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1 Introduction

In close analogy with the electric charge density of hadrons [1-3] it has been suggested
to interpret the Fourier transforms of the gravitational form factors in the Breit frame as
local densities of physical quantities characterizing various composite systems [4—6]. The
identification of the spatial densities with the Fourier transforms of the electromagnetic
and gravitational form factors in the Breit frame, especially for systems with intrinsic sizes
comparable to their Compton wavelengths, has been questioned in refs. [7-13]. This issue
has raised much interest recently [14-28]. On the one hand, the formalism of Wigner
phase space distributions is utilized in ref. [14] and in subsequent publications. On the
other hand, two-dimensional densities in the transverse plane obtained in the formalism
of light front dynamics by integrating over the x~ coordinate have been considered as
the only possible true internal densities [13, 27]. Note that two-dimensional densities
have been also considered earlier in ref. [14]. A definition of spatial densities of local
operators using sharply localized wave packet states, applicable to systems with arbitrary
Compton wavelengths, has been suggested in ref. [21], see also ref. [29] for a related earlier
study. Specifying the one-particle state of a spin-0 system by a spherically symmetric wave
packet localized in space and taking the size of the packet much smaller than all internal
characteristic scales of the considered system, spatial charge distributions have been defined
in the zero average momentum frame (ZAMF'). The new definition has been also generalized
to moving Lorentz frames. Recently this definition has been also applied to electromagnetic
densities of spin-1/2 systems [20], and to gravitational densities of spin-0 and spin-1/2
systems, defined via the matrix elements of the energy-momentum tensor (EMT) [30].

In the current work we consider spatial densities corresponding to the electromagnetic
current and the EMT for spin-3/2 systems. We obtain the corresponding expressions in
terms of form factors and discuss their physical interpretation.



Our work is organized as follows. In section 2 we define spatial densities corresponding
to the electromagnetic current for spin-3/2 systems. Section 3 deals with the one-particle
matrix elements of the EMT. In section 4 we discuss the large-distance behavior of various
distributions of the delta resonance, which is the most studied composite spin-3/2 system,
in chiral EFT. We summarize our results in section 5. The appendix contains the lengthy
expressions of various quantities.

2 Electromagnetic densities in the zero average momentum frame

We choose the four-momentum eigenstates |p, s) characterizing our spin-3/2 system to be
normalized as

(pfv 5/|pz‘> 5) = 2E(27T)355/55(3) (Pf - Pi), (2.1)
where (p;, s) and (py,s’) are the momentum and polarization of the initial and final state,
respectively. Further, p = (E,p) with £ = \/m?2 + p?, where m is the particle’s mass.

To define the spatial densities via the matrix elements of local operators we use nor-
malizable Heisenberg-picture states written in terms of wave packets as follows:

|®, X, s )e_ip'X|p, s), (2.2)

d3p
= [ ——— ¢(s
where the parameters X are interpreted as the coordinates of the center of the charge
or mass distribution, corresponding to the operator under consideration, and the profile
function satisfies the normalization condition

[ dplsts )P = 1. (23)

To define the density distributions of the system we use spherically symmetric wave packets
and profile functions of which ¢(s,p) = ¢(p) = ¢(|p|) are also spin-independent. The
average of the three-momentum of the system vanishes in states corresponding to such
packets, thus they describe the system in the ZAMF. For our calculations it is convenient
to define dimensionless profile functions

¢(p) = R*? $(Rp), (2.4)

where R specifies the size of the wave packet. Small values of R correspond to sharp
localization of the packet.

