed considerable successes, see Refs. [149–155] for
reviews. The Goldstone bosons also couple to matter fields, in particular the nucleons (protons and neutrons) in the
SU(2) case or the low-lying baryon octet (N,Λ,Σ,Ξ) for three flavors, see, e.g., Refs. [156–158] for early works and
Refs. [159, 159–161] for reviews. A cornerstone of CHPT is the power counting, which we briefly discuss here.
Symbolically, any matrix element admits an expansion in small momenta/energies/masses Q over the hard scale Λ of
the form

M =
∑
ν

(Q
Λ

)ν
fν(Q/µ, gi) , (4.1)

where µ is a regularization scale (often the scale of dimensional regularization), the gi are low-energy constants
(LECs), the fν are functions of order one (“naturalness”) and the index ν is bounded from below, which leads to a
systematic and controlled expansion. In case of pure Goldstone boson interactions, ν = 2 is the smallest possible
value due to the derivative nature of the interactions. This expansion can be mapped onto a well-defined quantum
field theory with tree and loop graphs, where the infinite part of the LECs absorb the UV infinities generated by the
loop diagrams at a given order.

Since CHPT is an EFT, its range of applicability is limited to momenta and energies below some hard scale. This
scale of chiral symmetry breaking Λχ is often identified as Λχ = 4πFπ, with Fπ ' 92 MeV the pion decay constant,
thus, Λχ ' 1.2 GeV [162]. However, the true limitation to CHPT sets in earlier and is channel-dependent, related to
the appearance of certain resonances with appropriate quantum numbers. Prominent examples are the broad f0(500)
for pion-pion interactions in the channel with ` = I = 0, with ` and I denoting the total angular momentum and
isospin of the two-pion system, respectively, the much narrower ρ(770) for ` = I = 1 or the lowest-lying resonance in
pion-nucleon scattering, the ∆(1232). Of course, the appearance of such resonances is not restricted to the light quark
sector, but leads to similar limitations in EFTs involving the heavy c, b quarks, as will be discussed later.

Therefore, we need to extend CHPT to cope with resonances. This can be done in two ways. First, one can
construct EFTs with explicit resonance fields, see Sect. 4.1. The main obstacle here is the fact that resonances decay
and it is not trivial to write down a consistent power counting that accounts for the different momentum/energy scales
that necessarily appear. Second, one can use unitarization methods, which amount to a resummation of the chiral
expansion similar to the geometric series, that is the expansion of the form 1 + x is substitute by 1/(1 − x), which
allows for the generation of resonances. This was first done in Refs. [163, 164] and critically re-examined in [165].
The upshot is that such a unitarization procedure induces some model-dependence, as discussed in Sect. 4.5. In a few
selected cases, one can combine the chiral expansion with dispersion relations to extract resonance properties, which
we will not consider in detail here but rather refer to [44, 166, 167] (and references therein).

4.1. EFTs with explicit resonance fields

Before addressing the ways of explicitly including vector mesons, let us discuss the problems with the power
counting that arises for unstable particles. As our prime example, we take the ρ→ ππ decay and follow the arguments
given in [168]. Consider the leading one-loop correction to the vector meson mass given by the leftmost diagram
in Fig. 6. Denote the integral corresponding to this self-energy contribution by I. It can not straightforwardly be
calculated because the large vector meson mass MV obscures the power counting as in the case of the nucleon [156].
However, the integral can be split into a “soft” and a “hard” part [169], such that I = Isoft + Ihard, where the soft part
is entirely generated by small momenta Q � MV and, thus, is consistent with the power counting, whereas the hard
part with momenta Q ' MV leads to the breaking of the power counting and needs to be treated separately. In a more
formal language, this corresponds to the method of dimensional counting [170] or the strategy of regions [171]. In
fact, the soft parts of any diagram satisfy the expected power counting. Working out Isoft, one finds that the result
corresponds to a series of tadpole graphs, involving only one Goldstone boson propagator, scaling as O(Q3). This can
of course not be the whole story, because the amplitude of Fig. 6 (leftmost diagram) has an imaginary part due to the
production of two Goldstone bosons in the intermediate state, while the tadpole sum does not have such an imaginary
part. In order to take only Isoft as the regularized amplitude, one would have to write complex coefficients in the
effective Lagrangian, which in general, one does not want to do (for an exception, see Sect. 4.2). A direct calculation
of the full scalar loop integral shows that the imaginary part indeed does not satisfy the power counting mentioned
above, i.e, it does not scale ∼ Q3 . This is related to the fact that for large external four-momenta squared, P2, of the
heavy external particle, the Goldstone bosons produced in the decay of this particle are not to be considered as soft.
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Figure 6: Leading one-loop contributions to the ρ-meson self-energy. The filled square denotes a counterterm. In the complex mass scheme, the
latter is a complex-valued quantity.

Below the threshold, we have P2 < 4M2
π, so P2 can not be considered as being very large compared to the scale M2

π

in that region, and we would have to take the full integral I as the soft part, and not just Isoft. This phenomenon of
the “missing imaginary part” was also pointed out in the framework of heavy meson effective theory in Ref. [172].
For other approaches to include vector mesons in chiral EFTs, see, e.g., [173–175, 175–180]. The case of baryon
resonances will be discussed in Sect. 4.4.

4.2. The complex mass scheme

The complex-mass renormalization scheme is a method that was originally introduced for precision W, Z-physics,
see, e.g., [181, 182] and later transported to chiral EFT [183]. Let us first give a brief outline of the complex-mass
scheme (CMS), following Ref. [184]. Consider first an instable particle at tree level. The CMS amounts to treating the
mass of this particle consistently as a complex quantity, defined as the location of the pole in the complex k2-plane of
the corresponding propagator with momentum k. It can be shown that this scheme is symmetry-preserving and leaves
the corresponding Ward identities intact. Extending this to one loop, one splits the real bare masses into complex
renormalized masses and complex counterterms. This is important, as only renormalized masses are observable. The
corresponding Lagrangian yields Feynman rules with complex masses and counterterms, which allows for standard
perturbative calculations. This is essentially a rearrangement of contributions that is not affected by double counting.
The imaginary part of the particle mass appears in the propagator and is resummed in the Dyson series. In contrast
to this, the imaginary part of the counterterm is not resummed. One can show that in such a case gauge invariance
remains valid, and unitarity cancellations are respected order by order in the perturbative expansion. This also requires
integrals with complex internal masses, as worked out in Ref. [185]. For further discussions of the method, the reader
is referred to Refs. [184, 186] (and references therein). In case of a chiral EFT, the perturbative expansion proceeds
as usual in terms of small momenta and quark masses, with a proper treatment of the heavy particle mass in loop
diagrams (like the heavy-baryon scheme [157, 158] or the so-called infrared-regularization [187] or the extended-on-
mass-scheme discussed below [188]).

Let us now calculate the mass and the width of the ρ within the CMS to leading one-loop order O(Q3), following
Ref. [183]. The pertinent Lagrangian is given by [189–192]

L = Lπ +Lρπ +Lω +Lωρπ + . . . ,

Lπ +Lρπ =
F2

4
〈∂µU(∂µU)†〉 +

F2 M2

4
〈U† + U〉 −

1
2
〈ρµνρ

µν〉 +

[
M2
ρ +

cx M2

4
〈U† + U〉

]
〈ρ̂µρ̂

µ〉 ,

Lω +Lωρπ = −
1
4
ωµνω

µν +
1
2

M2
ω ωµω

µ +
1
2

gωρπ εµναβ ων 〈ραβuµ〉 , (4.2)

where

U = u2 = exp
(

i~τ · ~π
F

)
, Γµ =

1
2

[
u†∂µu + u∂µu†

]
, uµ = i

[
u†∂µu − u∂µu†

]
,

ρµ =
~τ · ~ρ µ

2
, ρµν = ∂µρν − ∂νρµ − ig

[
ρµ, ρν

]
, ρ̂µ = ρµ −

i
g

Γµ , ω
µν = ∂µων − ∂νωµ . (4.3)

Here, F is the pion decay constant in the chiral limt, M2 is the leading term in the quark mass expansion of the pion
mass squared, 〈...〉 denotes a trace in flavor space, Mρ and Mω refer to the bare ρ and ω masses, g is the ρ-coupling
subject to the constraint M2

ρ = 2 g2F2, the so-called KSFR relation [193, 194], gωρπ parameterizes the strength of the
ωρπ vertex and cx is a LEC related to the quark mass expansion of the ρ mass, which also affects the ρ → ππ vertex.

20



Next, one performs standard renormalization, i.e., the bare parameters (as indicated by a subscript 0) are expressed
in terms of the normalized ones and a number of counterterms, leading to (we only display the ones contributing at
leading loop order)

ρ
µ
0 =

√
Zρ ρµ , Mρ,0 = MR + δMR , cx,0 = cx + δcx . (4.4)

Now, one applies CMS and chooses
M2

R = (Mχ − i Γχ/2)2 , (4.5)

as the pole of the ρ-meson propagator in the chiral limit, where the pole mass and the width of the ρ meson in the
chiral limit are denoted by Mχ and Γχ, respectively. These are input parameters. In this scheme, one includes MR in
the propagator and the counterterms, which are complex-valued quantities now, are treated perturbatively. As noted
before, the mass of the ρ is not a small quantity, thus, one has to specify a power counting that accounts for that. Let Q
collectively denote a small quantity. The pion propagator counts as O(Q−2) if it does not carry large external momenta
and as O(Q0) if it does. The vector-meson propagator counts as O(Q0) if it does not carry large external momenta
and as O(Q−1) if it does. The pion mass counts as O(Q1), the vector-meson mass as O(Q0), and the width as O(Q1).
Vertices generated by the effective Lagrangian of Goldstone bosons L(n)

π count as O(Qn). Derivatives acting on heavy
vector mesons, which cannot be eliminated by field redefinitions, count as O(Q0). The contributions of vector meson
loops can be absorbed systematically in the renormalization of the parameters of the effective Lagrangian. Therefore,
such loop diagrams need not be included for energies much lower than twice the vector-meson mass. Note also that
the smallest order resulting from the various assignments is defined as the chiral order of the given diagram.

Now we are in the position to evaluate the two-point function (2PF). The mass and width of the ρ meson are
extracted from the complex pole of the 2PF. The 2PF, that is the sum of all one-particle irreducible diagrams, is
parameterized as

Πab
µν(p) = δab

[
gµνΠ1(p2) + pµpν Π2(p2)

]
. (4.6)

The dressed propagator, expressed in terms of the self-energy, has the form

S ab
µν(p) = −δab

gµν − pµpν
(
1 + Π2(p2)

) (
M2

R + Π1(p2) + p2Π2(p2)
)−1

p2 − M2
R − Π1(p2) + i η

, (4.7)

with η→ 0+ and the pole of the propagator is found as the (complex) solution to the equation:

z − M2
R − Π1(z) = 0 . (4.8)

In the vicinity of the pole z, the dressed propagator takes the form

S ab
µν(p) = −δab

Zr
ρ

(
gµν − pµpν/z

)
p2 − z + i η

+ R

 , (4.9)

where Zr
ρ = 1/(1 − Π′1(z)) and R denotes the non-pole part (the remainder). The counterterms δMR and δZρ are fixed

by requiring that in the chiral limit M2
R is the pole of the dressed propagator and that the residue Zr

ρ is equal to one.
The solution to Eq. (4.8) admits a perturbative expansion of the form

z = z(0) + z(1) + z(2) + . . . , (4.10)

where the superscripts (i) denote the ith loop order. All of these terms further admit a chiral expansion. For example,
the tree level result to third order in the chiral expansion reads z(0) = M2

R + cxM2, which is consistent with the general
result for the quark mass expansion of the vector meson mass [168]. More interesting is the result at leading one-loop
order. The corresponding contributions to the self-energy are depicted in Fig. 6. The contributions of the pion loop
and the πω loop to Π1 are given by

Dππ = −
g2µ4−n

d − 1

[
2 IM −

(
P2 − 4M2

)
IMM

]
,

Dπω =
(d − 2) g2

ωρπ µ
4−d

4 (d − 1)

[
M4 IMMω

−
(
2 IMMω

M2
ω + IM − IMω

+ 2 IMMω
P2

)
M2

+IMMω
P2 + M2

ω

(
IMMω

M2
ω + IM − IMω

)
−

(
2IMMω

M2
ω + IM + IMω

)
P2

]
, (4.11)
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in terms of the loop integrals

Im1m2 =
i

(2π)d

∫
ddk[

k2 − m2
1 + i 0+

] [
(P + k)2 − m2

2 + i 0+
] ,

Im =
i

(2π)d

∫
ddk

k2 − m2 + i 0+
, (4.12)

with d the number of space-time dimensions, µ the scale of dimensional regularization and P the four-momentum of
the vector meson. Note, however, that the ππ-loop only starts to contribute at O(Q4) to Π1, as the large component
is ∝ Pµ. Note further that this diagram contains a power-counting violating imaginary part, which is cancelled by
the imaginary part of the complex counterterm, see Fig. 6. This is the major advantage of the CMS scheme. In the
calculation of the πω loop, one uses Mω = Mρ, which is good approximation (ρ-ω mixing in chiral EFT is discussed
in Refs. [195–198], see also the review [199]). Next, the counterterm contributions are adjusted such that the pole in
the chiral limit stays at MR, leading to

δMR = −
1
3

g2MR λ +
g2

288 π2 MR

(
−3 ln(M2

R/µ
2) + 3iπ + 5

)
+

1
3

g2
ωρπM3

Rλ +
g2
ωρπ

288π2 M3
R

(
3 ln(M2

R/µ
2) + 1

)
,

δcx = 4g2λ −
g2

8π2

(
1 − ln(M2

R/µ
2) + iπ

)
+ g2

ωρπM2
Rλ −

g2
ωρπ

32π2 M2
R

(
1 − ln(M2

R/µ
2)
)
,

λ =
1

16 π2

{
1

d − 4
−

1
2

[
ln(4π) + Γ′(1) + 1

]}
, (4.13)

with Γ′(1) = 0.5772 the Euler-Mascheroni constant. Note that these terms all involve powers of the large mass MR and
are, thus, power-counting violating. However, they can all be absorbed in the complex-valued counterterms. Using
now the renormalized version of the KSFR relation, one can eliminate the coupling g and obtains for the pole mass
and the width of the ρ meson by expanding the contributions to O(Q4)

M2
ρ = M2

χ + cxM2
π −

g2
ωρπM3

πMχ

24π
+

M4
π

32π2F2
π

(
3 − 2 ln(M2

π/M
2
χ)

)
−

g2
ωρπ

32π2 M4
π

(
ln(M2

π/M
2
χ) − 1

)
, (4.14)

Γ = Γχ +
Γ3
χ

8M2
χ

−
cxΓχM2

π

2M2
χ

−
g2
ωρπM3

πΓχ

48πMχ
+

M4
π

16 π F2
πMχ

, (4.15)

where we have identified the leading terms in the quark mass expansion of the pion mass and the pion decay constant
with their physical values. A few more remarks are in order. Since the power-counting breaking terms are all absorbed,
we end up with a well behaved chiral expansion featuring terms ∼ M2

π,M
3
π and M4

π. Note further that there will
be finite contributions from the neglected diagrams of O(Q4) but no new non-analytic terms. This agrees with the
general structure of the chiral expansion worked out in [168]. The non-analytic terms displayed here agree with the
calculation of Ref. [200]. To get an idea about the size of the corrections, one plugs in Fπ = 0.092 GeV,Mπ =

0.139 GeV , gωρπ = 16 GeV−1,Mχ ≈ Mρ = 0.78 GeV and obtains M2
ρ = M2

χ + 0.019cx − 0.0044 (in GeV2) and
Γ = Γχ + 0.21Γ3

χ − 0.016cxΓχ − 0.0058Γχ + 0.0011 (in GeV). One notices that the corrections to the chiral limit mass
are rather small, as also found in Ref. [168]. In Sect. 5, we will use Eqs. (4.14,4.15) to analyze lattice QCD data from
the ETMC collaboration. For further work on vector meson properties using the CMS, see Refs. [201, 202].

4.3. The complex mass scheme at two loops

It is important to consider the CMS beyond the one-loop level, as discussed below on the examples of the decay
ω→ 3π, ∆→ Nπ or the Roper decays N∗(1440)→ Nπ,Nππ. We will first show on the example of the first decay that
the CMS can indeed by extended to two-loop order and then use this knowledge to derive so far unknown constraints
on the mentioned baryon decay modes.

Consider first the ω meson. As its main decay is ω → 3π, the self-energy has its first non-trivial contribution at
two-loop order, see the left diagram in Fig. 7, where the ω is represented by the solid line and the dashed lines denote
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Figure 7: Self-energy at two loops for a heavy particle (solid lines) coupling to light particles (dashed lines). The filled square and the filled circle
denote a one-loop and a two-loop counterterm, respectively.

pions. The leading interaction Lagrangian reads [190]:

L
(1)
VΦΦΦ

=
i h

4F3
π

εµναβ 〈Vµ∂νΦ∂αΦ∂βΦ〉 , (4.16)

with Vµ the vector field corresponding to the ω meson, the pions are given by Φ = πaτa, as we are considering two
flavors here, and h is a coupling constant. The self-energy corresponding to this two-loop diagram takes the form:

Σµν =
72π2h2

F6
π

(
pµpν − p2gµν

)
Id+2 ,

Id+2 =
1

(2π)2(d+2)

∫
dd+2k1dd+2k2[

k2
1 − M2 + iη

] [
k2

2 − M2 + iη
] [

(p + k1 + k2)2 − M2 + iη
] , (4.17)

with η → 0+ and d is the number of space-time dimension. We see that the study of the ω self-energy reduces to a
scalar integral in six dimension. To further analyze this self-energy, while avoiding any complications due to the spin
and chiral symmetry, the authors of Ref. [203] investigated a field theoretical model Lagrangian of interacting scalar
fields in six space-time dimensions

L =
1
2

(∂µπ∂µπ − M2π2) +
1
2

(∂µΨ∂µΨ − m2Ψ2) −
g
3!
π3Ψ +L1 , (4.18)

where the masses of the light and heavy scalar fields π and Ψ, respectively, satisfy the condition M � m, since
Ψ represents an unstable particle. This Lagrangian L1 contains all possible terms which are consistent with Lorentz
symmetry and with the invariance under the simultaneous transformations π→ −π and Ψ→ −Ψ. The power counting
is build on small quantities Q like the mass M, small external four-momenta of the π or small external three-momenta
of the Ψ. The two-loop diagram shown in Fig. 7 should, thus, scale as Q(2d−4), which at first sight is messed up due to
the complications generated by the large scale m. However, using the “dimensional counting analysis” of Ref. [170]
or, equivalently, the “strategy of regions” [171], after some lengthy algebra, one can identify and subtract the power
counting breaking terms generated from the heavy scale m. These are canceled exactly by the complex counterterms
that appear in the one-loop and tree-level diagrams at this order, see Fig. 7. More precisely, the one-loop counterterms
originate from the one-loop diagrams contributing to elastic πΨ scattering, whereas the two-loop counterterm arises
from a subset of the terms in the Lagrangian L1. Thus, the CMS scheme is also applicable at two-loop order, and it
leads to a consistent power counting, if and only if the subtraction of one-loop sub-diagrams in the renormalization
of the two-loop diagrams is properly done, for details see [203]. Calculations using the chiral effective Lagrangians
are more involved due to the complicated structure of the interactions, but the general features of the renormalization
program do not change.