The matrix elements of the electromagnetic current operator between momentum
eigenstates of a spin-3/2 system can be parameterized in terms of four form factors, see
ref. [31] for a review. We use here the notation of ref. [32]:

_ P Gaq,
Py, | ulpiys) = —a®(py, ') [W‘LL (gaﬁFf,/o(f) - ;jni F1V,1(q2)> (2.5)

i V2 9ad8 v 2
+ %Uupqp (gaﬁFz,o(q ) — m2 Fz,l(q ))11‘&(1%,8),



where P = (p; + py)/2, ¢ = py — pi- In terms of these variables, the energies are given as
E=m?>+P?2-P-q+q?/4)"/? and E' = (m*> + P2+ P-q+q?/4)"/2. The spinors of the
spin-3/2 states are defined as follows:

1 3
uﬂ(pv S) = Z(l)‘7 50-‘58)6“(197 )\)’U,(p,()'),
Ao

ér'p . p(éx-p)>
Bip \) =
et (p, ) ( m ,eAer(pOer) )

u(p, o) = v/po +m (xg, 7P x(,)T : (2.6)

po+m

where (1), 20|3s) are the pertinent Clebsh-Gordon coefficients and

+:—\}§(1,i,0), &0 = (0,0,1), é_:\}é(l,—i,o). (2.7)

>

The Dirac spinors are normalized as u(p, s')u(p, s) = 2m dgs. The matrix element of the
electromagnetic current operator in localized states is given by

34 s r) = (®,X,5[J"(x,0)[@,X, 5) (2.8)
d*Pdq 4 qa

= — PR — P+ =
/(27r)3\/4EE/u ( +2"’)

7 qaq
+5,~0upd’ (gaﬂsz,o(f)* e Fz>v,1(q2))

P, o
2 (g0 Flo(a) — 2L (4

o (P-go)o(p-3)o(prg)e

where r = x — X. By applying the method of dimensional counting of ref. [33], the leading

contributions in eq. (2.8) for R — 0 can be obtained without specifying the form of the form-
factors and the profile function ¢(|p|). Provided that the form factors FIV o(d?), FIV (),
Fyo(¢?) and Fy((q?) decay for large ¢* as 1/q*, 1/q*, 1/¢%, 1/¢° (or faster), respectively,
the only non-vanishing contribution for R — 0 is generated from the region of integration
where P is large. It can be obtained by substituting P = Q/R, expanding the resulting
integrand in eq. (2.8) in powers of R around R = 0 and keeping the leading order term for
each component separately. Introducing 7 = Q/|Q| and using the spherical symmetry of
the wave packet, the integration over |Q| can be carried out without specifying the radial
profile function. The result of the integration is given below in terms of irreducible tensors
and the multipole operators which are defined as follows. The n-th rank irreducible tensors
in coordinate and momentum spaces, respectively, are given by (r # 0)

. R LR B N R |
yitiz-in Q)= n i1 ai2 zni’ yitiain () ) — n 192, Hin
" (&) (Zn—l)!!r 019%--0 T " () (2n—1)!!p 01970 D

(2.9)

The quadrupole- and octupole-operators, Q’j and OY* for a spin-3/2 system are given in



terms of the spin operator S via

Ny 1/ i n. a9 y
QY =3 (SZSJ + 75T —28(S + 1)5”> )

Ny 1/ ain~ N A A A AT A A A At A A
Ok — S (S‘SJSk + §/Gigk 4 §kGigl 4 §igkGt 4 §1GkGT 4+ Gk GIGI
—65(521) - (69 8% + 557 +5’W‘Si)> ! (2.10)

with i, j,k = 1,2, 3.
The results for the matrix elements after integration over |Q| in eq. (2.8) have the