4.4. The width of the lightest baryon resonances from EFT
We now consider the width of the two lowest baryon resonances, the ∆(1232) and the Roper N(1440) at two-loop

order in the CMS. Ultimately, these widths should be calculated on the lattice, see Sect. 3, but the detailed two-loop
studies reveal in the case of the ∆(1232) some intriguing correlations bewteen LECs, that will also be useful in a
presicion extraction from lattice QCD data, and in case of the Roper give insights into the important decay into a
nucleon and two pions. Other resonances like, e.g., the Λ(1405) have also been considered as explicit fields in chiral
Lagrangians, see, e.g., Refs. [204, 205], but in such cases that involve coupled-channels, unitarization methods are
superior. These are discussed in Sect. 4.5.
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Consider first the ∆(1232)-resonance. Here, the new small scale ∆ ≡ m∆ − mN ' 300 MeV arises, that must be
dealt with consistently and also, it is known that the ∆ couples strongly to the Nπ system, making it an important
ingredient in nuclear physics [206]. Extensions of CHPT including the Delta (or the decuplet baryons in the three-
flavor case) have been pioneered in Refs. [207–211], where in particular in the last two references, the so-called
small scale expansion (SSE) has been introduced. In the SSE, the set of small parameters is extended to include the
Delta-nucleon mass splitting,

Q ∈
{

p
Λ
,

Mπ

Λ
,

∆

Λ

}
, (4.19)

and one often uses ε instead of Q to distinguish from the standard case with ∆ = 0. For other approaches to include
these spin-3/2 fields, see, e.g., Refs. [212–223]. It is important to note that the splitting m∆−mN does not vanish in the
chiral limit, which has important consequences for the corresponding EFT [224–226]. The decoupling of the Delta
in the chiral limit enforces that contributions involving the spin-3/2 field must vanish as ∆ → ∞. Explicit examples
are worked out in [225]. However, in the limit of colors, Nc, going to infinity [227, 228] the situation is opposite,
namely the Delta becomes degenerate with the nucleon and, thus, can not be integrated out. The consequences of
this scenario have been first worked out in Refs. [229–231], for an early review see [232] and further work, e.g., in
Refs. [233–237, 237–240].

4.4.1. The width of the ∆(1232)
Consider first the width of the ∆ at two-loop order [241]. The pertinent effective Lagrangian contains, besides

many other terms, the leading π∆ and πN∆ couplings, parametrized in terms of the LECs g1 and h, respectively,

L
(1)
π∆

= −Ψ̄i
µξ

3
2
i j

{(
i /D jk
− m∆δ

jk
)

gµν − i
(
γµDν, jk + γνDµ, jk

)
+ iγµ /D jkγν + m∆δ

jkγµγν

+g1
1
2
/u jkγ5gµν + g2

1
2

(γµuν, jk + uν, jkγµ)γ5 + g3
1
2
γµ/u jkγ5γ

ν
}
ξ

3
2
klΨ

l
ν ,

L
(1)
πN∆

= h Ψ̄i
µξ

3
2
i jΘ

µα(z1) ω j
αΨN + h.c. , (4.20)

L
(2)
πN∆

= Ψ̄i
µξ

3
2
i jΘ

µα(z2)
[
i b3ω

j
αβγ

β + i
b8

m
ω

j
αβi Dβ

]
ΨN + h.c. ,

L
(3)
πN∆

= Ψ̄i
µξ

3
2
i jΘ

µν(z3)
[ f1

m
[Dν, ω

j
αβ]γ

αi Dβ −
f2

2m2 [Dν, ω
j
αβ]{D

α,Dβ} + f4ω
j
ν〈χ+〉 + f5[Dν, iχ

j
−]

]
ΨN + h.c. ,

where ΨN and Ψν are the isospin doublet field of the nucleon and the vector-spinor isovector-isospinor Rarita-
Schwinger field of the ∆-resonance with bare masses m and m∆0, respectively. ξ

3
2 is the isospin-3/2 projector,

ωi
α = 1

2 〈τ
iuα〉 and Θµα(z) = gµα + zγµγα. Using field redefinitions the off-shell parameters z can be absorbed in

LECs of other terms of the effective Lagrangian and, therefore, they can be chosen arbitrarily [242, 243]. We fix
the off-shell structure of the interactions with the Delta by adopting g2 = g3 = 0 and z1 = z2 = z3 = 0. Thus, g1
parameterizes the leading π∆ vertex. For vanishing external sources, the covariant derivatives are given by

DµΨN =
(
∂µ + Γµ

)
ΨN , Γµ =

1
2

[
u†∂µu + u∂µu†

]
= τkΓµ,k ,(

DµΨ
)
ν,i

= ∂µΨν,i − 2 i εi jkΓµ,kΨν, j + ΓµΨν,i . (4.21)

The power counting relies on the fact that m∆ − mN is a small quantity. More precisely, the small parameters are
the external momenta, the pion mass and the nucleon-Delta mass splitting, collectively denoted as ε. However, there
are many LECs in Eq. (4.21), so how can one one possibly make any prediction? Let us evaluate the ∆ self-energy at
the complex pole,

z − m0
∆ − Σ(z) = 0 with z = m∆ − i

Γ∆

2
. (4.22)

The corresponding diagrams for the one- and two-loop self-energy contributing to the width of the Delta resonance up
to order ε5 are displayed in Fig. 8 (left panel), where the counterterm diagrams are not shown. The one-loop diagrams
are easily worked out. For the calculation of the two-loop graphs one uses the Cutkosky rules for unstable particles,
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Figure 8: Left panel: One and two-loop self-energy diagrams contributing to the width of the Delta resonance up-to-and-including fifth order
according to the standard power counting. The dashed and double solid lines represent the pions and the Delta resonances, respectively. The
double (solid-dotted) lines in the loops correspond to either nucleons or Deltas. Open and filled circles refer to LO and NLO vertices from the
meson-baryon Lagrangian, where as the filled box represents an NLO mesonic term. Right panel: Correlation between the leading π∆ and πN∆

couplings. The central line corresponds to Γ∆ = 100 MeV while the band is obtained by varying Γ∆ in the range of 98 to 102 MeV. The dot-dashed
lines show the correlation for other values of the width of the Delta. The box with the error bars are the results from the analysis of Ref. [244].
Figure adopted from [241].

that relate the width to the pion-nucleon scattering amplitude, Γ∆ ∼ |A(∆ → Nπ)|2 [245]. One finds a remarkable
reduction of parameters that is reflected in the relation

hA = h − (b3∆23 + b8 ∆123) − ( f1∆23 + f2 ∆123) ∆123 + 2(2 f4 − f5)M2
π ,

∆23 = −∆ = mN − m∆ , ∆123 =
M2
π + m2

N − m2
∆

2mN
, (4.23)

which means that all of the LECs appearing in the πN∆ interaction at second and third order, the bi (i = 3, 8) and
fi (i = 1, 2, 4, 5), respectively, merely lead to a renormalization of the LO πN∆ coupling h,

hA = h − (b3∆23 + b8 ∆123) − ( f1∆23 + f2 ∆123) ∆123 + 2(2 f4 − f5)M2
π , (4.24)

and, consequently, one finds a very simple formula for the decay width ∆→ Nπ,

Γ(∆→ Nπ) =
(
53.9 h2

A + 0.9g2
1h2

A − 3.3g1h2
A − 1.0 h4

A

)
MeV . (4.25)

This leads to a novel correlation that is independent of the number of colors, as Nc was not used as a parameter in
the calculation. This correlation between hA and g1 is depicted in the right panel of Fig. 8. It is obviously fulfilled
by the analysis of Ref. [246], that showed that the inclusion of the ∆ alleviates the tension between the threshold and
subthreshold regions in the description of πN scattering found in baryon CHPT, see also [247].

4.4.2. The width of the Roper resonance
Next, consider the calculation of the width of the Roper-resonance, the N∗(1440), at two-loop order [248], im-

proving the one-loop results from Ref. [183]. A remarkable feature of the Roper is the fact that its decay width into
a nucleon and a pion is similar to the width into a nucleon and two pions, Γ(R → Nπ) ' Γ(R → Nππ). Any model
that is supposed to describe the Roper must account for this fact. In CHPT, consider the effective chiral Lagrangian of
pions, nucleons and Deltas coupled to the Roper [249–251],

Leff = Lππ +LπN +Lπ∆ +LπR +LπN∆ +LπNR +Lπ∆R , (4.26)
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Figure 9: Left panel: One and two-loop self-energy diagrams of the Roper resonance up-to-and-including fifth order according to the standard
power counting. The dashed and thick solid lines represent the pions and the Roper resonances, respectively. The thin solid lines in the loops stand
for either nucleons, Roper or Delta resonances. For further notations, see Fig. 8. Right panel: Feynman diagrams contribution to the decay R→ Nπ
up to leading one-loop order. Dashed, solid, double and thick solid lines correspond to pions, nucleons, Deltas and Roper resonances, respectively.

with

L
(1)
πR = Ψ̄R

{
i /D − mR +

1
2

gR/uγ5
}

ΨR ,

L
(2)
πR = Ψ̄R

{
cR

1 〈χ+〉
}
ΨR + . . . ,

L
(1)
πNR = Ψ̄R

{
1
2

gπNRγ
µγ5uµ

}
ΨN + h.c. ,

L
(1)
π∆R = hR Ψ̄i

µξ
3
2
i jΘ

µα(z̃) ω j
αΨR + h.c. , (4.27)

where gR, gπNR and hR, respectively, are the leading Roper-pion, Roper-nucleon-pion and Delta-Roper-pion couplings.
Here, ΨR denotes the Roper isospin doublet field and all other notations are as in the preceding subsection and in
Ref. [248].

In this case, the power counting is more complicated, but can be set up around the complex pole of the Roper
resonance as (for more details, see [248]), assigning the following counting rules:

mR − mN ∼ ε , mR − m∆ ∼ ε
2 , m∆ − mN ∼ ε

2 , Mπ ∼ ε
2 , (4.28)

where ε denotes a small parameter. Again, let us calculate the self-energy to two loops at the complex pole zR =

mR − iΓR/2. The pertinent diagrams are shown in the left panel of Fig. 9. By applying the cutting rules to these
self-energy diagrams, one obtains the graphs contributing to the decay amplitudes of the Roper resonance into the πN
and ππN systems, leading to the total width

ΓR = ΓR→Nπ + ΓR→Nππ . (4.29)

A somewhat lengthy calculation of the diagrams in the right panel of Fig. 9 leads to:

Γ(R→ Nπ) = 550(58) g2
πNR MeV , (4.30)

while the two-pion decay is given at this order by tree diagrams with intermediate nucleons and Deltas,

Γ(R→ Nππ) =
(
1.5(0.6) g2

A g2
πNR − 2.8(1.0) gA g2

πNR gR + 1.5(0.6) g2
πNR g2

R

+ 3.0(1.0) gA gπNR hAhR − 3.8(1.4) gπNR gR hAhR + 9.9(5.5) h2
Ah2

R

)
MeV . (4.31)

The total width, thus, depends on five LECs. The uncertainties in the round brackets are generated by the uncertainties
in the LECs. We use gA = 1.27 and hA = 1.42 ± 0.02. The latter value is the real part of this coupling taken from
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Ref. [244]. As for the other unknown parameters, the authors of [248] fixed gπNR so as to reproduce the width
ΓR→πN = (123.5 ± 19.0) MeV from the PDG. This yields gπNR = ±(0.47 ± 0.04). In what follows, let us take the
positive sign for our central value and use the negative one as part of the error budget. Further, assume gR = gA and
hR = hA, the so-called maximal mixing assumption [252]. Then, one can make a prediction for the two-pion decay
width of the Roper,

Γ(R→ Nππ) = (41 ± 22LECs ± 17h.o.) MeV , (4.32)

which is consistent with the PDG value of (67 ± 10) MeV. The error due to the neglect of the higher orders (h.o.) is
simply estimated by multiplying the ε5 result (central value) with ε = (mR −mN)/mN ' 0.43. Clearly, to make further
progress, we need an improved determination of the LECs gR and hR. This could be addressed within LQCD. Note
also that this scheme has been used to consider the electromagnetic transition form factors of the Roper [253].

4.5. Unitarization methods

4.5.1. General discussion
In the last section we have seen that perturbative calculations based on the effective field theories indeed can allow

one to access properties of certain resonances. Such a methodology is advantageous insofar as it allows to separate
and identify in a systematic way the dominant (long-range) effects from short-range physics. However, it can only be
applied to well separated, low-lying resonances as otherwise no consistent power counting scheme can be set up. In
the present section we discuss another class of genuinely non-perturbative approaches. These allow one to deal with
the effects of coupled channels and higher-lying resonances, but of course one has to pay a certain prize, as discussed
below.

Lattice QCD is a tool to access QCD Green’s functions and transition amplitudes in a non-perturbative and sys-
tematical way. However, since the energies and momenta are inherently real, the extraction of resonance parameters
requires again an additional step, the analytical continuation to complex energies. This again requires knowledge of
analytical expression of the transition amplitudes as functions of, e.g., Mandelstam variables, see Sect. 2. As dis-
cussed there, S -matrix unitarity plays a crucial role constraining the form of such amplitudes, leading in, e.g., the
two-body case to the famous K-matrix parametrization Eq. (2.9). In that, the typical workflow includes defining
a general parametrization of the real-valued K-matrix (using, e.g., Padé, Chew-Mandelstam forms), fixing the pa-
rameters of such expressions from fits to either experimental or lattice results and finally the extraction of poles for
complex-valued energies. In this sense also modern statistical and machine learning techniques can indeed be utilized
to reduce the parameter space as shown for example in Ref. [254]. More details on such data driven techniques can be
found in recent reviews [15, 81]. Dealing with QCD at low energies, chiral symmetry can further lead to additional
constraints on transition amplitudes. In regard of lattice QCD results, this is enormously useful allowing one to trace
out the quark mass dependence of amplitudes and ultimately resonance parameters. This methodology runs under the
name of chiral extrapolations, see Sect. 3.6 and Fig. 4 for an explicit example. Such constraints can even be wrapped
up in model-independent conditions of functional form of, e.g., resonant ππ amplitudes [255]. Reversing this logic,
one can also use low-energy effective theories (such as CHPT) to identify dominant interaction extending the region
of applicability by the so-called unitarization procedure.

For pedagogical reasons we begin with the scalar φ4-theory which allows for a simpler treatment. Later we
will show how this applies to chiral Lagrangians, leading to the so-called Chiral Unitary approaches(UCHPT) or
unitarization schemes. The Lagrangian of the φ4-theory reads

L =
1
2

(
∂µφ∂µφ − M2φ2

)
−
λ

4!
φ4 , (4.33)

with M the particle mass and λ a coupling constant. This simple form of the interaction leads to the fact that the
scattering amplitude for the process φ(p1)φ(p2) → φ(p′1)φ(p′2) separates into an infinite series of Feynman diagrams
ordered in powers of λ. Specifically, the first two terms of this series read

M1(p′1, p1; p) = −λ ,

M2(p′1, p1; p) = −λ2
(
G̃(p1 + p2) + G̃(p1 − p′1) + G̃(p1 − p′2)

)
, (4.34)
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Figure 10: Left: Imaginary part of one loop diagrams appearing in the next-to-leading scattering amplitude in the φ4 theory. Notably, the t and u
channel contributions (different lines correspond to variation of the angle between in- and outgoing momenta) lead to an imaginary part solely in
the unphysical region. Right: diagrammatic representation of a unitary scattering amplitude (4.39).

abbreviating M(p′1, p1; p) as M(p1, p2 → p′1, p′2) with p = p(′)
1 + p(′)

2 . Here, G̃(p) is the one-loop function in d
dimensions defined by

G̃(p) =

∫
ddk

(2π)d

i
k2 − M2 + iε

1
(k − p)2 − M2 + iε

, (4.35)

which is logarithmically divergent for d = 4. Such divergences are removed in the usual sense of perturbative
renormalization, i.e., absorbing them in the renormalized particle mass M, the coupling λ and the field renormalization
factor Z at any given order. The exact prescription does not matter for the present discussion and can be found in
standard textbooks. Picking one, we note that in dimensional regularization and the MS subtraction scheme the finite
part of the loop integral becomes

G̃(p) =
1

16π2

−1 + 2 ln
(

M
µ

)
−

4q(p)√
p2

tanh−1

2q(p)
√

p2

4M2 − p2

 with q(p) =

√
p2/4 − M2 , (4.36)

where µ denotes the regularization scale. One notes that the expression depends only on p2 and, furthermore, that for
general values of p2 ∈ R the above expression is complex-valued with the imaginary part existing only for p2 > 4M2.
In the center-of-mass system and for z = p1 · p′1/(|p1||p′1|), the two-body Mandelstam variables read

s = (p1 + p2)2 , t = (p1 − p′1)2 = −
s − 4M2

2
(1 − z) , u = 4M2 − s − t , (4.37)

which means that in the physical region (s > 4M2) only the first term ofM2 in Eq. (4.34) can develop an imaginary
part. The other two terms become complex-valued only for s < s0(z) with s0(z) ≤ 0 depending on the value of
z ∈ [−1, 1]. This is depicted in the left panel of Fig. 10. The opening of the imaginary part for negative values of s is
what leads to the so-called left-hand cut of the complex s-plane. Taking a closer look on the expansion in Eq. (4.34)
one realizes that

M2 −M
∗
2 = −|M1|

2 (G̃(s) − G̃∗(s))︸            ︷︷            ︸
=−(2q(s))/(8π

√
s)

, (4.38)

while unitarity, Eq. (2.7), for the unprojected matrix elements yields Im M =
q(s)

8π
√

s |M|
2, meaning that the unitarity

condition is fulfilled perturbatively only. In general, restoration of unitarity to all orders is what is referred to as
unitarization. Various ways exist in this regard, some of most popular ones will be discussed below.

A large class of approaches starts from the following general ansatz

M(p′1, p1; p) = V(p′1, p1; p) −
∫

ddk
(2π)d V(p′1, k; p)G(k; p)M(k, p1; p) , (4.39)
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in terms of a two-body propagator G and an interaction kernel V . Of course, regularization of the integral equation is
understood. Indeed, the form of the two-body propagator G is what defines the specific ansatz, which for the Bethe-
Salpeter equation (BSE) and scalar particles reads G(k; p) = i/(k2 − M2 + iε)/((p − k)2 − M2 + iε). The interaction is
encoded in the kernel V(p′, p; p), which is typically derived from an effective field theory.

Eq. (4.39) is a genuine d-dimensional integral equation which can be interpreted as an infinite series of Feynman
diagrams, see the right panel of Fig. 10. In general, such an equation cannot be solved analytically, but examples
exists where this has been performed [256–262]. One simplification can be achieved by assuming that neitherM nor
the interaction kernel V have singularities in k0, allowing to perform the k0 integral using Cauchy’s theorem. This
reduces the dimension of the integral, effectively putting the intermediate particles on the mass-shell k2 = M2. While
this destroys manifest covariance, the resulting equation is still covariant. It is often referred to as the quasipotential or
Gross equation, see, e.g., Ref. [263]. Still, the equation keeps its genuine integral form. Simplifying this further, one
assumes often a projection of the interaction kernel V (on-shell) onto a partial wave of interest (most of the S-wave).
Such a projected potential Ṽ` can only depend on the total energy squared s, such that the integral equation above
indeed becomes an algebraic one with the solution

M`(s) = Ṽ`(s) − Ṽ`G̃(s)M`(s) =
1

1 + Ṽ`(s)G̃(s)
Ṽ`(s) . (4.40)

For our example of the φ4 theory with Ṽ(s) = −λ, so that Eq. (4.40) indeed is also the solution of the BSE (4.39). For
a general theory this solution is referred most-commonly to as unitarized scattering amplitude.

So far, we have seen that the Bethe-Salpeter equation (4.39) allows to restore unitarity, keeping close connection
to the Feynman diagrams. While in general this equation is hard to solve, it can be reduced to an algebraic one
projecting the interaction kernel to a specific (on-shell) partial wave. Obviously, this still preserves unitarity since
Im M−1

` (s) = −q(s)/(8π
√

s) as demanded by Eq. (2.8), bringing this ansatz close to the general K-matrix form
discussed in Sec. 2. Specifically, matching Eq. (2.9) with Eq. (4.40) relates

K−1
` (s) = Ṽ−1

` (s) + Re G̃(s) . (4.41)

Over the last decades, the BSE in integral and algebraic form has become a workhorse for many investigations of,
e.g., resonant dynamics of two-hadron scattering in the non-perturbative regime of QCD. Deriving the interaction
kernel from some effective field theory, predictions on the resonance structure on the Riemann-sheets can be made.
However, there is a price to the flexibility and simplicity of this approach as the crossing symmetry does no longer
hold. Note that approaches to the restoration of crossing symmetry in this context have been formulated, see, e.g.,
Refs. [215, 264]. In general the fact that crossing symmetry is violated, and only a subset of all possible Feynman
diagrams can be considered by the above unitarization technique yields that standard renormalization methodology
cannot be applied. Indeed, the scattering amplitude Eq. (4.40) remains explicitly dependent on the regularization
scale. This means that when fitting two different versions of a unitarized amplitude to the same data using the same
interaction kernel leads to different parameters and predictions outside of fitting region. This means that such an
unitarization procedure inevitably induces some model-dependence.

4.5.2. Light quark sector: Meson-meson scattering
The application of the BSE methodology to the light (up and down) quark sector have been plentiful both in

the meson [265–267] as well as baryon sector [260, 268, 269], which also includes extensions to coupled channels.
Pertinent works including also the strange and the heavy quarks will be discussed below.

Many other unitarization techniques have been developed to address the lowest mesonic resonances. The N/D
approach [270] derives from dispersion relations and includes in principle both the left-hand cuts (in N) and unitarity
right-hand cut (in D), see Fig. 10. In particular, the amplitude is written as

MN/D(s) =
N(s)
D(s)

. (4.42)

After this definition, an ansatz is made for the numerator N I`(s), which typically stems from the perturbative expan-
sion of effective field theories or more general functions with constraints from the behavior of partial waves near
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threshold [271]. Finally, one can deduce the denominator from the unitarity condition, Im D(s) = −N(s)θ(s − sthr)
rescaled appropriately, with sthr the physical two-body threshold. This is done by means of a dispersion relation with
respect to Mandelstam s including an appropriate number of subtractions. These subtractions are then obtained from
fits to data. For applications to ππ and πN scattering see, Refs [271–273] and [274], respectively. For recent work on
other hadron-hadron scattering processes using the N/D method, see e.g. Refs. [275–278].

Another very popular approach is the so-called inverse amplitude method (IAM) [163, 279–281]. Also here in
addition to unitarity the left-hand cut is included at least perturbatively. This is because the amplitude matches the
chiral amplitude up to the next-to-leading order which also makes the approach an ideal tool to access universal
parameters of, e.g., the f0(500) and ρ(770) resonances from phenomenology [44, 46, 282] and lattice QCD [41, 108,
283] (at unphysical pion masses). As it turns out, the same amplitude also fulfills the general requirements on the
chiral trajectory of resonances to all chiral orders [255].

Specifically, the partial wave amplitude projected to isospin I and angular momentum ` reads

MI`
IAM(s) =

(MI`
2 (s))2

MI`
2 (s) −MI`

4 (s)
, (4.43)

where MI`
n (s) denotes the nth order chiral amplitudes [137, 138]. The leading order chiral amplitude (MI`

2 (s)) is a
function of energy, Goldstone-boson mass, M2 = B(mu + md) and pion decay constant in the chiral limit, F. The
next-to-leading order amplitude (MI`

4 (s)) involves in the two-flavor case two low-energy constants (LECs) l̄1 and l̄2.
Two additional low-energy constants l̄3, l̄4 enter the NLO chiral amplitude when replacing the above mass and decay
constants by their physical values using the well-known one-loop results [137],

M2
π = M2

(
1 −

M2

32π2F2 l̄3

)
, Fπ = F

(
1 +

M2

16π2F2 l̄4

)
. (4.44)

By construction, the LECs l̄i do not depend on the regularization scale. Because of that, they acquire a dependence
on the quark masses6. This is of course disadvantageous when studying results of lattice calculations performed
at unphysical pion masses, but can be overcome by using the more conventional scale-dependent but quark-mass-
independent renormalized LECs lri . The relation between two reads

lri =
γi

32π2

(
l̄i + log

M2

µ2

)
, (4.45)

where γ1 = 1/3, γ2 = 2/3, γ3 = −1/2, γ4 = 2. Hence, for a fixed scale µ one can determine the renormalized LECs
and then make predictions for two-particle scattering at a different pion mass. We note that fixing µ in physical units
may lead to subtleties when addressing scale-independent quantities in lattice QCD. However, in some cases methods
exists to overcome this issue, see discussions in Refs. [108, 284, 285].

In the past, the IAM was used successfully to gain deeper insights into the long-debated f0(500) isoscalar ππ
resonance, see the dedicated review [44]. In this context we show a comparison of the perturbative chiral amplitude
with the IAM scattering amplitude in Fig. 11 for isovector and isoscalar scattering. Using LECs from a perturbative
analysis [137] for demonstration only, we observe that the unitarized amplitudeMIAM, indeed, is close to the next-
to-leading order chiral amplitude close to the threshold but exhibits a resonant behavior at

√
s ≈ 500 MeV and

√
s ≈ 770 MeV, respectively, in the isoscalar and isovector channel. In the former case we observe additionally that

the perturbative amplitude vanishes exactly at s ≈ 2M2
π, the Adler zero [286]. This leads to the fact that around this

energy also the denominator of MIAM vanishes. Notably, the same happens for the case of maximal isospin (M20
2 )

at s ≈ 2M2
π. Obviously, this singularity has very small residuum, such that for studies of experimental data, this

effect is negligible. Still from the conceptual point of view as well when embedding this two-body model into, e.g.,
multihadron setting [86, 287] the subthreshold behavior may become important. Fortunately, there is a convenient
way to remove this spurious pole by a procedure established in, e.g., Refs. [46, 288].

6We remark that such scale-independent LECs are specific to the two-flavor case, a similar construction is not possible for N f ≥ 3 flavors.
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Figure 11: Comparison between the perturbative chiral amplitudes with the inverse amplitude method Eq. (4.43) for the isoscalar and isovector ππ
channels. Full and dashed lines denote real and imaginary (if existing) parts, respectively. In the isoscalar case the chiral amplitude is vanishing
exactly at s ≈ 1/2M2

π (the Adler zero). This yields a pole in the IAM approach, which is removed by following the modified inverse amplitude
method Eq. (4.46), see text for mode details.

MI`
IAM(s) −→MI`

mIAM(s) =
(MI`

2 (s))2

MI`
2 (s) −MI`

4 (s) + AI`
m (s)

,

AI`
m (s) =MI`

4 (s2) −
(s2 − sA)(s − s2)

(
MI`′

2 (s2) −MI`′
4 (s2)

)
s − sA

, (4.46)

where sA and s2 are the zeros ofMI`
2 (s)−MI`

4 (s) andMI`
2 (s), respectively. In this form the inverse amplitude method

has been applied frequently [43, 46, 289, 290], simultaneously describing all three ππ isospin channels, and making,
e.g., predictions for the quark mass dependence of the light-quark resonance parameters, see Fig. 4 and discussion
thereof.

4.5.3. Light quark sector: Meson-baryon sector
The principle of dynamical generation of resonances has helped to understand many low-lying states in the hadron

spectrum. Including the strange quark enriches this picture even more. This is because production thresholds are
separated stronger than in the light (u, d) sector. Arguably the most prominent examples in this sense is the the long-
debated Λ(1405) resonance, which indeed is dynamically generated due to strong attraction of K̄N and interference
with the πΣ channels. Several reviews [291–294] have been dedicated to the history and state of the art understanding
of this enigmatic state. Thus, we will only mention facts relevant for this review, referring the reader for more details
to the quoted reviews.

The current method of choice in the studies of antikaon-nucleon scattering is based on the already discussed Bethe-
Salpeter equation. In that, the interaction kernel is taken from the chiral meson-baryon Lagrangian at next-to-leading
order, which in its full form reads

Voff( /q′, /q; P) =

(
AWT (/q + /q′) + ABs /q′

m − /P
s − m2 /q + ABu/q

m − /P + /q′ + /q
u − m2 /q′

)
LO

+(
A14(q · q′) + A57[/q, /q′] + AM + A811

(
/q′

(
q · P) + /q(q′ · P

)) )
NLO

, (4.47)

where P = p+q = p′+q′, and s = P2, u = (p−q′)2 are the usual Mandelstam variables. We note that 10 combinations
of ground state octet mesons and baryons have the same quantum numbers, i.e., {K−p, K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+,
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ηΛ, ηΣ0, K+Ξ−, K0Ξ0} meaning that the scattering amplitudeM must describe the dynamics of all coupled-channels
simultaneously. Thus, the interaction kernel V is a 10×10 matrix build from the matrices A.... These depend explicitly
on the meson decay constants and axial couplings D, F at leading, and on the LECs {b0, bD, bF , b1, ..., b11} at next-to-
leading chiral order. This already demonstrates the rapid rise of the number of unknown LECs as well as momentum
structures compared to, e.g., light-quark (u, d) meson sector (4 LECs). Also, the higher dimension of the kernel
increases the computational costs strongly. However, as discussed before, various approximations and simplifications
can be applied to the above kernel. For example off-shell effects appear to be rather small as studied in Ref. [295].
Also, it seems safe to assume that NLO terms are required to produce realistic scattering amplitudes.

Ultimately, various approximations and unitarization variations lead consistently to a narrow pole close to the K̄N
threshold, additionally predicting a second lighter and broader pole, when using similar experimental data for fits
of the free parameters. As we know now, see the recent review [292], such unusual double pole structures are not
uncommon in many other parts of the hadronic spectrum.

4.5.4. Heavy-light quark sector: Goldstone bosons scattering off D mesons
Unitarization methods are also successfully used in the coupled-channel scattering of Goldstone bosons off (π,K, η)

D (and D∗) mesons, which allows to dynamically generate the mysterious charmed scalar mesons, in particular the
charm-scalar mesons [296–298] that showed that the conventional quark model was insufficient. There were consid-
ered early as hadronic molecules in a theory combining chiral and heavy quark symmetry [264, 299] or within the
chiral doubling approach [300], see also the reviews [8, 16, 301]. A further important observation was the two-pole
structure of the D∗0(2300) [302] that was first worked out explicitly in the analysis of lattice QCD data on heavy-light
pseudoscalar meson JP = 0+ scattering in the strangeness-isospin (S , I) = (0, 1/2) sector from the Hadron Spectrum
Collaboration [303]. This had been noted before but was not out into proper context [264, 304, 305]. Combining uni-
tarized perturbation theory in the heavy-light sector with data from lattice QCD and also from the LHCb collaboration
on B → Dππ decays [306–309]. finally led to a new paradigm for heavy-light spectroscopy [310] and further helped
to establish the two-pole structure as more general phenomenon in the hadron spectrum rather than being a curiosity
related to the enigmatic Λ(1405) [292] as discussed in more detail in Sect. 6. Note that the type of three-body decays
B → Dππ requires a different effective Lagrangian than the one used for Dφ scattering, as will also be discussed
below.

First, let us recall the power counting for Goldstone boson scattering off matter fields, here the triplet of D (and
D∗) mesons. To be specific, we consider the EOMS scheme. External momenta as well as the masses of the Goldstone
bosons are counted as O(p), where p denotes a small quantity. However, the nonvanishing masses of the D and D∗

in the chiral limit introduce new scales M0 and M∗0, both counted as O(1). As a result, at low energies, the temporal
components of the momenta of the D and D∗ are counted as O(1), while the spatial components are counted as
O(p). Therefore, the virtuality q2 − M(∗)2

0 in the propagators scales as O(p), and the propagators scale as O(p−1).
The Goldstone boson propagators are counted as O(p−2) as usual. In the EOMS scheme, the power counting breaking
terms are absorbed into the redefinition of the LECs so that the resulting physical observables obey the power counting
rules. This is explicitly worked out in Ref. [311]. Most calculation of the scattering potentials have been carried out
to NLO, but there are a few works that attempted an NNLO calculation.

The effective Lagrangian for the calculation of the unitarized Dφ scattering amplitudes up to leading one-loop
order can be written as

Leff =

2∑
i=1

L
(2i)
φφ +

3∑
j=1

L
( j)
Dφ +

2∑
k=1

L
(k)
D∗φ +

3∑
l=1

L
(l)
D∗Dφ , (4.48)

with the superscripts specifying the chiral dimension. The terms in the Goldstone sector are the standard ones [138]
and the terms corresponding to interactions between the D = (D0,D+,D+

s ) mesons and the Goldstone bosons are given
by [312–317]

L
(1)
Dφ = DµDDµD† − M2

0 DD† ,

L
(2)
Dφ = D

(
−h0〈χ+〉 − h1χ+ + h2〈uµuµ〉 − h3uµuµ

)
D† +DµD

(
h4〈uµuν〉 − h5{uµ, uν}

)
DνD† , (4.49)

L
(3)
Dφ = D

[
i g1[χ−, uν] + g2

(
[uµ, [Dν, uµ]] + [uµ, [Dµ, uν]]

)]
DνD† + g3D [uµ, [Dν, uρ]]DµνρD† + h.c. ,

32



(S , I) Channels CLO C0 C1 C24 C35

(−1, 0) DK̄ → DK̄ −1 M2
K M2

K 1 −1
(−1, 1) DK̄ → DK̄ 1 M2

K −M2
K 1 1

(2, 1
2 ) DsK → DsK 1 M2

K −M2
K 1 1

(0, 3
2 ) Dπ→ Dπ 1 M2

π −M2
π 1 1

(1, 1) Dsπ→ Dsπ 0 M2
π 0 1 0

DK → DK 0 M2
K 0 1 0

DK → Dsπ 1 0 −(M2
K + M2

π)/2 0 1
(1, 0) DK → DK −2 M2

K −2M2
K 1 2

Dsη→ Dsη 0 M2
η −2M2

η + 2M2
π/3 1 4/3

DK → Dsη −
√

3 0 −
√

3(5M2
K − 3M2

π)/6 0 1/
√

3
(0, 1

2 ) Dπ→ Dπ −2 M2
π −M2

π 1 1
Dη→ Dη 0 M2

η −M2
π/3 1 1/3

DsK̄ → DsK̄ −1 M2
K −M2

K 1 1
Dη→ Dπ 0 0 −M2

π 0 1
DsK̄ → Dπ −

√
6/2 0 −

√
6(M2

K + M2
π)/4 0

√
6/2

DsK̄ → Dη −
√

6/2 0
√

6(5M2
K − 3M2

π)/12 0 −1/
√

6

Table 1: The coefficients in the scattering amplitudes V(s, t, u). The channels are labelled by strangeness (S ) and isospin (I).

where M0 is the D meson mass in the chiral limit, the hi and g j are LECs and the chiral building blocks are given as
above uµ = i[u†∂µu − u∂µu†], U = u2 and χ± = u†χu† ± uχ†u. The covariant derivative is defined via

DµH = H(
←

∂µ + Γ†µ) , DµH† = (∂µ + Γµ)H† , (4.50)

and Dµνρ = {Dµ, {Dν,Dρ}}, where H ∈ {D,D∗} with D∗ = (D∗0,D∗+,D∗+s ). The so-called chiral connection in the
covariant derivatives is defined as Γµ =

(
u†∂µu + u∂µu†

)
/2. Similarly, the relevant terms for the interaction between

the D∗ and the Goldstone bosons are [312–314]

L
(1)
D∗φ = −

1
2
F µνF †µν + M∗20 D∗νD∗†ν , L(2)

D∗φ = D∗µ
[
h̃0〈χ+〉 + h̃1χ+

]
Dµ∗† , (4.51)

with h̃0,1 analogous to h0,1 and Fµν = (DµD∗ν − DνD∗µ). In the heavy quark limit, h̃0 = h0 and h̃1 = h1. Note that due
to the trace structure in the corresponding operator, the LECs h0, h2 and h4 are suppressed in the large-Nc limit [318].
The LEC h1 can be deduced from the mass splittings in the D meson triplet,

h1 =
M2

Ds
− M2

D

4(M2
K − M2

π)
= 0.427 . (4.52)

The quark mass dependence of MD and MDs fixes h0 ' 0.01, which is consistent with the expectations from large-Nc.
The other LEC are determined from fits to lattice QCD data, see below. Finally, the LO axial coupling has the form

L
(1)
D∗Dφ = i g0

(
D∗µuµD† − D uµD∗†µ

)
. (4.53)

As pointed out in Refs. [243, 244], the resonance-exchange contributions of O(p2) and O(p3) can be taken into
account by shifting the coupling in the LO resonance-exchange contribution and the LECs in the contact terms. This
also holds true for our case. Thus, we do not need the O(p2) and O(p3) terms for the D∗Dφ coupling. The DD∗π
axial coupling constant g0 can be fixed by the decay width Γ(D∗+ → D0π+). As discussed in Refs. [316], one gets
g = (1.11 ± 0.15) GeV for the renormalized coupling g, which contains the bare constants g0 and one-loop chiral
corrections.
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Consider now the scattering process D1(p1)φ1(p2) → D2(p3)φ2(p4) in more detail. There are alltogether 16
channels with different total strangeness S and isospin I as listed in Tab. 1, see, e.g., Refs. [304, 305, 310, 315, 316,
319–329]. Using the NLO chiral Lagrangian from Ref. [315], the scattering amplitudes are given by

V(s, t, u) =
1

F2
0

[CLO

4
(s − u) − 4C0h0 + 2C1h1 − 2C24H24(s, t, u) + 2C35H35(s, t, u)

]
, (4.54)

where F0 is the pion decay constant in the chiral limit, and the coefficients Ci can be found in Tab. 1. Further,

H24(s, t, u) = 2h2 p2 · p4 + h4(p1 · p2 p3 · p4 + p1 · p4 p2 · p3) ,
H35(s, t, u) = h3 p2 · p4 + h5(p1 · p2 p3 · p4 + p1 · p4 p2 · p3) . (4.55)

For NNLO corrections and contributions from the D∗ mesons, see, e.g., Ref. [328]. The appearing LECs can be
determined from a fit to lattice data. In order to reduce the correlations between the LECs, one introduces the following
redefinitions of the LECs [316, 323]

h′4 = h4M̄2
D , h′5 = h5M̄2

D , h24 = h2 + h′4 , h35 = h3 + 2h′5 ,

g′1 = g1M̄D , g′2 = g2M̄D , g′3 = g3M̄3
D , g23 = g′2 − 2g′3 , (4.56)

where M̄D is the average of the physical masses of the charmed mesons D and Ds, M̄D = (MPhy
D + MPhy

Ds
)/2. The new

LECs h′4, h′5, h24 and h35 are dimensionless, and g′1, g′3 and g23 have the dimension of inverse mass.
Before unitarization, a partial wave projection to a definite orbital angular momentum ` should be performed

V (S ,I)
`

(s)D1φ1→D2φ2 =
1
2

∫ +1

−1
d cos θ P`(cos θ) V (S ,I)

D1φ1→D2φ2
(s, t(s, cos θ)) , (4.57)

where θ is the scattering angle between the incoming and outgoing particles in the center-of-mass frame, and the
Mandelstam variable t is expressed as

t(s, cos θ) = M2
D1

+ M2
D2
−

(
s + M2

D1
− M2

φ1

) (
s + M2

D2
− M2

φ2

)
2s

−
cos θ

2s

√
λ(s,M2

D1
,M2

φ1
)λ(s,M2

D2
,M2

φ2
) , (4.58)

where λ(a, b, c) = a2 +b2 +c2−2ab−2ac−2bc is the Källén function. In most cases, one considers S-wave scattering,
and, thus, the subscript ` = 0 is dropped.