form:
0/ . d’q  _iqr 1 2. 2 2\ Akl oy ahdL | Am 211
Jo(s',8,1) = (2m)3 e I d*nq Zo(—ql) 655+ | Z1(—q1) NN 4 Z2(—q1) pec Qs ( . )
= p§ (1) 6srs+p5 (1) Vs (Q) QY (2.12)
g d®q  _iqr i 2. 2\ sial kin 2 Kl skal\ iln] 41 ok
Jo(s',s,r) = /(27r)3 et o d n{[Ao(—qL) n'ne —&-Al(—qL)(é —n*n )e } ESS/S
t =z X
+ { (Ag(—qi) A'n® 4+ As(—q7) q;;l) IR
2\t 2 Qj_CIj_ il Kl ka1y | 9T Akt
+(A4(QL)H n +A5(*(]L) 777,2>E (6 —-n TL):|mOS/S (213)
_ ikngk vl dou ikn Aktz ntzi(li)?)M
= """ 8. Y] pone ] (r) +ie™" 0 ;Y —\sg) P8 (r), (2.14)

where ¢2 = q% — (q-7)? and the coefficient functions Z; and A; are given in the appendix.
The quantities p§ () and pS (r) are the monopole and quadrupole charge densities, respec-
tively, whereas p} (r) and p! (r) are the dipole and octupole scalar magnetization densities,
respectively. These quantities are given by

1 [ &g iqe [ o ]
po (r) = I (2733 e ™ /dQW{Fl‘,/o(—Qi)—Fanig [—2FYo(—q1) + Fi(—q) + Fao(—q1)]

4

+22jn4 [—2F1(—a) + FY1(—q0)] } 7 (2.15)

rdld [ &g _iqe [ p. &
) =~ / e / dQnmfnéqQ{4F1Yo<—qi>+F¥1<—qi>—2F2V,o<—qi>

3 2 2 3 4
~T [+ AL -ad)] - gy [2FR (e + B ()] - 5B () 1,(2.16)

2
M —igq-r 2. 47 \%4 2 1 v 2
- AL )V 2y _ VY (—
o1 (1) = | @y e /d n2q2 { 10(—q1) 3 20(—q1)

2
ol 2o () + TR (—a3) + 2Eo(—dd) —2FY 1 (—¢})]

30m?2
4
bt [PH ()= -] | (2.17)
My = L[ L9 e [ O [ v Y (L) B (=) + P (=)
4w [ (2m)3 48¢* ’ ’ ’ ’

5 2 2
=5 (=) + R (o) = Fro(—at) = B (=aD)] 5 [B(—ad) = P (=)

+ 5‘14; [P (—q1) = F3a (1)) } (2.18)



The standard expressions of the densities in terms of the form factors in the Breit
frame, F;;(¢*) = Fi;j(—q?), which we will refer to as “naive”, are obtained by first ap-
proximating the integrand in eq. (2.8) by the two leading terms in the 1/m—expansion!
and subsequently localizing the wave packet by taking the limit R + 0. The resulting

expressions have the form:

.0 ’ dsq —iq-r \% 2 q2 \% 2 \% 2\ 4 9 Akl
Jnaive(s 78,1‘) = (27r)3€ Fl,(](*q )+WF1,1(7q ) 65’57F1,1(7q )wQs's ) (219)

. ’ _ dgq —iq-r, ikn q" Y 2 q Y 2\ | gk _pV 2 qlqz Ok
Jnaive(87,8,T) = (271_)36 € 3Im 2,0(—(1 )+W 2,1(—(1) s's 12,1 (—q )2m2 s's [+

3 Gravitational densities in the zero average momentum frame

One is often interested in matrix elements of the quark and gluon contributions to the
EMT. As these are not separately conserved, we parameterize the matrix element of a
symmetric EMT for spin-3/2 states in terms of ten form factors as follows [32, 34]:

P,P,

qaq
<gaﬁF1,0(q2) — = F171(q2))

/T — i — _—6 /
(pfs 8| T (Z)[pis 8) a”(py,s') 5

2
Quqy — Nuvq 2 qa4p 2
_— - F: — F:
+=— <go<ﬂ 20(¢%) = 5 5 F2alq ))
AuA,

+mglw <ga/aF370(t) — 22 F371(t))

) (1 1Ovp I Voﬂp) q”° 2 ] 2 )

1
m

~GusGvad’ — Gusguad’) Fo(d®)