At this point, it is worth to discuss some problems arising in such unitarization procedures. It is well-known
that any unitarization approach that relies on right-hand unitarity and the on-shell approximation has the problem of
violation of unitarity when the left-hand cut occurs in the on-shell potential. For instance, the left-hand cut in the
KK̄ → KK̄ amplitude leads a violation of unitarity for the ππ scattering in the ππ–KK̄ coupled-channel system [330,
331]. Note, however, that it was shown in Refs. [330, 332] that the unitarity violation is numerically small in the
ππ-KK̄ case, thus, no serious problem is generated. The same unitarity violation happens to the Dφ scattering with
(S , I) = (0, 1/2), which has three coupled channels: Dπ, Dη and DsK̄. One of the left-hand cuts from the inelastic
channel DsK̄ → Dη amplitude, from (1.488 GeV)2 to (2.318 GeV)2, overlaps with the right-hand cut starting from the
Dπ threshold. Although this left-hand cut is not numerically important, its presence together with other left-hand cuts
and right-hand cuts make the whole real axis nonanalytic. As a result, the coupled-channel amplitudes do not have the
correct analytic properties even in the relevant energy region. Consequently, a pair of pole at (2.046 ± i0.050) GeV
are found on the first Riemann sheet for the coupled-channel (S , I) = (0, 1/2) amplitude. As we know, poles on the
first Riemann sheet can only be located on the real axis below the lowest threshold, which are associated with bound
states. A pole on the first sheet with a non vanishing imaginary part or above the lowest threshold is inconsistent with
causality. The appearance of the pole on the first sheet in the coupled-channel (S , I) = (0, 1/2) is due to the existence
of the coupled-channel cut. The left-hand cuts stem from the one-loop potentials but only at NNLO. If one considers
only a single-channel such as Dπ→ Dπ with (S , I) = (0, 1/2), there is no such problem as it comes from the left-hand
cut of the inelastic channels.
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Finally, we consider Dφ scattering as a sub-process of the weak decays B → Dφφ. At low energies, for the
processes with ∆b = 1 and ∆c = 1 the interaction can be described by the effective weak Hamiltonian Heff which at
LO has the form [333]

Heff =
GF
√

2
V∗cbVud

(
C1O

d
1 + C2O

d
2
)

+ (b→ s) + h.c. , (4.59)

with GF the Fermi constant, Vi j the Cabibbo–Kobayash–Maskawa (CKM) matrix elements, and the Ci are scale-
dependent Wilson coefficients. Here, the tree-level operators read

Od
1 = (c̄abb)L(d̄bua)L , O

d
2 = (c̄aba)L(d̄bub)L , (4.60)

with the subscripts a and b are color indices. The subscript L indicates that only the left-hand components of the
quarks are involved. Note that here the color space is irrelevant for our discussion, thus, we simply drop the subscripts
of Ci and Oi hereafter. One can make the effective Hamiltonian fully chirally invariant by introducing a spurion H j

i
transforming as [334]

H j
i 7→ H j′

i′ (gL)i′
i (g†L) j

j′ . (4.61)

Then the new Hamiltonian
H′eff =

GF
√

2
V∗cbVudH j

i C(c̄b)L(q̄i
LqL j) (4.62)

is chirally invariant. For Eq. (4.59), the spurion H j
i (the lower index labels rows and the upper one labels columns)

corresponds to

H =

 0 0 0
1 0 0

Vus/Vud 0 0

 . (4.63)

Here, Vus/Vud is nothing but − sin θ1, with θ1 the Cabbibo angle. Then the component H1
2 describes the Cabibbo-

allowed decays and H1
3 the Cabibbo-suppressed ones. In the matrix form, H transforms under chiral symmetry as

H 7→ gLHg†L. It is more convenient to introduce a homogeneously transforming suprion as t = uHu†. With those
ingredients, one constructs the effective Lagrangian describing the three-body nonleptonic decays of B mesons to D
mesons and two light pseudoscalars. We are interested in the region of the invariant mass of a pair of the D and one
pseudoscalar not far from their threshold, such that this light pseudoscalar can be safely treated as a soft Goldstone
boson, while the other one moves fast and can be treated as a matter field rather than a Goldstone boson. The fast
moving pseudoscalar is realized linearly in a matrix form M transforming as

M 7→ hMh† , (4.64)

and it has the same form as φ, i.e.,

M =


1
√

2
π0 + 1

√
6
η π+ K+

π− − 1
√

2
π0 + 1

√
6
η K0

K− K̄0 − 2
√

6
η

 . (4.65)

Consequently, utilizing the power counting described above, chiral symmetry implies that the effective Lagrangian at
O(p) has the form of [310, 335, 336]

Leff = B̄
[
c1(uµtM + Mtuµ) + c2(uµM + Muµ)t + c3t(uµM + Muµ)

+ c4(uµ〈Mt〉 + M〈uµt〉) + c5t〈Muµ〉 + c6〈(Muµ + uµM)t〉
]
∇µD†

+ B̄
[
d1(uµtM − Mtuµ) + d2(uµM − Muµ)t + d3t(uµM − Muµ)

+ d4(uµ〈Mt〉 − M〈uµt〉) + d6〈(Muµ − uµM)t〉
]
∇µD† , (4.66)

where B̄ = (B−, B̄0, B̄0
s), the ci and di are LECs, and 〈. . . 〉 denotes a trace in the SU(3) flavor space. Note that the

momentum operator ∇µ in Eq. (4.66) is chosen to act on the charmed meson field D. It could act on B (or M)
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Figure 12: The decay B → DφM. The square denotes the final-state interactions between the D meson and the Goldstone boson. In the loop, all
relevant coupled channels contribute.

independently as well. However, in our case, MB � MD + 2Mπ and MD � Mπ imply that they would produce
the same structures up to the LO and we can combine them by redefining the LECs in the heavy meson limit. This
effective Lagrangian considers both the chiral symmetry and flavor SU(3) constraints (the latter has been considered
in Ref. [335]). Finally, we divide the Lagrangaian (4.66) into two groups which are symmetric and antisymmetric
in the two light pseudoscalars, which correspond to the cases where the relative orbital angular momentum of the
light pseudoscalars pair is even and odd, respectively [335]. The nonleptonic B-meson three-body decays B→ DφM,
where M denotes the fast moving light pesudoscalar and φ denotes the soft one, provide access to the D-φ interaction
via the final-state interaction in the energy region where the Dφ system is not far from its threshold. Of course, there
also final-state interactions between the D and the hard M and between M and φ. These do not produce any nontrivial
structure sensitive to the energy variation and thus can encoded into an extra complex factor. The pertinent Feynman
diagrams for the decay B → DφM are shown in Fig. 12, where the square denotes the final-state interactions in the
Dφ subsystem. The decay amplitude projected into the Dφ channel at low energies can be decomposed into S-, P- and
D-waves, which corresponds to the orbital angular momentum of the Dφ pair ` = 0, ` = 1, and ` = 2, in order,

A(B→ DφM) = A0(s) +
√

3A1(s)P1(z) +
√

5A2(s)P2(z) . (4.67)

Here, A0,1,2(s) denote the partial wave decomposed amplitudes for Dφ in the S-, P- and D-waves, respectively, and
P`(z) are the Legendre polynomials with z the cosine of the helicity angle of the Dφ system, i.e., the angle between
the moving directions of the φ and the M in the Dφ rest frame. For the P- and D-waves, the resonances are relatively
narrow and, thus, it is reasonable to parameterize them by Breit-Wigner amplitudes. For the S-wave, the diagrams in
Fig. 12 are calculated using the effective Lagrangian (4.66) and the final-state Dφ interaction is determined from the
coupled channels approach described before.

Consider first the decay B− → D+π−π−. Here, the relative orbital angular momenta of the two light mesons is even.
This corresponds to the first term of the Lagrangian in Eq. (4.66) parameterized by the LECs ci. The corresponding
production vertices for the possible intermediate states D0π0, D+π−, D0η and D+

s K− are given in Tab. 2. In the heavy
quark limit, we have pD · pφ = MDEφ, with Eφ the energy of φ in the rest frame of the Dφ subsystem. It is convenient
to introduce two parameters A and B via [310]

A =

√
2

F0
(c1 + c4)MD , B =

2
√

2
3F0

(c2 + c6)MD . (4.68)

Consequently, the S-wave decay amplitude for B− → D+π−π− that contains the final-state interaction can be written
as

A0(s) = 2AEπ + 2AEπGDπ(s)TD+π−→D+π− (s) +
A
√

2
EπGDπ(s)TD0π0→D+π− (s)

+
A + 3B
√

6
EηGDη(s)TD0η→D+π− (s) + AEKGDsK̄(s)TD+

s K−→D+π− (s) , (4.69)

with s the center-of-mass energy squared of the Dφ system, and GDφ(s) is the loop function shown in Fig. 12 coupling
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Process Production amplitude

B− → D0π0π−
1

F0
(c1 + c4)pD · pπ

B− → D0ηπ−
1
√

3F0
(c1 + c4 + 2c2 + 2c6)pD · pη

B− → D+π−π−
2
√

2
F0

(c1 + c4)pD · pπ

B− → D+
s K−π−

√
2

F0
(c1 + c4)pDs · pK

Table 2: Production vertices for the possible intermediate states contributing to B− → D+π−π−. The four-momenta of the charmed meson and the
Goldstone boson are denoted by pD(s) and pφ, respectively.

to the channel Dφ. Unitarity allows to express this loop function via a once-subtracted dispersion relation,

GDφ(s) =
1

16π2

{
a(µ) + log

M2
D

µ2 +
M2
φ − M2

D + s

2s
log

M2
φ

M2
D

+
σ

2s

[
log(s − M2

D + M2
φ + σ) − log(−s + M2

D − M2
φ + σ)

+ log(s + M2
D − M2

φ + σ) − log(−s − M2
D + M2

φ + σ)
]}
, (4.70)

with a(µ) a scale-dependent subtraction constant, µ the scale of dimensional regularization, and σ =
√
λ(s,M2

φ,M
2
D).

The subtraction a is related to the renormalization of the interaction vertices and varies for different processes. A
change of µ can be absorbed into a corresponding change of a, often one takes µ = 1 GeV. The amplitudes for the
final-state interactions can be expressed in the isospin basis. While D+π− can be decomposed into isospin I = 1/2
and 3/2 systems, D+η and D+

s K− can only form I = 1/2. The relations between the isospin basis and physical particle
basis are given by [305, 316]

TD0π0→D+π− = −

√
2

3
T 3/2

Dπ→Dπ +

√
2

3
T 1/2

Dπ→Dπ , TD0η →D+π− =

√
2
3

T 1/2
Dη→Dπ ,

TD+π−→D+π− =
1
3

T 3/2
Dπ→Dπ +

2
3

T 1/2
Dπ→Dπ , TD+

s K−→D+π− =

√
2
3

T 1/2
DsK̄→Dπ

, (4.71)

where the superscripts indicate the total isospin I. The amplitudes in the isospin basis can be found in Refs. [305, 316,
323]. As a result, we get the S-wave decay amplitude for the process B− → D+π−π− [310]

A0(s) = AEπ

[
2 + GDπ(s)

(5
3

T 1/2
11 (s) +

1
3

T 3/2(s)
)]

+
1
3

(A + 3B)EηGDη(s)T 1/2
21 (s) +

√
2
3

AEKGDsK̄(s)T 1/2
31 (s) .

(4.72)

Here, we write the scattering amplitudes in the matrix form T I
i j(s) with the total isospin I, where i, j are channel indices

with 1, 2 and 3 referring to Dπ, Dη and DsK̄, respectively. Note that only two LECs A, B, see Eq. (4.68), appear in
Eq. (4.72). The production vertices responsible for other processes such as B0

s → D̄0K−π+, B0 → D̄0π−π+, B− →
D+π−K−, and B0 → D̄0π−K+ can also be derived from Eq. (4.66). The weak production vertices needed for those
decays are listed in Tab. 3. For all these decays one expects that, at least in the low-energy tails of the invariant mass
of the Dφ subsystems, the effects from the crossed-channel final-state interactions, that is the interactions between
the soft and hard light mesons and those between the D meson and the hard pseudoscalar meson, do not produce any
nontrivial structure in the Dφ distributions. This is supported by the analyses in Refs. [307–309, 337]. Consequently,
effects from the crossed-channel final-state interactions can be represented by an extra undetermined complex factor
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Reaction Weak production vertex
B0

s → D̄0K−π+ EK

(
(c2 + c4) + (d2 + d4)

)
B0

s → D−K̄0π+ EK

(
(c1 + c4) + (d1 + d4)

)
B0

s → D̄sηπ
+

√
2
√

3

MDs

MD
Eη

(
(c6 − c4) − d4

)
B0

s → D̄sπ
0π+

√
2

MDs

MD
Eπd6

B0 → D̄0π−π+ Eπ

(
(c2 + c3 + c4 + 2c5) + (d2 − d3 + d4)

)
B0 → D−ηπ+ 1

√
6

Eη

(
(c1 + 2c3 + c4 + 2c6) + (d1 + d4)

)
B0 → D−s K0π+

MDs

MD
EK

(
(c3 + c4) − (d3 − d4)

)
B0 → D−π0π+ −

1
√

2
Eπ

(
(c1 + c4) + (d1 − 2d3 + d4 − 2d6)

)
B0 → D̄0π−K+ − sin θ1Eπ

(
(c2 + c4) + (d2 + d4)

)
B0 → D−π0K+ − sin θ1

1
√

2
Eπ

(
− (c4 − c6) − (d4 − d6)

)
B0 → D−ηK+ − sin θ1

1
√

6
Eη

(
(c4 − c6) + (d4 + 3d6)

)
B0 → D−s K0K+ − sin θ1

MDs

MD
EK

(
(c1 + c4) + (d1 + d4)

)
B− → D0π0K− − sin θ1

1
√

2
Eπ

(
(c1 + c4 + c2 + c6) − (d1 − d2 − d4 − d6)

)
B− → D0ηK− − sin θ1

1
√

6
Eη

(
(c1 + c4 − c2 − c6) − (d1 − 3d2 − d4 − 3d6)

)
B− → D+π−K− − sin θ1Eπ

(
(c1 + c4) − (d1 − d4)

)
B− → D+

s K−K+ − sin θ1
2MDs

MD
EK(c1 + c4)

Table 3: Weak amplitudes contributing to the decays B0
s → D̄0K−π+, B0 → D̄0π−π+, B− → D+π−K−, and B0 → D̄0π−K+ through coupled-channel

effects. Note that an overall factor
√

2MD/F0 has been absorbed in the LECs ci, di.

for each partial wave, similar to what is done in isobar models. As was done above for the decay B− → D+π−π−, one
obtains the S-wave amplitudes for the various other decays:

A0(B0
s → D̄0K−π+) = (c2 + c4 + d2 + d4)EK + d6EπGDsπ(s)T 1

Dsπ→D̄K̄(s) +
1
2

(c2 − c1 + d2 − d1)EKGDK(s)T 1
D̄K̄→D̄K̄(s)

+
1
2

(c1 + c2 + 2c4 + d1 + d2 + 2d4)EKGDK(s)T 0
D̄K̄→D̄K̄(s) +

√
1
3

(c4 − c6 + d4)EηGDsη(s)T 0
D̄sπ→D̄K̄(s) , (4.73)

A0(B0 → D̄0π−π+) = (c2 + c3 + c4 + 2c5 + d2 − d3 + d4)EK +
1
3

EπGDπ(s)T 1/2
Dπ→Dπ(s)

× (c1 + 2c2 + 2c3 + 3c4 + 4c5 + d1 + 2d2 − 4d3 + 3d4 − 2d6)

+
1
3

(c2 − c1 + c3 + 2c5 − d1 + d2 + d3 + 2d6)EπGDπ(s)T 3/2
Dπ→Dπ(s) +

1
3

(c1 + 2c3 + c4 + 2c6 + d1 + d4)Eη

× GDη(s)T 1/2
Dη→Dπ(s) +

√
2
3

(c3 + c4 − d3 + d4)EKGDsK̄(s)T 1/2
DsK̄→Dπ

(s) , (4.74)
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A0(B− → D+π−K−) = − sin θ1(c1 + c4 − d1 + d4)Eπ − 2

√
2
3

sin θ1(c1 + c4)EKGDsK̄(s)T 1/2
DsK̄→Dπ

(s)

− sin θ1(3c1 + c2 + 3c4 + c6 − 3d1 + d2 + 3d4 + d6)EπGDπ(s)T 1/2
Dπ→Dπ(s) − sin θ1(c1 − c2 + c4 − c6

− d1 + d4 + 3d2 + 3d6)EηGDη(s)T 1/2
Dη→Dπ(s) +

1
3

sin θ1(c2 + c6 + d2 + d6)EπGDπ(s)T 3/2
Dπ→Dπ(s) , (4.75)

A0(B0 → D̄0π−K+) = − sin θ1(c2 + c4 + d2 + d4)Eπ −
1
3

sin θ1(2c2 + 3c4 − c6 + 2d2 + 3d4 − d6)EπGDπ(s)T 1/2
Dπ→Dπ(s)

−
1
3

sin θ1(c4 − c6 + d4 + 3d6)EηGDη(s)T 1/2
Dη→Dπ(s) −

√
2
3

sin θ1(c1 + c4 + d1 + d4)EKGDsK̄(s)T 1/2
DsK̄→Dπ

(s)

−
1
3

sin θ1(c2 + c6 + d2 + d6)EπGDπT
3/2
Dπ→Dπ(s) . (4.76)

It can be shown easily that the so defined amplitudes indeed fulfill two-body unitarity, A − A∗ = −2iTρA∗ =

−2iT †ρA, with ρ the two-body phase space factor. As noted before, the complex decay amplitudes for P- and D-
waves are described by an isobar model as coherent sums of intermediate resonant decays. This is reasonable because
of the relatively narrow widths of the resonances in P- and D-waves. These are the D∗, D∗2(2460), D∗1(2680), D∗s
and the Ds2(2573). Explicit expressions for their contributions are given in, e.g., Ref. [336]. The S-wave amplitudes
listed above contain alltogether 11 LECs, but only 10 combinations are independent. Furthermore, to reduce the their
correlations in the fit procedure, one instead uses the following combinations of LECs,

A = c1 + c4 , B =
3
2

(c2 + c6), C = c2 + c4 , D = c3 + 2c5, E = c3 + c6 ,

A′ = d1 − d4 , B′ = d2 + d6 , C′ = d4 − d6 , D′ = d4 + d6 , E′ = d3 . (4.77)

For example, if one fits the data for the decay B− → D+π−π−, there are just two free parameters, namely the ratio B/A
and the subtraction constant a(µ) (the quantity A alone can not be determined as it disappears in the normalization). For
the others channels, one could use the same value of the subtraction constant to minimize the number of parameters,
and, thus, one would be left with one parameter fits. The P- and D-wave resonances (with spin 1 and 2, respectively)
can be taken as in the LHCb analyses [306, 338] and, thus, introduce no new parameters.

At last, we collect the formulae for the angular moments used in the LHCb analysis. These contain important
information about the partial-wave phase variations. The angular moments 〈P`〉 are obtained by weighting the event
distribution in the invariant mass by the Legendre polynomial of order ` with respect to z,

〈P`(s)〉 =

∫ +1

−1
dz

dΓ

d
√

sdz
P`(z) . (4.78)

The angular moments are most powerful when a resonance is present only in one invariant mass combination. The
structures show up in moments up to 2J, where J is the spin of the contributing resonance [306]. Neglecting partial
waves with ` ≥ 3, the first few moments, that are normalized relative to each another, read

〈P0〉 ∝ |A0|
2 + |A1|

2 + |A2|
2 , 〈P1〉 ∝

2
√

3
|A0||A1| cos(δ0 − δ1) +

4
√

15
|A1||A2| cos(δ1 − δ2) ,

〈P2〉 ∝
2
5
|A1|

2 +
2
7
|A2|

2 +
2
√

5
|A0||A2| cos(δ0 − δ2) , 〈P3〉 ∝

6
7

√
3
5
|A1||A2| cos(δ1 − δ2) , (4.79)

where δi is the phase of Ai, i.e., Ai = |Ai|eiδi . Instead of 〈P1〉 and 〈P3〉, it is advantageous to analyze their linear
combination as proposed in Ref. [310],

〈P13〉 = 〈P1〉 −
14
9
〈P3〉 ∝

2
√

3
|A0||A1| cos(δ0 − δ1) , (4.80)

which only depends on the S-P interference up to ` = 2 and is particularly sensitive to the S-wave phase motion.
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Figure 13: Mρ and gρππ as functions of M2
π for lattice results available in the literature with N f = 2, N f = 2 + 1 and N f = 2 + 1 + 1 dynamical

quark flavors. For the references see the text.

5. Results: Well separated resonances

After discussing methods based on effective field theories and the specifics of the unitarization methodology we
now turn to the discussion of recent theoretical determinations of resonance parameters. In this section we start with
well separated resonances and with results from lattice QCD. As discussed in Sect. 3 the main steps of this approach
include the calculation of finite-volume energy eigenvalues which are then related to the physical quantities, such
as phase-shifts. Subsequently, these quantities can be used to determine the universal parameters of the resonances.
Obviously, the last step of this strategy is not much different from the typical approach to estimating resonance pa-
rameters from experimental data. Here, however, we will focus on the final results given in the respective publications
and compare, where applicable, to results obtained from experimental data.
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5.1. The ρ(770)-resonance
The lightest vector-isovector unflavored meson, the so-called ρ-resonance, has been discussed throughout the

current manuscript using different approaches. Due to its relatively small width and position far from the relevant
inelastic thresholds it appears clearly as a prototypical resonance signal in, e.g., the phase-shifts of ππ scattering.
Since the ρ also represents the second lightest resonance in QCD, it became a benchmark state for lattice QCD
calculations with the Lüscher method with first pioneering (pre-Lüscher) studies available in Refs. [339, 340].

Compared to other states, there are many publications available focusing on the ρ-resonance. Thus, we will
concentrate in the following on results obtained with at least N f = 2 dynamical quark flavors and leave out quenched
results. We will also not comment further on more approximate methods like the one presented in Refs. [117, 341].
Thus, we summarize the activity of studying the ρ-resonance on the lattice with the methodology discussed in Sec. 3.
In order to avoid repetitions we refer for complimentary discussions to related reviews [342–344].

A variety of lattice QCD calculations of the ρ-resonance with N f = 2, N f = 2 + 1, and N f = 2 + 1 + 1 dynamical
quark flavors exists. As discussed before, the corresponding phase-shift is estimated at different values of the pion
mass, sometimes including ensembles with physical or almost physical value of the pion mass. Let us first focus on
the results for mass and width (or coupling) of the ρ obtained at the different (not necessarily physical) pion mass
values and compare. Often, a Breit-Wigner fit to the phase-shift data is used to determine the resonance parameters,
which for the ρ does usually not differ significantly from better parametrizations like the IAM.

The bare lattice results for Mρ and the coupling gρππ, related to Γρ via

Γρ =
2
3

g2
ρππ

4π
q3
π

M2
ρ

, qπ =

√
M2
ρ

4
− M2

π , (5.1)

are plotted in Fig. 13 as functions of M2
π. From the four panels, the two in the upper row depict Mρ and in the lower

one gρππ, while the two in the left column are for N f = 2 and in the right one for N f = 2+1(+1). In Fig. 13 we include
N f = 2 results from Guo et al. [40], CP-PACS [345], RQCD [346], Lang et al. [347], ETMC-NF2 [111], Fischer et
al. [348], Pelissier [349], and Erben et al. [350]. For N f = 2 + 1 we include PACS-CS [351], HadSpec [142], Bulava
et al. [352], Fu and Wang [353], χQCD [354], Alexandrou et al. [355], Andersen et al. [356], HAL QCD [357] and
for N f = 2 + 1 + 1 ETMC [358].

Let us mention that χQCD [354] has for the first time determined also fρ using a partially quenched, mixed action
approach with overlap valence fermions on a staggered sea. As a value they find fρ− = 208.5(5.5)(0.9) MeV in good
agreement with the experimental value. While their value for Mρ is spot on and, thus, hiding behind the PDG value in
Fig. 13, they do not determine the width or the coupling. The coupling determined by HAL QCD in Ref. [357] has a
value around gρππ ≈ 12 and is, therefore, not visible in Fig. 13.

In general the picture emerging from the different panels in Fig. 13 is overall consistent, in particular for N f =

2 + 1(+1) results. Exact agreement of all these results is not to be expected, because they are not extrapolated to the
continuum limit and also different scale setting procedures are used. However, one can certainly conclude that the
coupling has little pion mass dependence towards the chiral limit. The notable exception is the value for the coupling
determined by HAL QCD, which is double the experimental value.

From Fig. 13 it can be observed that the N f = 2 + 1(+1) results appear to be more consistent. There is, in our
opinion, no reason of principle for this. We rather assume that most of the N f = 2 + 1(+1) results are more recent and
have, thus, less uncontrolled uncertainties.

Let us next turn to extrapolations of the lattice results presented above to the physical pion mass value (assuming
that the strange and charm quarks have been tuned to their physical values, if present.) The extrapolations have
been performed either by the lattice practitioners themselves, or by other groups. The latter is the case for Niehus et
al. [359], where lattice data from Ref. [352] and Ref. [142] is being analysed using different methods (see below) to
extrapolate to the physical point. Similarly, Mai et al. [43] use data from Ref. [40]. In the works of χQCD [354] and
RQCD [346] the ρ-resonance parameters have been even estimated directly with physical (or nearly physical) value
of the pion mass, making an extrapolation unnecessary.

All the corresponding results are compiled in Tab. 4, where we quote Mρ and Γρ as determined in the corresponding
references at the physical point. We also indicate the pion mass range used in the extrapolation and whether or not
chiral and continuum extrapolations have been performed. The comparison is visualized in Fig. 14.

For the chiral extrapolation different methods are being used:
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Reference N f Pion mass Chiral Cont. Mρ [MeV] Γρ[MeV]
range [MeV] extr. extr.

ETMC-NF2-a [111] 2 290 − 480 VMEFT x 821(24) 171(31)
ETMC-NF2-b [111] 2 290 − 480 mVMEFT x 850(35) 166(49)
RQCD [346] 2 150 – x 716(30) 113(35)
Fischer et al. [348] 2 132 − 340 IAM NLO x 786(20) 180(6)
Guo et al. [40] 2 226 − 315 UCHPT x 720(15) 120(1)
Mai et al. [43] 2 226 − 315 IAM NLO x 724(4) 133(2)
χQCD [354] 2+1 139.2(4) – x 776(6) -
Fu and Wang [353] 2+1 176-346 VMEFT x 780(16) 145(17)
Niehus-a [359] 2+1 200 − 284 IAM NLO (X) 761(25) 151(7)
Niehus-b [359] 2+1 200 − 284 IAM NNLO (X) 750(12) 129(12)
Niehus-c [359] 2+1 200 − 284 IAM NLO (X) 752(24) 145(5)
Niehus-d [359] 2+1 200 − 284 IAM NNLO (X) 738(7) 129(2)
ETMC [358] 2+1+1 230-500 VMEFT X 769(19) 129(7)
PDG [18] 775.26(23) 147.4(8)

Table 4: Overview over results on the ρ-resonance at the physical pion mass or extrapolated to the physical point based on lattice QCD. In some
cases, when calculations at nearly physical pion mass were performed, chiral extrapolations were not performed (”–”). Where several errors are
quoted in the original references, we combine them in quadrature. The last row shows the PDG value [18].

• ”–”: the result from an ensemble directly at or close to the physical point is quoted and, thus, no extrapolation
is performed.

• VMEFT: in Ref. [183] low-energy effective theory of vector mesons is studied using complex mass renormal-
ization, see Sect. 4.2. The squared pion mass dependence of the complex squared pole Z = (Mρ + iΓρ/2)2 is
determined, which allows one to extrapolate Mρ and Γρ together once these two observables have been deter-
mined for different pion mass values.

• mVMEFT: like EFT above, but modified according to Ref. [111] where instead of using M2
π as proxy for the

average up/down light quark mass, the NLO chiral perturbation theory expression is used.

• UCHPT: unitarized chiral perturbation theory [266], see Sect. 4.5.

• IAM: inverse amplitude method [45, 163, 280, 280], see Sect. 4.5.

For the VMEFT and mVMEFT, mass and width need to be extracted for each ensemble before the chiral extrapolation
is attempted. Here, typically a Breit-Wigner parametrization is adopted. For UCHPT and IAM one typically fits the
phase-shifts or the lattice energy levels directly. We remind the reader that both UCHPT and IAM are representatives
of a larger class of unitary approaches, see Sec. 4.5. The main qualitative difference lies in the matching to the strictly
perturbative chiral expansion [137, 138]. Assuming a Breit-Wigner form certainly represents an approximation, which
is, however, relatively well fulfilled for the ρ-resonance and also used for the analysis of experimental data.

Several comments are in order: currently, only in Ref. [358] a continuum extrapolation has been attempted in
the sense that a2 effects have been included in the fit, even if the corresponding fit parameters were found to be
insignificant. Also in Ref. [352] several lattice spacing values have been studied. However, neither a continuum nor a
chiral extrapolation has been performed. The same data is analysed in Ref. [359] using the IAM at NLO or NNLO. In
the latter publication also the data at two different lattice spacing values from Refs. [142, 360] is analysed using the
same method. In both cases, to our understanding, lattice artefacts have not been explicitly included in the fits, though
such terms appear to be not required for describing the data. Moreover, in most of the analyses P-wave dominance was
assumed with the notable exception of Ref. [360]. In the latter reference it was found, however, that this assumption
is well justified.

Comparing the extrapolated lattice results in Fig. 14 with the phenomenological information on the resonance
parameters one observes that again for the N f = 2 results differences to the PDG values appear larger than for
N f = 2 + 1(+1), see also the discussion above. Since the differences are positive and negative alike, we do not think

42



700

750

800

850

900
M
ρ

[M
eV

]

N
f

=
2

N
f

=
2

+
1

N
f

=
2

+
1

+
1

100

150

200

Γ
ρ

[M
eV

]

E
T

M
C

-N
F

2-
a

E
T

M
C

-N
F

2-
b

R
Q

C
D

F
is

ch
er

et
al

.
G

uo
et

al
.

M
ai

et
al

.
χ
Q

C
D

Fu
an

d
W

an
g

N
ie

hu
s-

a
N

ie
hu

s-
b

N
ie

hu
s-

c
N

ie
hu

s-
d

E
T

M
C

Figure 14: We compare the various literature values for Mρ (upper panel) and Γρ (lower panel) at the physical pion masses compiled in Tab. 4 with
the corresponding PDG values (blue, dashed line).

that one sees the difference between N f = 2 QCD and nature here. We would rather conclude that these differences
can be attributed to lattice artefacts or other systematic differences between the investigations. Of course, in a N f = 2
flavor world the ρ-resonance might have different properties as compared to nature, but a fully controlled continuum
and chiral extrapolations would be required to see such a difference. More detailed discussions can be found in
Refs. [40, 361–363].

For N f = 2 + 1 and N f = 2 + 1 + 1, the agreement with the PDG value appears to be reasonable, though in some
cases the deviations represent a few σ. Notably, the results from Ref. [359] using IAM to NNLO deviate further from
the PDG value than the results based on IAM to NLO. The reason is likely too sparse data to constrain all parameters.

In general, we believe that lattice QCD results of the ρ-resonance at several lattice spacing values and several,
close to physical pion mass values will be required to resolve the remaining discrepancies. Unfortunately, in the only
reference so far with three lattice spacing values [358] the low pion mass region is not explored sufficiently well.

5.2. The K∗(892)-resonance

The JP = 1− K∗ resonance is the analogue of the ρ-resonance in the Kπ channel with isospin I = 1/2 decaying in
a P-wave. Experimentally, a resonance mass of MK∗ = 892 MeV and a coupling gK∗−Kπ = 5.73(6) is quoted [18].

The lattice status is certainly not yet comparable to the ρ-resonance: there are fewer results available and fewer
systematic effects have been investigated and controlled. The first lattice computation has been performed using the
Michael and McNeile method in Ref. [117], however, the validity of the method is more questionable for the K∗ than
for the ρ.

In Ref. [364] (see also Ref. [369]) Prelovsek et al. then used the Lüscher method on a single N f = 2 flavor
lattice QCD ensemble. An additional strange quark was added only in the valence sector. The pion mass of the
ensemble is Mπ = 266(4) MeV and the strange quark mass was fixed using Mφ. The authors find MK∗ = 891(14) and
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Figure 15: MK∗ and gK∗−Kπ as functions of M2
π for lattice results available in the literature with N f = 2, N f = 2 + 1 and N f = 2 + 1 + 1 dynamical

quark flavors. We show results by Prelovsek et al. [364], Rendon et al. [365], HadSpec [366], RQCD [346], Fu and Fu [367] and Brett et al. [368].

gK∗−Kπ = 5.7(1.6) including only the P-wave, in surprisingly good agreement to experiment. In the same reference
they also estimate the K∗(1410) resonance mass including P- and D-wave mixing.

Rendon et al. study S- and P-wave scattering in the I = 1/2 channel in Ref. [365] with two ensembles corre-
sponding to pion mass values of 317 and 176 MeV. For the K∗ in the P-wave they find MK∗ = 895(6) MeV and
MK∗ = 871(8) MeV for the heavier and the lighter pion mass value, respectively. For the coupling they quote
gK∗−Kπ = 5.02(26) and gK∗−Kπ = 4.99(22). They use N f = 2 + 1 flavor CLS ensembles at two different values
of the pion mass, 317 and 175 MeV, the lighter pion mass ensemble corresponding to the finer lattice spacing of
a = 0.088 fm and the heavier one to a = 0114 fm.

The Hadron Spectrum collaboration study the K∗ for several pion mass values in Ref. [366], after an initial study
in Ref. [370]. The pion mass values range from 239 to 391 MeV and I = 1/2 and I = 3/2 are being investigated.

RQCD in Ref. [346] determine the K∗ on one N f = 2 ensemble with Mπ = 150 MeV. They carefully investigate
systematics and arrive at MK∗ = 868(30) MeV and gK∗−Kπ = 4.79(49).

Brett et al. [368] work on a single ensemble with 230 MeV pion mass and N f = 2 + 1 dynamical quark flavors.
Their result is MK∗/Mπ = 3.808(18) and gK∗−Kπ = 5.33(20).

Fu and Fu [367] work with N f = 2 + 1 flavor MILC ensembles with the staggered quark discretization. The
ensemble they use has a rather coarse lattice spacing of a = 0.15 fm. They quote MK∗ = 1034(13) MeV and
gK∗−Kπ = 6.38(78).

In Fig. 15 we summarize the current lattice status for the K∗: we show MK∗ in the left and gK∗−Kπ in right panel,
both as a function of M2

π comparing the results available in the literature. Since no continuum limits have been taken,
the agreement is reasonable, maybe apart from the result from Fu and Fu in Ref. [367]. A possible explanation for
the discrepancy they find might be the large lattice spacing of 0.15 fm or the staggered fermion formulation used in
Ref. [367].

5.3. The ∆(1232)-resonance
The ∆(1232)-resonance is decaying predominantly into nucleon-pion, it is well isolated and it represents the lowest

lying spin-3/2 baryon resonance. For the ∆(1232)-resonance the amount of lattice results is much sparser than for
the ρ(770) and even the K∗(892) discussed above. The main reason is that the signal-to-noise ratio in the relevant
correlation functions is worse, since one is dealing with a heavier baryonic state. An additional complication comes
from the fact that the inelastic threshold is relatively close by at Nππ. This means on the one hand that the calculation
needs to be done at close to physical pion mass and on the other that there are typically only very few energy levels
available in the range between Nπ and Nππ. We remark here that the Nππ channel is subdominant and for this reason
sometimes the elastic Lüscher formalism is applied also above the Nππ threshold.
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Figure 16: M∆ and g∆−Nπ as functions of M2
π for lattice results available in the literature with N f = 2, N f = 2 + 1 and N f = 2 + 1 + 1 dynamical

quark flavors. Results from Verduci [371], Alexandrou et al. [118, 372], Andersen et al. [373], Alexandrou et al. [374] and Silvi et al. [375] are
shown.