(9089190 + 93990 + Gvaduds + Jualvds — 29w dads

—I-m(gg,gg + ggzgg)Fﬁ,o(t)] u®(py, s)e_iq'r , (3.1)

where in case of a conserved EMT the form factors F3(t), F51(t) and Fgo(t) vanish. The
matrix element of the EMT in localized states is written as

th'(r) = (®,X,s'|T" (x,0)|®,X,s)

dSPdSq e

= _/(2ﬂ)3@u (P—i—%,a") [

2

quqr—Nuvq 2 qaqs 2

+———| gapF: — F: +
4m (g sF20(d) 2m? 21 ))

P,P, 2y 4aqs 2 )
w8 F} — F}
— (9 sF0(07)—5 5 F11(d)

z (Puovpt+Puoup)q”
2 m

2\ Gaqp 2
<9aﬁF4,0(q )=,z Faala ))

1
9v89udatIusdvqat9vaquis+guaqvds—29urqaqs

u® (P—g,a)¢<P—‘;)¢* (P+g>e_i‘”. (3.2)

!Factors of m introduced in eqgs. (2.5) and (3.1) for dimensional reasons in the parametrization of the

~9up9vaq’ = 9usguad” ) Fso(q*)

matrix elements in terms of form factors are not counted when expanding in 1/m neither here nor below
in the case of EMT matrix elements.



The matrix elements of the EMT in the localized states with R — 0 can be obtained
analogously to the electromagnetic case. As we will see below, the leading order contribu-
tions to tgo(r) and tgi(r) are of the order of 1/R, and the tg(r) terms need to be treated
differently from the others, when expanding in R. The reason for that is that, the compo-
nents of tif (r), unlike tgo(r) and tgi(r), which contain only information about the energy
and spin densities, respectively, encode information about the internal pressure and shear
forces as well as about the motion of the system [26, 30]. That is, tfg (r) needs to be de-
composed to a component tfg’o(r) that describes the motion of the system as whole, and
a component that encodes information about pressure and shear forces téiQ(r). Therefore,
after expanding in R, we keep the leading order contribution of each of these terms. The
resulting expressions have the form:

m2

3 _ ko1
ty (s’ s,r) = N¢,R/ (5733 e_m'r/dzﬁ{ Eo(ql) buat {51(&) W n' 4+ & (qh) M] Q5}5}7(3-3a)

. ) Bq i ) ) ) qar A
0i/ 1 _ iq-r 2 A 2 kln Al A1 2 iln kl Ak Al 1 &k
ty (s,s,1r) = 1N¢7R/ 2n)? e @ /d A { [CO(qL)e AN +Ci(ql)e (5 —Nn'n )] ESS/S
qt q7 kln Al i
+ (Cz(qi)ﬁtﬁz—i—Cg(qi);‘n;‘) "t
2\ At 2 Qﬁ_Qj_ il Kl ka0 | 91 Akt

+ (C4(q¢)n n +CS(QL)S7n2) € (5 —_nn ) EOS/S y (3.3b)

tfg(s/,s,r) = t;{o(s',s,r)+t22(s',s,r), (3.30)

where

. . . . k1 N
t50(s's5.0) = Non / o / a2 { £(al) 5s/s+[&<q‘i> Al +E(qd) an?]@’;fs} (3.42)

3
t7 (s’ ,s,r) = N, d’q e T [ dh
6,2 39y - ¢,R,2 (271')3

1, i
x { 5 (0'd —q16") [V\’o(qi)ésmL

k 1
Wi(gh)ia' + W (ﬁ)%ﬂﬂ Q’;L]

—26%

k1
Uo(gt)durat {m(qi)ﬁ%wuz(qi)q;ﬂ Q?L] } (3.4b)
and the coefficient functions &;,C;, W; and U; are given in the appendix and further,
1 [o° ~
Non=17 | dQ@a(QNE,
0

m2R
2

Nona = "5+ [T daala(a). (35)