Due to these limitations we include for the ∆(1232) all available lattice results in the comparison, where the ∆ is
treated as a resonance. After preliminary results for the P33 phase-shift in pion-nucleon scattering have been shown in
Ref. [376], results for mass and width have been reported in Verduci’s PhD thesis [371], where Lüscher’s formalism
with N f = 2 Wilson-clover improved dynamical quarks was applied. The single ensemble had a pion mass value of
266 MeV. The ∆ mass and width are determined from a Breit-Wigner fit. In the two references by Alexandrou et
al. [118, 372] the approach developed by Michael and McNeile was used instead of the Lüscher formalism. These
calculations are based on domain wall valence fermions on a staggered sea with two pion mass values, 180 and
260 MeV. Andersen et al. [373] use one N f = 2 + 1 flavor CLS ensemble with Mπ = 280 MeV. The authors apply
the Lüscher formalism and a Breit-Wigner fit to determine mass and width. Silvi et al. [375], again using N f = 2 + 1
dynamical quark flavors this time with a 255 MeV pion mass value, apply the Lüscher method to explore for the
first time both a fit to the phase-shift data with a Breit-Wigner form and a determination of the pole in the scattering
amplitude. The difference they find between these two methods is negligible within errors. Finally, in the proceeding
contribution by Alexandrou et al. [374] N f = 2 + 1 + 1 dynamical flavor simulations are used for the first time with
physical value of the pion mass. The fit to determine the mass and width relies on a Breit-Wigner form, but there is
no value for the width quoted yet.

All these calculations are based on single lattice spacing simulations and single pion mass values each. Therefore,
the meaningfulness of these calculations is limited. But we can learn that the lattice calculation of the ∆(1232) is
feasible and we can expect more results in the near future. Moreover, by combining all available results, one sees
a more or less consistent picture emerging: in Fig. 16 we show in the left panel M∆ and in the right panel g∆−Nπ as
functions of M2

π. The PDG value for the mass is included in the left figure, while in the right we take the average of
the two values from Refs. [216, 377]7.

The coupling g∆−Nπ is defined here as in Ref. [216] via the width

Γ∆ =
(g∆−Nπ)2

48πm2
N

EN + mN

EN + Eπ
p3

∆ (5.2)

in order to be able to compare all the results. EN and Eπ are the energies of the nucleon and pion, respectively, with
total momentum p∆. Note that first steps towards studying the ∆ resonance by HAL QCD can be found in Ref. [378].

The status of the ∆(1232) from lattice QCD is certainly not yet final. But the existing, though still more exploratory
investigation indicate that this baryon resonance can be studied with good precision using lattice QCD. Like for the

7Note that the ∆ mass and coupling values have been compiled already in Ref. [375], but not including the results from Ref. [374] yet.

45



Reference N f Pion mass Chiral
√

sσ [MeV]
range [MeV] extr.

GWQCD [41] 2 227-315 UCHPT 440(52) − i240(32)
Mai et al. [43] 2 227-315 mIAM 443(3) − i221(6)
HadSpec [342] Döring et al. [283] 2+1 236-391 mIAM 449(17) − i169(24)
PDG [18] 450(50) − i275(75)

Table 5: The σ-resonance pole position
√

sσ at the physical pion mass value determined based on lattice QCD data. The last row shows the
corresponding PDG value [18]. For none of these results the continuum limit has been studied.

ρ-resonance, it will be interesting to see the continuum extrapolation of the data, but even more so the inclusion of
Nππ in the investigations. It is likely that eventually the continuum limit needs to be taken at the physical point, since
the applicability of CHPT for this state is at least questionable.

Let us also remark that it will be also very interesting to estimate the scattering length in the I = 1/2 and I =

3/2 channels as precisely as possible, since these scattering length can be compared to very precise experimental
measurements. These scattering lengths are also important in the analysis of the pion-nucleon σ-term [379].

5.4. The f0(500)-resonance
The scalar isoscalar unflavored mesonic resonance f0(500) (also referred to as σ-resonance) is the lightest excited

state in the spectrum of hadrons. At the same time it is one of the most controversial as its appearance in the line-
shapes of, e.g., ππ scattering is hard to distinguish from the unstructured background, see the extensive review [44].
Ultimately, many precise analyses led to the currently accepted ranges for mass and width [18].

Access to this (I = ` = 0) channel directly from quark-gluon dynamics using the above described methods of lat-
tice QCD was hindered for a long time by the presence of disconnected diagrams, despite early pioneering works [380–
383]. The first full fledged calculation was finally performed by the Hadron Spectrum Collaboration [342], extracting
also phase-shifts using the Lüscher framework. These results have then been analyzed and extrapolated to the phys-
ical point using the mIAM in Ref. [283]. Only a little later, a two-flavor lattice QCD study by the ETMC [384] was
performed, allowing to extract and extrapolate I = 0 ππ S-wave scattering length to the physical point. Note that
recently a study in chiral perturbation theory has been performed in Ref. [385], results of which require to reassess
the uncertainties quoted in Ref. [384]: the chiral perturbation theory result suggests that these are of the order of the
result itself.

In Ref. [386] the scattering lengths were determined in the three-flavor formulation. The second calculation
covering a larger energy region was performed by the GWQCD group in the two-flavor setup [41] extrapolating the
obtained resonance parameters to the physical point using a chiral unitary approach.
Subsequently, the obtained energy eigenvalues were reanalyzed in a cross-channel (I = 0, 1, 2) study [43], including
chiral extrapolations using the mIAM approach [45, 163, 280, 280], see Sect. 4.5, leading to tighter constraints on the
resonance parameter values at the physical point.

In Ref. [387] coupled channel ππ, KK̄ and ηη scattering with isospin I = 0 was studied for the first time. The
authors work with one ensemble with a pion mass value of 391 MeV with N f = 2 + 1 dynamical quark flavors. The
pion mass value of almost 400 MeV has implications for the thresholds. But in this setting they find a bound-state
f0(500) pole on the physical Riemann sheet [+ + +] at 745(5) MeV mass and an f0 resonance on the unphysical
[− + +] Riemann sheet at 1166(45) − i181(68)/2 MeV. The f0(500), of course, becomes unstable once the pion mass
is reduced towards the physical point. The f0 resonance is connected by the authors to the f0(980) resonance, and they
claim that it is dominated by a KK̄ molecular state, because there is no pole on [− − +] Riemann sheet.

The currently available lattice QCD results for the f0(500) or σ-resonance pole position
√

sσ at the physical point
are compiled in Tab. 5, where we also quote the PDG value. The agreement is reasonable, keeping in mind that most
of the systematic effects are still not controlled in the corresponding lattice simulations.

6. Results: Coupled channels/thresholds

The vast majority of resonant states appear in settings allowing (energetically) for multiple decay channels. Such
cases are harder to access both in performing numerical lattice QCD calculations as well as in view of the analysis of
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the results, extracting for example universal parameters of resonances from poles on the second Riemann sheet. In the
following we review the current status on such states accessed from Lattice QCD. For the D∗0(2300) we also discuss
recent extractions of the pole positions from recent LHCb data.

6.1. Light mesons
The mesonic scalar states a0(980), f0(980), f0(500) and κ(800) were studied in Ref. [388] using quenched simula-

tions for pion masses 344-576 MeV. In that, an effort was made to identify the tetraquark content of these states and
searching for new states. Similar goals are followed in Ref. [381] for isospin 0, 2, 1/2 and 3/2 states. The question
about the tetraquark content of the a0(980) and the κ(800) was then further studied in an unquenched simulation [389],
finding no evidence for such an interpretation. The a0(980) was extracted in a coupled-channel meson-meson scat-
tering in lattice QCD in Ref. [390]. In the latter reference a global fit to lattice finite-volume energy levels from πη
scattering and to relevant experimental data on the πη event distribution in B decays together with the γγ → πη cross
section is performed. Both the leading and next-to-leading-order analyses lead to similar and successful descriptions
of the finite-volume energy levels and the experimental data. However, these two different analyses yield different πη
scattering phase shifts for the physical masses of the pseudoscalar mesons. Both the a0(980) and the a0(1450) poles
and their properties could be extracted at NLO.

The f0(980), discussed in Sect. 5.4, was studied in Ref. [387] by investigating isoscalar ππ, KK̄ and ηη coupled
channel scattering. The authors find a candidate state for the f0(980) and its properties suggest that it closest resembles
a KK̄ molecule. In this context it is worth emphasizing that the opening of the KK̄ threshold induces a level crossing
thus mocking up a resonance [391]. A possible resonance and a threshold can be distinguished by their different quark
mass dependence.

Systems with non-vanishing strangeness quantum number (πK, ηK) have been studied for a single pion mass (≈
400 MeV) by the Hadron Spectrum Collaboration [370]. In that a generic parametrization of the scattering amplitude
(Chew-Mandelstam) was utilized to obtain the complex pole position on the second Riemann sheet. Extracted poles
were found to be comparable to the experimental values even for the broader scalar case. For the narrow tensor
resonance K∗(1430) also Breit-Wigner parameters have been extracted as MR = 933(1) MeV and gR = 5.93(26).
Later the study was repeated for a range of pion masses (200−400 MeV) in Ref. [366] tracing out the chiral trajectory
of the resonance pole.

Also very interesting, but also more complex are light mesons decaying to multihadron states, such as the a1(1260),
which are hard to access both on the lattice and in the continuum. For the former, one key challenge lies in the
construction of multihadron interpolating operators. In a pioneering study [392] composite operators such as ρπ,
ωπ etc. were used. Three particle operators were not considered motivated by the fact that for the considered setup
(L ≈ 2 fm, Mπ = 266 MeV) the three pion states are above the considered energy range. With these set of interpolating
operators it was observed that the inclusion of composite operators in the GEVP (see Sect. 3.4) is crucial for a stable
extraction of energy levels. In this work also a finite-volume analysis was performed using the two-body Lüscher
formalism and the Breit-Wigner parametrization of the scattering amplitudes, both rooting in the same approximation
of stable vector mesons. The resonance masses were extracted as Ma1 = 1.435+53

−121 GeV, Mb1 = 1.435+36
−90 GeV

comparing roughly with the experimental values [18], 1.230(40) GeV and 1.2295(32) GeV, respectively.
Later, a lattice calculation of coupled πω, πφ scattering was reported by the Hadron Spectrum Collaboration in

Ref. [393]. While three-meson interpolators were included systematically, the finite-volume effects of the three-body
channels were only included via meson-meson channels, motivated by the large pion mass Mπ = 391 MeV of the
considered ensemble. A clear resonance signal for the b1-resonance was observed with the MR ≈ 1380 MeV.

Recently, the resonant three-pion channel for the quantum numbers of the a1-resonance was calculated on the
lattice by the GWQCD collaboration [38]. Here, for a pion mass value of 224 MeV the interpolator basis also included
one-, two- and three-meson interpolators. Similarly to the pioneering study of Lang et al. [392], it was observed that
three-body operators are, indeed, indispensable for a stable extraction of energy eigenvalues. The results of this
calculation were used to determine volume-independent quantities by the means of the recently developed three-body
quantization condition [85, 86]. Subsequently, these quantities were used to obtain a pole position on the second
Riemann sheet, see left panel of Fig. 4. Couplings of the a1-resonance could be extracted via the corresponding
infinite-volume three-body formalism [27, 39]. Agreement of the mass of this state with the experimental value was
observed, while the width was found to be significantly smaller than its experimental counterpart. This is certainly
expected having a lattice setup with heavier than physical pion mass values.
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6.2. The Roper-resonance N(1440)
The N(1440) or Roper resonance [394] is the first excited nucleon state with I(JP) = 1/2(1/2+) quantum num-

bers. It appears in the baryon spectrum as a considerably lighter state than the parity partner of the nucleon I(JP) =

1/2(1/2−) N(1535) which is at odds with quark model expectations [395–397] associating the Roper with the second
radial excitation of the nucleon. This comprises one of the paramount examples of the baryon spectrum puzzles, see
also the discussion in Sec. 4.4. Note that better agreement with phenomenology can be achieved by including Gold-
stone bosons as effective degrees of freedom to the constituent quark model [398]. Also more recent phenomeno-
logical analyses reveal an intricate analytic structure of the Roper [37, 399, 400] including strong coupling to the
three-body channels distorting its shape from the usual Breit-Wigner form. Theoretical explanations include its dy-
namical generation without a qqq core [401], or an interplay of genuine resonance poles and dynamical effects [402].

In modern LQCD calculations, the Roper channel is similarly obscure despite significant efforts made to reveal
its structure, see for instance Refs. [403–408]. Among the references from above, only in Ref. [406] evidence for a
state compatible in mass with the N(1440) was claimed, using a chiral fermion discretization and a Bayesian ansatz
to estimate the energy levels. However, the calculation is partially quenched and utilizes mixed action (even though
chiral valence on chiral sea) and, maybe most importantly, the Roper is to our understanding not treated as a resonance,
e.g., with the Lüscher formalism.

More sophisticated LQCD studies [409, 410] followed later, consistently ruling out the exclusive qqq interpretation
of the Roper-resonance. Instead the sizable coupling to the five-quark operators (meson-baryon states) is noted in
Ref. [410]. Even more interesting, is the missing level reported in Ref. [143, 409, 411] to the expectation from the
elastic πN scattering alone. While there are attempts based on Hamiltonian effective field theory (HEFT) [412] to
interpret the measured finite-volume spectrum [409], an obvious solution to this seem to be the not included (most
notably ππN) inelastic channels. Notably, this is also supported by phenomenology [18] attributing up to 50% of the
decay branching ratio to such three-body channels in the final state, as discussed in Sec. 4.4.

In the context of πN scattering we mention that there is also an exploratory study by Lang and Verduci [413] in the
negative parity sector, which reports a significant change of the calculated finite-volume spectrum when extending the
operator basis to incorporate the meson-baryon type operators. Finally, the situation may become even more entangled
as discussed in Ref. [414]. There, based on a chiral unitary approach for the meson-baryon scattering [260, 415] a
finite-volume spectrum for the I(JP) = 1/2(1/2−) channel was predicted using quark masses from lattice studies [416,
417]. It was found that mixing of relevant two-body thresholds (ηN,KΛ,KΣ) can induce spectra looking similar to an
avoided level crossing. Furthermore, poles can move on hidden Riemann sheets, thus, obscuring simple level counting
arguments. Future analyses have to face such challenges in both parity sectors, in addition to the complexity of the
three-body channels (see e.g. [29]) for N∗(1440) channel.

6.3. Specific Open and Closed Charm Systems

There is significant focus on determining properties of charmonium resonances from Lattice QCD. One reason for
this is that the charmonium spectrum was long believed to be well understood in terms of a heavy quark potential (the
positronium of QCD) but with the appearance of quite a number of “exotic” states like the X(3872) (nowadays called
χc1(3872)) challenged this simple picture and rekindled interest.

There is a list of lattice QCD studies of charmed meson states, which are mostly of exploratory nature. However,
the studies represent important technical progress and allow one to draw first physical conclusions. There are sev-
eral groups or collaborations which successively worked on different states based on a fixed lattice action and fixed
ensembles.

The work of the group around Lang, Mohler and Prelovsek is largely based on two ensembles: one with Mπ =

266 MeV and N f = 2 and a second one with Mπ = 156 MeV and N f = 2 + 1 dynamical quark flavors. As a
consequence, the charm quark is always treated partially quenched, which has a technical advantage: a charm and
anti-charm cannot be created from the vacuum, which makes certain decays to (much) lighter states impossible. For
the N f = 2 ensemble the strange is partially quenched as well.

The CLQCD collaboration on the other hand works with N f = 2 Wilson twisted mass ensembles generated by
the European Twisted Mass Collaboration (ETMC) [418, 419] with a range of pion mass values from 300 MeV to
458 MeV. They work with a relatively fine lattice spacing value of 0.067 fm. Thus, while they can investigate the
pion mass dependence to some extend, lattice artefacts are also not accessible, but are expected to be small. In that,
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Figure 17: Comparison of D∗0(2300) energies from the different lattice calculations minus MD + Mπ as a function of the squared pion mass value.

it is notable that with Wilson twisted mass fermions at maximal twist, lattice artefacts linear in amc are absent and
contributions start only at (amc)2.

Similarly, two-meson systems involving D mesons have been also studied by the Hadron Spectrum Collaboration.
Their work is based on lattice QCD ensembles with N f = 2 + 1 dynamical quark flavors and anisotropy. The relevant
ensembles for this review are one with pion mass value 391 MeV and a second one with Mπ = 239 MeV. Their
usage of the distillation method [134, 135] allows them to include a large set of interpolating operators. The resulting
number of energy levels and the precision thereof allows them to perform elaborate analyses including also coupled
channels. The price for such resource intensive investigations is that typically those are only performed on one or two
ensembles, which makes the understanding of systematics and, thus, the generalisation of the results harder. For a
first investigation of the D-meson spectrum see Ref. [420], which, however, treats all states as stable states.

6.3.1. The D∗0(2300)
The D∗0(2300) (formerly known as D∗0(2400)) is a state with JP = 0+ and isospin I = 1/2, seen to decay into Dπ.

The width of the state is quoted to be around 220 MeV by the PDG [18].
In Ref. [421] Mohler and co-authors study D-meson pion scattering and D-meson resonances. It represents an

exploratory study of the scalar D∗0(2300) and the axial D1(2430) resonances on the one aforementioned N f = 2
ensemble with a pion mass value of about 266 MeV. Consequentially, the charm quarks are treated partially quenched.
Since they do not work at physical pion mass value they quote mass differences with respect to the spin-average
(MD + 3MD? )/4 for the D∗0(2300), for which they quote 351(21) MeV in agreement with the experimental value. The
coupling of the D∗0(2300) to Dπ is found to be gD∗0Dπ = 2.55(21) GeV, only a few σ away from the experimental value.
In addition, the authors determine energy levels for a list of states in the D-meson spectrum. Given the fact that they
are not able to extrapolate to the continuum limit nor to the physical pion mass value, the agreement to experiment
is quite remarkable. Finally, they also determine the S-wave scattering lengths for the Dπ and the D∗π systems with
I = 1/2, finding a0 = 0.81(14) fm and a0 = 0.81(17) fm, respectively. It should be noted that the spatial volume is
only 163.

In Ref. [303] a first coupled channel analysis of Dπ, Dη and DsK̄ scattering is presented by the Hadron Spectrum
Collaboration based on the aforementioned ensemble with the largest pion mass (N f = 2 + 1, Mπ = 391 MeV.
Scattering amplitudes are determined and analytically continued to complex energies. This results in finding a shallow
bound state at 2276(1) MeV below the Dπ threshold in the JP = 0+ channel, which could be the D∗0(2300). Another –
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Reference N f Mπ [MeV] MD∗0 − (MD + Mπ) [MeV]
Mohler et al. [421] 2 266 165(33)
Moir et al. [303] 2+1 391 -1(1)
Gayer et al. [424] 2+1 239 77(64)
PDG [18] 347(7)

Table 6: The values extracted from the mentioned references for MD∗0(2300) used for Fig. 17.

this time deeply-bound state in the 1− channel – is found at 2009(2) MeV, which could be related to the D∗(2007). A
resonance is found in the JP = 2+ channel, which is narrow and has mass and width of 2527(3) MeV and 8.2(7) MeV,
respectively. While experimentally, this could correspond to the D∗2(2460), we remark that the D∗π is not included in
this investigation.