Below, we specify the multipole expansion of £”(s’, s, r). For the 00th component the
result reads

19(s',5,1) = N¢,R{péf (r) Sus + P (1) Y5 () @5@}, (3.6)



where the monopole and quadrupole energy densities are identified as pOE and pQE , respec-
tively. Their expressions have the form:

¢ _iqr R 2
po (r) = /(27:)136 4 /d2”{F1,0(<12L)3F6,0(Qi) (3.7)
2 1
+3q7;2 {—Fl,O(—qi)-i-5F1,1(—qi)+F4,0(—qi)+2F5,0(—qi)] 12%4[Fl,l(—qi)—Fm(—qi)] :
E d1ld d? q _—iqr 2,1 ]2 2 Qi 2
= 222 — 2R o(—2) = L Fs o(—
pa () arrdr | @ )36 dan 3 6,0(—q1) e 6,0(—q1)
+12 2[4F1 o(— Qi)+F1,1(_Qi)—4F4,0(—Qi)—8F5,0(—qi)]+12 4[F1 1(— qi)—F4,1(—qi)]

4 6
q1 2 2 2 q1 2
+4m2q2 [4F50(—q1)—Fio(—q1)—Fia(—q1)] — Tomig? Fi1(—q1) } (3.8)

For the 0ith components we have

) 1 1

t%’(s’, S,I') — N¢7R 1knsk n pl ( ) + zknoktzyéntz *Pg (T’) :|7 (3.9)

,
where
Joy_ I d flqr/d2A {F 2y _2p 2y Ap 2
pi(r) = —— 10(=¢1) = gFu0(=ql) = 7z Foo(—a1)

i ) , )

15;12 —Fio(—q3) + Fl 1(=¢1) +2F10(—q1) — 2F11(—q1) + 4F5,0(—QD}
qﬁ 2 2 2

+60m4 [—Fl,l(—(u) + Fio(—q1) +F4,1(—cu)} } (3.10)

J(T) _ (1 d) / d3 _qu/dzA { Fa (—q2)+5ﬁF‘l (_q2)
P3 m \ 7 dr 124 6,0 1 2 6,0 1

q
L [4Fto (- «ﬁ) + F{1(—q1) — 8Ff(—q1) — 2Ff  (—}) — 16F5(—q?))

4 2
5q1
+gmicr [Fro(=ab) + Fii(—at) = 2Fio(—a}) — 2P (~ak) — 45 ()|
F 2y _ 9 (g2 50 [po (—2)—oFe (—2 3.11
4m4[ 11(=q1) — 4,1(—%)}4‘16T4qg[ 11(=q1) — 4,1(—%)} . (3.11)

The spin density is given by
. o 2 . . N
J'(r,s',s) = e”krjtg)k(sl, 5,r) = Ny R { (35111/0 - Y2’l> pi (r) S,
[ e (85”1/;2 +6"Y3* + 5”@)] p3 (r) o”;g}. (3.12)

We 1dent1fy the monopole angular momentum density (J¢,,) as the term with the struc-

ture YOS;,S,
J'L

2 .
mono (I‘, 3/7 8) = g o,R S;’spi] (T) ) (3'13)



and, following ref. [34], the averaged angular momentum density is given by

SS’L

p‘]( [ } Z SZ ’Jrlnono T 8/78) = Nqﬁ,Rpi] (7") 5 (314)

where S = 3/2 is the spin of the system.
Finally, for the ijth components we obtain

tools'sr) = Nqﬁ,R{ [al (r) 6% — ( 9+ vy drrdr) as (7“)] ds's + Qugas (r)
+Q% 0,0, (5 &+ Yy j;) 4 (r) = 69 QY Opdras (r)
_ 2 Al 52 Aiv IV AJV yriv dld:| }
|:3Qslsa —i—( wsYs 4+ QY5 )Tdrrdr ag (1) ¢, (3.15)
ij 1 (69 d1ld
t¢],2(5,’ S,I‘) = Nqﬁ,R,Q{ - ﬁ < 0° + d’f’?"d’l") wo (7’) 55’3
o [Pty d
+2m2 @50k [( 0"+ dr rdr wi (7)
57 [un (r) 8rs — QB0k01 01 (r)] } (3.16)

where the coefficient functions a(r), w(r) and v(r) are given in the appendix.