The data of Ref. [303] were reanalyzed in the framework of UCHPT [302] as discussed in Sect. 4.5.4. The NLO
effective Lagrangian was utilized together with the LECs determined earlier in [323] to calculate the energy levels for
JP = 0+scattering in the strangeness-isospin (S , I) = (0, 1/2) in a finite volume [422, 423]. This not only led to an
amazingly precise postdiction of the energy levels, but indeed the two pole structure of the D∗0(2300) was revealed
with the following pole positions (

√
s = M − iΓ/2):

Pole 1: (2264+8
−14 − i0) MeV , Pole 2: (2468+32

−25 − i113+18
16 ) MeV , Mπ = 391 MeV ,

Pole 1: (2105+6
−8 − i102+10

−12) MeV , Pole 2: (2451+36
−26 − i134+7

8 ) MeV , Mπ = 139 MeV , (6.1)

which solved the puzzle that the lowest charm-strange excitation was not heavier than the corresponding charm-
nonstrange meson. This two-pole structure can be understood easily in the SU(3) limit. In this limit, all light and
all heavy mesons take common values, see also Refs. [264, 319], and the heavy-light meson scattering amplitude
decomposes into irreps as 3 ⊗ 8 = 15 ⊕ 6 ⊕ 3 and the potential can be diagonalized accordingly. As it turns out, at
leading order only the 6 and 3 irreps are attractive, leading to two distinct poles. To make contact to the broken SU(3)
world, linear extrapolations in the meson masses are used (as introduced in Ref. [36]), and the poles move into the
complex plane as given in Eq. (6.1). In fact, the lower pole and the D∗s0(2317) discussed below are chiral partners in
such a scenario. Using heavy-flavor symmetry, the same approach predicts a two-pole structures in the (0, 1/2) sector,
located at

√
s = 5537+9

−11 − i116+14
−15 MeV and

√
s = 5840+12

−13 − i25+6
−5 MeV. For (S , I) = (1, 0) the D∗0(2317) is found

at 2315+18
−28 MeV as in [323] and the corresponding state in the B meson sector is predicted at 5724+17

−24 MeV, i.e., it
is bound by about 50 MeV. For an earlier study of these states, see [304]. Using heavy quark spin symmetry, one
can make further predictions for axial D1 and B1 mesons. This double-pole structure is further consolidated by the
analysis of data on B→ Dφφ decays as discussed in Sect. 6.3.2.

In the I = 1/2 channel, Dπ scattering was investigated again in Ref. [424] by the Hadron Spectrum Collaboration
with one ensemble at Mπ = 239 MeV. A D∗0 resonance pole is found in the S-wave Dπ system. Mass and width
of 2196(64) MeV and 425(224) MeV, respectively, are found by analytically continuing scattering amplitudes. This
study complements the earlier study [303] at Mπ = 391 MeV pion mass value. In contrast to the latter, the pole is
now about 80 MeV below the Dπ threshold, indicating a non-trivial pion mass dependence of this state. As discussed
below, this result gives further credit to the lower pole in Eq. (6.1) representing the lowest charm scalar meson, see
also Sect. 6.3.2.

The D∗0 energies relative to the Dπ threshold are plotted in Fig. 17 as a function of M2
π comparing the different

available lattice estimates. Note that in Ref. [421] this energy difference is not quoted and we have determined it from
the available results in that reference. The picture, which starts to emerge, seems to indicate that the D∗0 is a virtual
state above Mπ ≈ 400 MeV. Within the large uncertainties the available data lets one expect convergence towards the
experimental value once the physical pion mass is used in lattice calculations.

6.3.2. The D∗0(2300) from Experimental Data
As discussed before, certain open charm mesons do not fit into the conventional quark model picture but rather

are most probably hadronic molecules, which explains many of their odd features that are observed and also found
on the lattice. This is further corroborated by the analysis of the precise data from LHCb on the various decay modes
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B → Dφφ [306–309, 338], that give independent information on the thought after excited D mesons in the S-wave
amplitudes, that can be extracted from the so-called angular moments discussed in Sect. 4.5.4.

In this context, it is important to stress that the chiral symmetry of QCD requires energy-dependent pionic strong
interactions at low energies. This constraint, however, is not fulfilled by the usual Breit-Wigner (BW) parameteriza-
tion of pionic resonances, such as the open charm excitations discussed here, leading to masses larger than the real
ones [336]. For an early work on this issue, see Ref. [425]. The argument goes as follows: Neglecting for simplicity
the energy dependence of the decay width, the BW paramterization in the S-wave (` = 0) of the Dπ system reads:

BW0(s) ∝
1

s − M2
0 + iM0Γ0

, (6.2)

with M0 and Γ0 the BW mass and width of the resonance, in order. The peak position of this BW parameterization is
given by

d
ds
|BW0(s)|2 ∝ −

2(s − M2
0)[

(s − M2
0)2 + M2

0Γ2
0
]2 = 0 . (6.3)

Thus, the BW mass for a resonance corresponds to the value of the peak position. The chiral symmetry constraints
can be most simply accounted for by modifying Eq. (6.2) with an energy-dependent prefactor:

BW′
0(s) ∝

Eπ

s − M2
0 + iM0Γ0

, Eπ =
s + M2

π − M2
D

2
√

s
, (6.4)

which is nothing but the energy of the produced soft pion in the rest frame of the Dπ system. The peak position speak
is obtained from

d
ds
|BW′

0(s)|2
s=speak

= 0 , (6.5)

which clearly yields a shift of speak from M2
0 . This shift is expected to be small compared with M0 as long as the width

is small, Γ0 � M0. Setting speak = (M0 + ∆)2 and retaining only the linear term in ∆ leads to

∆ '
Γ2

0(M2
0 − M2

π + M2
D)

2M0
[
2(M2

0 + M2
π − M2

D) − Γ2
0
] =

Γ2
0ED

4M0Eπ − Γ2
0

, (6.6)

where ED is the energy of the produced D in the rest frame of the Dπ system with total energy M0. Thus, for the
case 4M0Eπ > Γ2

0, the shift ∆ is positive and the mass of the resonance is lower than the peak position. Note that
the modification in Eq. (6.4) can only be applied in a small energy region before the coupled-channel effect becomes
important, and, thus, is neither practical nor systematic. However, this little exercise clearly shows the deficiencies of
the BW parameterization for pionic resonances that are severely constrained by chiral symmetry.

Using the framework outlined in Sect. 4.5.4, one can now fit the LHCb data for the reactions B− → D+π−π−,
B− → D+π−K−, B0

s → D̄0K−π+, B0 → D̄0π−π+ and B0 → D̄0π−K+. In fact, note that only three sets of the weak
production vertices in Table 3 are independent. Thus instead of fitting the four decay amplitudes to the experimental
angular moments simultaneously, we fix the LECs in the amplitudes in Eqs. (4.73-4.76) by fitting to three of them,
i.e., B− → D+π−K−, B0

s → D̄0K−π+ and B0 → D̄0π−π+, and then describe the angular moments for B0 → D̄0π−K+

with the determined LECs. The data for the angular moments defined in Eqs. (4.79) and (4.80) are fitted up to
MDπ = 2.54 GeV as in Ref. [310] for the decays B− → D+π−K− and B0 → D̄0π−π+, and up to MD̄K̄ = 2.65 GeV
for B0

s → D̄0K−π+ as in Ref. [336]. The best fit has a reasonable quality with χ2/d.o.f. = 1.2 and the comparison
to the LHCb data is shown in Fig. 18. The bands in this figure reflect the one-sigma errors of the parameters in
the scattering amplitudes determined in Ref. [323]. We note that in particular the linear combination of two angular
moments 〈P13〉 = 〈P1〉 − 14〈P3〉/9 only depends on the S-P interference as long as one restricts oneself to partial
waves with ` ≤ 2. Therefore, 〈P13〉 is the quantity that one should focus on if one wants to better understand the
scalar charmed mesons. The LHCb angular moment data for all these decays can be well described. The predicted
〈P1〉 and 〈P3〉 also agree with the measurements. Because the final-state interactions in these fits are taken from
the unitarized chiral perturbation theory amplitudes already pinned down in Ref. [323], this analysis of the LHCb
data implies that the poles contained in these amplitudes can be regarded as the low-lying scalar charmed meson
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Figure 18: Fit to the LHCb data of the angular moments 〈P0〉, 〈P2〉 and 〈P13〉 [306–309, 338] for the various B → Dφφ channels. The largest
error of 〈P1〉 and 14〈P3〉/9 in each bin is taken as the error of 〈P13〉. The error bands correspond to the one-sigma uncertainties propagated from
the input scattering amplitudes. All data sets are fit with two parameters (one combination of LECs and one subtraction constant) except for the fit
to B0 → D̄0π−K+, which only requires a subtraction constant as explained in the text.

spectrum. Furthermore, it follows that such a spectrum is consistent with the LHCb data. In particular, the poles
of the scalar charm-nonstrange mesons,

(
2105+6

−8 − i 102+10
−11

)
MeV and

(
2451+35

−26 − i 134+7
−8

)
MeV [310], are different

from the resonance parameters of the D∗0(2400) listed in Review of particle Physics (RPP) [426], which were extracted
using a simple BW parameterization. The analysis in this work gives a further strong support to the two-D∗0 scenario as
advocated in Refs. [302, 310]. The two-pole scenario will be at least mentioned in the newest version of the RPP [18].
This point was further strengthened by the analysis in Ref. [427], the results based on unitarized CHPT were refined
by using Khuri-Treiman equations, that respect three-body unitarity. The S-wave Dπ phase-shift could be extracted
and it was shown again that a BW parameterization is not capable of describing these data. Thus, the lightest charmed
scalar meson is of similar nature than the famous f0(500) and K∗0(700), namely generated by meson-meson final-state
interactions, which leads to masses at odds with quark model expectations.

6.3.3. The D∗s0(2317)
The D∗s0(2317)± has isospin I = 0 and appears to have quantum numbers JP = 0+. It decays predominantly into

D+
s π

0 and has a width of only a few MeV. The PDG quotes a value of MD∗s0
= 2317.8(5) MeV and a width smaller

than 4 MeV [18].
The first indirect lattice calculation of the D∗s0(2317) was performed in Ref. [323]. More precisely, the scattering

lengths for the channels that are not affected by disconnected diagrams, namely I = 3/2 Dπ, Dsπ, DsK, I = 0 DK̄
and I = 1 DK̄ (see Tab. 1), were calculated for pion masses in the range from 300 to 600 MeV. Using UCHPT
at NLO, see Eq. (4.49), the LECs hi could be determined and predictions for the channels that were not explicitly
calculated on the lattice could be made. The scattering length in the interesting channel (S , I) = (1, 0) was found
to be a(DK(I = 0)) = −0.84+0.17

−0.22 fm and the pole position of a bound state comes out as 2315+18
−28 MeV, which is

very close to the PDG value of the mass of the D∗s0(2317). The molecular nature of this state is supported by the
Weinberg argument, that relates the scattering length a to the binding energy ε and the wave function renormalization
constant Z, with (1−Z) being the probability of finding the molecular component in the physical state (note that Z = 0
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Figure 19: MD + MK − MD∗s0(2317) as a function of M2
π comparing the available lattice determinations.

corresponds to a compact multi-quark state) [428, 429]. This relation reads

a = −2
(

1 − Z
2 − Z

)
1√
2µε

+ O(1/β) , (6.7)

with µ the reduced mass and 1/β the range of forces. For a pure molecular state with Z = 0, this equation gives
a = −1.05 fm, which coincides with the range given above. In fact, the trajectory of the pion mass dependence of such
a molecular state is of quadratic shape [328], consistent with the lattice data of Ref. [430]. Finally, we note that the
width of the D∗s0(2317) is very tiny, as it is entirely driven by isospin-breaking effects [315, 318, 431, 432].

Mohler et al. [433] carried out a similar exploratory calculation for DK scattering focused on the D∗s0(2317). They
find the D∗s0 to be located 37(17) MeV below the DK threshold. The calculation is based on two the ensembles of
Lang, Mohler and Prelovsek mentioned above, one with N f = 2 dynamical quark flavors and Mπ = 266 MeV and
a second one with Mπ = 156 MeV and N f = 2 + 1 dynamical quark flavors. Of course, given the totally different
systematics on these two ensembles a combination of the results is difficult. However, their finding is a negative value
of the DK S-wave scattering length, which leads the authors to the conclusion stated above.

In Ref. [434] a similar set of authors work with the exact same N f = 2 and N f = 2 + 1 flavor ensembles as
discussed in the previous paragraph. Here, they focus on Ds mesons by studying DK and D∗K scattering in the
JP = 0+, 1+, 2+ channels. In the JP = 0+ channel they find a state 37(17) MeV below the corresponding threshold,
which they identify to be the D∗s0(2317), in agreement with Ref. [433]. In the 1+ channel the Ds1(2460) is 44(10) MeV
below D∗K threshold with a considerable four-quark component. In the same channel a narrow Ds1(2536) state
above threshold for the ensemble with lighter pion mass value. In the JP = 2+ channel the D∗s2 is found close
to its experimentally expected energy. The authors find that it is important to include DK and D∗K interpolating
operators in their analyses, which is not surprising. Torres and co-authors also investigate the D∗s0(2317) and the
D∗s1(2460) in Ref. [435] reanalysing data from Refs. [433, 434] discussed above but also extending the database to all
available energy levels. An existence of bound state for the KD and KD∗ channels was confirmed, improving also the
determination of the scattering length compared to the original determination.

Another study of the D∗s0(2317) and the Ds1(2460) can be found in Ref. [430]. Here, two pion masses of 290 MeV
and 150 MeV are investigated with different volumes at one relatively fine value of the lattice spacing with N f =

2. Using spin-averaged quantities, reasonable agreement with experiment is found. Not averaged energies show
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Reference N f Mπ [MeV] MD + MK − MD∗s0
[MeV]

Mohler et al. [433] 2 156 37(17)
Bali et al. [430] 2 150 26(4)
Bali et al. [430] 2 290 40(3)
Alexandrou et al. [436] 2+1 296 51(12)
Cheung et al. [437] 2+1 239 25(3)
Cheung et al. [437] 2+1 391 57(3)
PDG [18] 44.7(5)

Table 7: Results for the MD∗s0(2317) extracted from the various references used in Fig. 19.

significant deviations from experiment, which the authors argue is due to lattice artefacts. Their Lüscher analysis
includes two-quark and four-quark operators in the JP = 0+ and 1+ sectors. Of these, the four-quark interpolating
operators have proven essential to be able to extract the exotic states of interest. The authors are actually able to
perform an infinite-volume extrapolation thanks to the many volumes they have available. This extrapolation appears
to work well, and it makes a significant difference for the final energy values. They find that the mass of the D∗s0
lies 26(4) MeV and 40(3) MeV (for light and heavy pion mass ensembles, respectively) below the DK threshold (the
authors actually quote asymmetric errors, we use here the larger of the two). The pion mass dependence found here
exactly agrees with the one based on unitarized chiral perturbation theory [328]. The work of Ref. [430] is also the
first to our knowledge which computes the decay constants of these states and compares them to those of pseudoscalar
and vector D-mesons.

The D∗s0(2317) is also being investigated in Ref. [436] with one N f = 2 + 1 flavor dynamical quark ensemble
with Mπ = 296 MeV. The authors report it 51 MeV below the relevant DK threshold. They find the largest coupling
in their operator basis to quark-antiquark interpolating operators with only a small coupling to DK scattering states.
Tetraquark interpolators essentially contribute nothing to the analysis of the D∗s0(2317).

In Ref. [437] the authors of the Hadron Spectrum Collaboration present an investigation of the Ds0(2317) with
similar techniques in to Ref. [436]. The authors study the elastic scattering amplitudes for DK and DK̄ scattering with
I = 0 and I = 0, 1, respectively. In this calculation two ensembles are included, the first with Mπ = 391 MeV and the
second one with Mπ = 239 MeV. They find evidence for the bound D∗s0(2317) below DK threshold in the JP = 0+

channel.
For the D∗s0(2317) all the evidence points towards a DK molecular like state. The currently available lattice results

are more or less consistent. In Fig. 19 we summarize the status by plotting MD + MK − MD∗s0
, resembling a binding

energy, as a function of M2
π. Plotting this mass difference and neglecting the width of this state is justified, because

the state is so narrow. The observed differences between the different determinations are likely to be explained with
lattice artefacts, which are uncontrolled in all the available studies. Therefore, the necessary next step should be an
investigation of lattice artefacts in this system.

6.3.4. The X(3872)
One of the first exotic states confirmed by several experiments in different decay channels was the X(3872), a

narrow charmonium like state, now denoted as χc1(3872). It was rather soon hypothesized to be a non quark-antiquark
state. Its quantum numbers are JPC = 1++ [440]. In order to understand its nature, lattice studies aim to use different
interpolating operators to investigate the couplings of these operators to the state interpreted as the X(3872). Recently,
strategies to determine the X(3872) from lattice QCD more precisely were formulated in Ref. [441]. Finite-volume
corrections to the binding energy of the X(3872) are discussed in Ref. [442].

The authors of Ref. [443] present a very first study of the X(3872) exotic state. It is based on quenched lattice
QCD and a chiral fermion discretization. Even though systematic uncertainties are not well controlled in this study
and, in particular, no Lüscher like analysis has been performed, they find evidence for a state in the 1++ channel with
about the correct energy. In another quenched study, CLQCD investigates the χc2 in Ref. [444] and use their results
to draw the conclusion that the X(3872) has not JPC = 2−+ as quantum numbers, which at the time of the publication
was still not excluded.

In Ref. [445] Prelovsek and Leskovec study the X(3872) state with JPC = 1++ and zero isospin. This calculation is
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Figure 20: Comparison of the X(3872) mass determined on the lattice by Prelovsek et al. in Ref. [438] and Lee et al. in Ref. [439].

again exploratory in the sense that it is based on the same single N f = 2 ensemble with pion mass value of 266 MeV as
used on Ref. [421] discussed above. They find a candidate for the X(3872) just 11(7) MeV below the DD̄∗ threshold.
Importantly, they find a large and negative value for the scattering length of the DD̄∗ system of −1.7(4), which allows
them to identify the X(3827) in their lattice data.

In the proceeding contributions [439] a candidate X(3872) state is found just 13(6) MeV below the DD∗ threshold
with I = 0. This study is based on a single ensemble with the HISQ staggered fermion discretization and N f = 2+1+1
dynamical quark flavors. This represents the only study of the X(3872) including also a dynamical charm quark,
though the character of this investigation is quite exploratory.

The X(3872) was again studied in Ref. [446] by Padmanath and co-authors together with the Y(4140). The authors
work with the aforementioned N f = 2 ensemble at Mπ = 266 MeV. They find that it depends on the list of operators
included in the analysis whether or not a X(3872) candidate in the I = 0 JPC = 1++ channel can be found: DD̄∗ and
cc̄ like interpolators appear to be a must. In the I = 1 channel no neutral or charged X(3872) candidate is found.
Likewise, they find no evidence for a Y(4140) state with c̄cs̄s quark content.

The two available results from LQCD for MX(3872) − (MD + DD∗ ) [438, 439] are compiled in Fig. 20. Both have
large uncertainty and were obtained for pion masses larger than 250 MeV. Thus, it is probably not yet the time to
compare with experiment on a quantitative level.