To obtain the pressure and shear force densities we consider a conserved EMT and
take the part of EZ{Q(S’ ,8,r) linear in R (where the tilde means only conserved EMTs are
considered), which we parametrize as follows [35]:

t,(s",s,r) = Noono2 {po(T)éijés/s+80(T)Y;j5sfs+p2(7“)@izs+252(T) [Q. Y37 +Q Y2 =67 QY. Y2

L QM,0101 [pa(r)8” +s3(r)Y;7] } (3.17)

where po(r) and so(r) are the pressure and shear force densities also appearing in the
spherically symmetric hadrons, respectively, pa(r), ps(r) correspond to the quadrupole
pressure densities, and sy(r), s3(r) are the quadrupole shear force densities.? Comparing
egs. (3.17) and (3.16) we obtain for the pressure and shear forces the following results:

o 1 __ 1 dild
po(r) = o (r) = o50%wo (), so(r) = —g 1o = wo(r),
pa(r) =0, so(r) =0,
25 () L2 __1dld
p3(r) =m0y (r) 68 wi (1), s3(r) = 2Td7“7“ drwl (r), (3.18)

2 Another equivalent parametrization is given in ref. [36], where the normal and tangential forces can be
defined in a compact way. However, it has been shown that the parametrization of ref. [35] has advantages
in studying the mechanical structure, whenever performing an Abel transformation is involved [25].



where the coefficient functions w(r) and o(r) are given as

( . dQﬁdS(] —iq7 | 2 q2L IF. 2 ) F 2 q4L F 2 ) (3 19)
wo (r) = (271_)3 e 2,0(_QL)+6m2 [— 2,0(—q1)+ 2,1(—(&)] ~Tomi 2,1(—q1) |, .

_ d2ﬁd3q g qi 2 qi 2 2 qi 2

o (r) = / @ © T g ) | Fro(a) o [—2F20(—q1) + F21(—q1)] ~ogatzi(=dl)|,

d*nd’q _izr qi 2 4 2 1(1 . ¢& ¢ 4 2
— SN \p o~ fl I N N B (—
w1 (T) / (27T)3 e 2m2q?2 3 2¢2 2,0( QJ_) + 213 + 3m2 PE 4m2q? 271( QJ_) )

Padiq _igr q 2 ¢ 2 11 ¢ ¢ gl >
5 (r) = 4 i _ oD\ g (- S(op 4L Foa(—¢3)|.
o1(r) / (2m)® ¢ 4mAq? 3 22 20(=q0)+ 2\3 + 3m2  ¢2  4m2q? 21(=q1)

It is clear from eqs. (3.18) and (3.19) that the pressure and shear forces are expressed in

terms of Fo o and Fy only.?

Below we obtain the differential equation for the pressure and shear forces that follows
from the conservation of the EMT. In that case, we have to make our matrix element in
eq. (3.1) time-dependent, i.e. we substitute e %dT 1 ¢0!=%aT The conservation of the
EMT leads to

aﬂtgy(sla 57 r7 t) |t:0 = 801:((;”(8/7 57 r’ t) |t=0 + 87:1:25”(8,7 87 I', t) |t:0 = 0 (320)