6.3.5. The Zc(3900)
The Zc(3900) represents a closed charm state which might be of tetraquark nature with quark content c̄cd̄u. It has

isospin IG = 1+ and JPC = 1+−. With a width of around 30 MeV it is relatively narrow and it is seen in different decay
channels such as in J/ψπ, ηcππ, DD̄∗ and DD∗. It was observed as a decay product of the exotic Y(4260) state. We
remark in passing that in Ref. [447] methodological developments for an improved lattice investigation of the Zc were
presented.

Prelovsek and Leskovec search for a candidate Zc(3900) state in Ref. [448] in the JPC = 1+− with I = 1, but do
not find any evidence with N f = 2 dynamical quark flavors at Mπ = 266 MeV. This investigation was extended in
Ref. [438]. Unfortunately, this study could also not reveal evidence for an extra Z+

c (3900) state in addition to all the
expected two-meson states. The authors provide a detailed discussion as to why this is the case.

The CLQCD Collaboration studies the Zc(3900) in Ref. [449] in the scattering of DD̄∗. They work with the three
ensembles (Mπ = 485, 420, 300 MeV) with N f = 2 dynamical quarks discussed above. Noteworthy is their much
smaller lattice spacing value than used in the studies by Prelovsek et al. [438] (a = 0.067 fm versus a = 0.125 fm).
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They find a weak repulsive interaction between the D and the D̄∗ for all three pion mass values. Thus, their simulation
results cannot support a bound state in the corresponding JP = 1+ channel, where the Z±c (3900) is expected.

We mention also two proceeding contributions investigating the Zc(3900) from lattice QCD. The first one [439]
uses the staggered quark formulation, finding no candidate Z+

c (3900) state. The second [450] used N f = 2 Wilson
twisted mass fermions, also not being able to corroborate the Zc interpretation as a DD̄∗ bound state.

The HAL QCD collaboration studies the Zc(3900) in Ref. [451, 452] in a range of pion mass values from 400 MeV
to 700 MeV taking into account coupled channels. Their data indicates that the Zc is most likely a threshold cusp.

It appears rather difficult to draw any conclusion from this list of lattice investigations. Mostly, there is no can-
didate Zc(3900) state found with the operators included in the respective analyses. Only HAL QCD finds indications
for a threshold cusp.

Finite-volume spectra from of Prelovsek et al. [438] were further reanalysed in Ref. [337] using a unitarized
amplitude, see Sec. 4.5. In that, they find that two scenarios are compatible with the lattice energy levels: a D∗D̄
resonance or a virtual state. But they cannot distinguish between these two possibilities. They conclude that several
volumes should be studied to obtain a better understanding of the Zc(3900).

6.4. Other Exotic States

In this subsection we present mainly exploratory studies of certain hadron resonances. Thus, we refrain from a
discussion of the systematics or physics implications of the results.

6.4.1. States involving heavy-light mesons
The CLQCD collaboration investigated in Ref. [453] the exotic Zc(4025) state. S-wave scattering of D∗D̄∗ was

studied in the JP = 1+ channel. Also here, CLQCD finds a weak repulsive interaction between the two mesons and,
again, a bound state in this channel is not supported by their study. Like in the study of the DD̄∗ this might be due to
missing interpolators in the correlator matrix. But it could also be an effect of the unphysical pion mass values.

In Ref. [454] Lang and co-authors investigate vector and scalar charmonium resonances. In DD̄ scattering they
find the ψ(3770) in the P-wave, as expected. However, in the scalar channel they find in S-wave DD̄ scattering an
additional state with mass slightly below 4 GeV. This narrow resonance state was unobserved so far, while the ground
state χc0(1P) is well understood. They investigate several scenarios for possible states in this channel and find that a
scenario with the χc0(1P) and the additional narrow resonance mentioned above leads to a phase-shift consistent with
experimental data. The authors work with the two ensembles again, one with N f = 2 and Mπ = 266 MeV and the
second one with N f = 2 + 1 and Mπ = 156 MeV.

In Ref. [455], however, CLQCD find a weakly attractive interaction in D̄1D∗ scattering based on the same ensem-
bles and pion mass values. S- and P-wave channels have been studied finding attraction in both channels. Indications
for bound states below threshold are reported, but further studies are needed to draw conclusions on the Zc(4430)
exotic state.

A lattice QCD calculation of an NJ/ψ and Nηc system with quantum numbers overlapping with the quantum
numbers of the LHCb discovered pentaquark states Pc(4380) and Pc(4450) was performed in Ref. [456]. The cal-
culation was performed on two-flavor ensembles with Mπ = 266 MeV, reaching for the first time energies of the
mentioned pentaquark states. The calculation resulted in a very small (consistent with zero) attractive interaction, i.e.,
no significant energy shift from the non-interacting case was observed.

Positive parity Bs mesons are investigated by Lang and co-authors in Ref. [457]. The investigation is based on a
single Mπ = 156 MeV ensemble with N f = 2 + 1 dynamical quark flavors. The bottom quark is added as a valence
only quark with the Fermilab method, see Sect. 3.2.2. They identify the Bs1(5830) and the Bs2(5840) finding good
agreement with experimental results. In addition they predict a Bs0 with mass 5750(25) MeV in the JP = 0+ channel.
Based on the same single ensemble, Ref. [458] by Lang et al. represents the first Bsπ

+ scattering study and its relation
to the exotic X(5568) from lattice QCD. As the main result, they cannot establish the X(5568) from their lattice QCD
simulation in the JP = 0+ channel. Since the study is based on a single ensemble at a single lattice spacing only, this
result does of course not exclude that such a state with these quantum numbers exists. Still its quantum numbers are
also not yet finally determined experimentally and, thus, JP = 0+ is only one possibility. Note that the X(5568) poses
severe challenges to QCD as discussed in Refs. [459, 460], for example such a mass is neither compatible with chiral
symmetry nor with heavy quark symmetry.
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In Ref. [461] the authors study the JPC = 1−− and JPC = 3−− channels in D̄D scattering. They use lattice
ensembles with 280 MeV and two lattice volumes with N f = 2 + 1 quark flavors at a single lattice spacing value.
In this reference the conventional ψ(3770) and the X(3842) are found at energies compatible with experiment. The
investigation is extended to unconventional states in Ref. [462], where charmonium like resonances with JPC = 0++

and 2++ in coupled DD̄ and DsD̄s scattering are studied. In this study, Prelovsek et al. analytically continue the
scattering matrix and determine pole singularities. They find a so far unobserved DD̄ bound state just below threshold
and a DD̄ resonance, the latter of which they connect to the χc0(3860). Moreover, they find a narrow JPC = 0++

resonance below DsD̄s threshold. They interpret it as possibly related to the X(3915) or the χc0(3930) states. They
also see a resonance they connect to the χc2(3930), because it is found in the D-wave.

Only very recently also the I = 0 and JP = 1+ channel was studied in DD∗ scattering on the ensemble from above
with 280 MeV pion mass. Padmanath and Prelovsek [463] find evidence for a virtual bound state with just 10 MeV
binding energy. This could be the doubly charmed tetraquark state recently discovered by LHCb [464, 465]. It has
open charm quark content ccūd̄ and lies just order 1 MeV below the D0D∗+ threshold.

Also, very recently axial-vector D1 hadrons in D∗π scattering were studied on a single Mπ = 391 MeV ensemble
for the first time in Ref. [466]. The dynamically coupled 3S 1 and 3D1 channels in D∗π scattering have been looked at,
and the corresponding scattering amplitudes have been computed. The 3S 1 is dominated by the pole right below D∗π
threshold. The 3D1 amplitude is dominated by a single, narrow resonance.

Doubly bottom tetraquarks have been investigated in Ref. [467] in an exploratory study without Lüscher analysis.
Follow up investigations can be found in Refs. [468, 469]. The first Lüscher analysis for a b̄b̄ud tetraquark with
isospin I = 0 and JP = 1+ was performed in Ref. [470]. The work is based on domain wall fermion ensembles
with N f = 2 + 1 dynamical quark flavors including an ensemble at the physical point. Their work controls most
of the systematic uncertainties, the bottom quark is treated in the framework of lattice nonrelativistic QCD. They
find significant evidence for the existence of a b̄b̄ud tetraquark stable under strong and electromagnetic interactions.
We remark that there is significant effort under way to study bottomonium, see for instance Ref. [471] by Ryan and
Wilson, where only two quark operators have been used so far, or Ref. [472], where a formalism is proposed and
derived based on static potentials. The latter is applied in Ref. [473] to study among others bottomonium in different
partial waves with I = 0.

In Ref. [474] a study of the b̄b̄us us system with quantum numbers JP = 1+ and b̄c̄ud systems with quantum
numbers I(JP) = 0(0+) and I(JP) = 0(1+) is presented. The authors work with N f = 2 + 1 dynamical quark flavor
ensembles generated byt RBC/UKQCD with two lattice spacing values and different pion mass values including the
physical one. Charm quarks are treated relativistically, the bottom quarks within NRQCD. They find evidence for
b̄b̄us tetraquark bound by 86(22)(10) MeV. For the systems involving charm quarks their results are inconclusive.

An interesting system with exotic quantum numbers JPC = 1−+ decaying in eight multihadron final states was
studied on the lattice in Ref. [475]. In that, ensembles with SU(3) flavor symmetry (Mπ ≈ 700 MeV and near physical
strange quark) with six different volumes (12-24) were used. Ultimately, the finite-volume spectrum was determined
featuring 61 energy levels which were used to fix the parameters of generic parametrizations of the scattering ampli-
tudes. Those amplitudes were also used to extract the resonance parameters (complex valued mass) and couplings
to individual channels. It was found that each parametrization describing the finite-volume spectrum also leads to a
pole in the complex plane in infinite volume, with well restricted position yielding overall MR = 2144(12) MeV and
ΓR = 12(21) MeV. However, coupling to individual channels varies strongly with the choice of a parametrisation
resulting in wider ranges, also reflected in partial decay widths. A simplified approach was finally undertaken in
extrapolating the latter to the physical point, suggesting a potentially broad π1 resonance.

6.4.2. Dibaryon States
Proposed in 1977 by Jaffe, the H dibaryon with quark content udsuds attracted attention by lattice practitioners

early on [476, 477]. More modern investigations were published in 2010 by HAL QCD in Ref. [478] and by NPLQCD
in Ref. [479] based on different methods. HAL QCD finds a bound H dibaryon in the SU(3) flavor limit of QCD
(N f = 3) with several pion mass values larger or equal 670 MeV and several volumes using the HAL QCD method.
NPLQCD works with Mπ = 389 MeV with N f = 2 + 1 dynamical quark flavors. Also NPLQCD finds evidence for a
bound H dibaryon at this pion mass applying the Lüscher method.

In Ref. [480] the authors present a quenched lattice investigation, for which they find evidence for a bound H
dibaryon. This study is of interest, because they can study the continuum and chiral limits due to the usage of the
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quenched approximation. Their results appear to agree with the ones from HAL QCD and NPLQCD. However, the
systematics due to the quenched approximation are less controlled.

More recently, Francis et al. [481] work with N f = 2 dynamical light quark flavors and a quenched strange quark
with a pion mass of almost 1 GeV. With a Lüscher analysis they find a H dibaryon bound by 19(10) MeV at the flavor
symmetric point. Interestingly, they claim there is no evidence for bound dineutron.

Finally, most recently the H dibaryon was again studied in Ref. [482] at the flavor symmetric point with Mπ =

MK = 420 MeV (N f = 3). They even take the continuum limit based on six values of the lattice spacing applying
the Lüscher method. They find evidence for a weakly bound H dibaryon. One rather interesting result from this
publication is the finding of rather large discretization effects in the binding energy, despite O(a) improvement. In
particular, while the binding energy is still around 30 MeV for a ≈ 0.1 fm, only BH = 4.5 MeV survives the continuum
limit.

Some critical remarks on these results are in order. It was shown early in Refs. [483–485] that extrapolations in
the pion mass based on chiral symmetry indeed do not support the picture of a ΛΛ bound state. Indeed, as shown in
Ref. [484] using an EFT for baryon-baryon interactions with S = −2 [486, 487], it was shown that SU(3) breaking
effects induced by the differences of the pertinent two-baryon thresholds (ΛΛ, ΞN, ΣΣ) have a pronounced impact that
need to be incorporated properly in the lattice QCD simulations. Furthermore, it was pointed out that if the H-dibaryon
is a two-baryon bound state, its dominant component is ΞN rather than ΛΛ as a consequence of the approximate SU(3)
flavor symmetry of the two-baryon interactions.

HAL QCD has employed their method for further interesting systems. In Ref. [488] the ∆∆ dibaryon state, the
d∗(2380) dibaryon with JP = 3+ and isospin I = 0, is studied. The investigation is again based on N f = 3 heavy pion
mass ensembles. They find an short range attractive interaction and a state below the ∆∆ threshold. Recently, there
also appeared a study of the Nφ system using the HAL QCD method [489].

Much closer to physical are the quark mass values in the N f = 2 + 1 flavor study of HAL QCD of the NΩ 5S 2
system [490]: here the pion mass is estimated to be 145 MeV and the lattice spacing a = 0.0846 fm. With this,
the authors estimate a potential attractive at all distances. Not including the electromagnetic interaction, the binding
energy is 1.54(30) MeV. Including electromagnetic effects for the proton-Omega pΩ− system leads to an increase
in the binding energy by 1 MeV. The ΩN and ΩΩ interactions from HAL QCD have been critically discussed in
Ref. [491].

Recently progress has also been achieved in addressing resonant two baryon systems from lattice QCD. Consider-
ing system with maximal charm number (C = 3) for each of the baryons the scattering properties were investigated in
a (2+1)-flavor setup in Ref. [492]. With nearly physical light quark masses (Mπ ≈ 146 MeV and MK ≈ 525 MeV), the
charm quarks were implemented using a relativistic heavy quark action removing higher order cutoff-effects. Finally,
implementing the HAL QCD method, a quite strongly bound (B ≈ 5.7 MeV) dibaryon was found when discarding
Coulomb repulsion. However, including the latter the state changes from a deep to a shallow bound state.

In another lattice QCD study [493] the two-baryon system with maximal bottom number B = 6 was performed.
In this work ensembles generated by the MILC collaboration with N f = 2 + 1 + 1 dynamical quarks were used.
The bottom quarks were implemented via a non-relativistic Hamiltonian. For all considered four lattice volumes,
a negative energy shift to the two-Ωbbb was recorded suggesting attractive force between the two baryons. These
levels were further used to determine the two-baryon scattering length, assessing uncertainties from scale setting and
discretization. Overall, a deeply bound dibaryon 1S 0 state (B ≈ 89 MeV) was found. In contrast to the C = 6 dibaryon
system studied in Ref. [492], the Coulomb repulsion was found not to influence the nature of the state.

7. Summary and conclusions

In this review we have discussed the status of our theoretical understanding of hadron resonances. The main tools
at our disposal are lattice QCD and effective field theories, which need to go hand in hand to make progress. In
particular, for determining phase-shifts from lattice QCD the usage of finite-volume effective field theory (aka the
Lüscher formalism) is mandatory. Once phase-shifts are determined it is again effective field theory to interpret this
data and extract the resonance pole positions. HAL QCD has developed an alternative method to determine potentials
from lattice QCD simulations.

There has been significant progress over the last years in lattice QCD, both methodologically and in practice for
our understanding of QCD resonances. The best studied state is certainly the ρ-resonance, which is the only resonance
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for which a continuum extrapolation has been performed so far. However, the ρ shows also the strongest pion mass
dependence and, thus, a continuum extrapolation at physical pion mass values is likely required to finally compare to
experiment. Also for the other well separated resonances K∗(892), ∆(1232) and f0(500) there are now several lattice
results available. For those the control of systematics is by far not as good as for the ρ-resonance. However, reasonable
agreement with experiment is observed. All available estimates for mass and width of these four states are compiled
in Fig. 21. The figure nicely summarizes the status and the different levels of maturity of the lattice studies for the
corresponding states. It also shows that baryon resonances are particularly challenging. We expect in the near future
further results with ever more realistic simulation parameters for these four resonances.

Less well studied are resonances with strong effects from coupled channels or which are close to thresholds. This
includes for instance light scalar mesons. However, the formalism for coupled channel analyses has been developed
and also successfully applied, though still at unphysical parameter values. An example is the investigation by the
Hadron Spectrum Collaboration of a coupled πK and ηK system. Important lessons are learned about the interpolating
operators that need to be included: in many cases multi-hadron operators are, not unexpectedly, mandatory. Also three
pion resonant channels are being investigated in exploratory studies.

The Roper-resonance, despite significant effort, stays elusive: the inclusion of three-body interpolators, like for
instance ππN, and the corresponding inelastic channels might provide a way out in the future.

Open and closed charm states represent another set of resonances relatively well covered in lattice studies. Most
results are available for the D∗s0(2317) located a few MeV below the DK threshold. Since it is very narrow, the
energy difference to the DK threshold is a meaningful quantity, and the available lattice determinations of it provide
a consistent picture in agreement with experiment. For the D∗0(2300) fewer results are available, but it seems that it
is located below the Dπ threshold at large pion mass values, but moves above threshold towards physical pion mass
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values. Note that this state reveals a two-pole structure similar to the enigmatic Λ(1405). Such two-pole structures
should also be seen for the axial D mesons and the corresponding B mesons siblings, see, e.g., Ref. [292].

For the X(3872) the two available estimates of the mass are about 15 MeV below the DD̄∗ threshold. These
investigations are both at way too large pion mass values, such that a comparison to the experimental X(3872) energy
level is not yet really meaningful. For the Zc(3900) on the other hand, a lattice study appears to be difficult: no definite
candidate for this state could be identified unambiguously.

Concerning dibaryons, it is at present unclear whether such objects are really bound. In general, coupled channel
analyses are required to be able to make definite conclusions, as prominently exhibited in case of the elusive H
dibaryon.

From all this it should have become clear that we are still far away from a detailed understanding of the hadron
spectrum based on such first principles calculations. The results reported here are encouraging, as most of the required
theoretical framework has been developed. As an important lesson, it has become clear that the choice of interpolating
operators strongly influences the observed states. This means, on the one hand that the outcome of lattice investiga-
tions depends on the list of operators included. But on the other hand it gives hope that from the coupling of states
to certain operators one can learn about the nature of the state. But, of course, it foremost means that a large list of
operators need to be constructed, which was greatly simplified by methods like (stochastic) distillation, but is still
very costly. Work is ongoing to further improve the operator construction, see for instance Ref. [494].

Another lesson one can learn from the existing investigations is that threshold effects can be misinterpreted as
resonances. Here, a careful data analysis is required.

Finally, lattice artefacts and pion mass dependence can be significant. This can mean a bound state turns into a
resonance or vice versa once the limits are studied properly.

In the future we, therefore, think that it will be important to further investigate the dependence of results on the list
of operators, but also to better study continuum and chiral limits. A next important step will be to tackle three-body
decays: in particular the ω meson and the Roper resonance in the baryon sector represent worthy targets.
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[94] R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring, F. X. Lee, Three-body interactions from the finite-volume QCD spectrum, Phys. Rev.

D 104 (1) (2021) 014501. arXiv:2101.06144, doi:10.1103/PhysRevD.104.014501.
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