Notice that dy and |9 do not commute, i.e. to obtain 80tg”(s’,s,r,t)\t:0 we first take
the derivative of tg”(s’ ,8,7), then put t = 0 and after that perform the expansion around
R = 0. Since we are interested in the pressure and shear forces, we consider the case with
v = j and keep all contributions linear in R. We obtain the following differential equation,
adhering to the notation of ref. [35],

2 2
ph(r) + gs/n(r) + =su(r)=hl (r), withn=0,2,3, (3.21)
r
where
Pq (a-n)?
— q-r 2 2 — 22
ho () / o / P T EEWo (), ha () =0, (3.22)

R —— 2A(Q'ﬁ)2 2 3q7 o\ 41 (3dt
h3(7’) = /(27T)3€ a /d n 2q2 Wl (ql) _TQQ +W2 (qL) W ?— s

with r = |r|, and the coefficient functions Wy 1 2(q? ) are given in the appendix. In contrast,
there are no h,(r) terms in eq. (3.21) in the case of the Breit-frame because of the absence
of the temporal dependence in t% component (due to ¢° = 0).

The pressure densities p,(r) comply with the von Laue stability condition

/d3rpn(7“) =0, with n=0,2,3, (3.23)

. § . é
as long as limgs (43)° Fa0 (—¢%) = 0 and limg2 (¢3)" Fo1 (—¢%) =0, for 6 > 0.

3Notice that the feature p2 = s2 = 0 is not identical with the result of the large N, limit for baryons in
the chiral soliton model as obtained in ref. [36], where another parameterization of the pressure and shear
forces is used. This can be easily checked by converting the pressure and shear forces in eq. (3.18) to the
notations used in ref. [36].



The dimensionless constants (generalized D-terms) are defined by
4
15 m? /dgr 25, (r) = m? /dgr 72 [pn () — by ()],  with n=0,2,3. (3.24)

Note that the above definition differs from that of the Breit-frame case [36] by the h, (1)
terms.

The spherical components of the internal forces (dF;, dFy and dF,,) acting on the radial
area element (dS = dS,é, + dSpég + dS€,) are expressed as follows

dF; 2 2 N
To = Nowa| (mlr)+ Z50(r)) 8o+ (palr) + () ) O3, (3.25)
1 ./ dld 2 2
—WQS/S (Tdr e (p3(7“) + 383(7")) + 83(7)r2> 1’ (3.26)
dFp 2 N 2 g d s3(r)
a5, = N¢’R72[ (pg(r) + 332(7’)) Qs — TQS/SJ . ], (3.27)
dF.

e = Nowa () + 20} @2 - 20z 0 90 (3.25)

ds, 3 SSdr o r
Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area
element (dF,/dS,) is solely due to po(r) + Zso(r).
As defined in ref. [6], the mechanical radius is given by
[ d3rr? {pn(r) + %sn(r)}
J & [pa(r) + 3su(r)]

Notice that egs. (3.18), (3.19) and (3.29) lead to expressions for the radii which differ from
those of the Breit frame.

<Tn>rncch = (329)

Analogously to the case of the electromagnetic current, the static approximation is
obtained by first expanding the integrand in 1/m and after that taking the limit of a
sharply localized wave packet. The resulting naive densities read:

£00. (s,s,r) = d*q —iqr P (_ 2)+ q’ F (_ 2) S — 1 F (_ 2) k n@kn

naivelS ;S - (271')36 mii,o q 6m. 1,1 q s's 6m 1,1 q)qq s's (»

) 3 2 . Fiq1(—qg? .
t?lzaive(sl757r) = _7'/ (571_?5 7“:1 r€llk l{3 |:F40( 2) 5(,;1nQ , (_q2):| S?’s_ 47165%2(1 )qnqtof’rgt}v

3 2
i (s/ s,r) = / \¢(|n|)|2 i ]/ d’q e—iq-r{ |:1F1 0(—q2)+ q Fi (_qz):| 5.
naive 19 (271-)3 m 6m3 ’ =

1
6 3

g _iqr i g ij ’
+/(27r(§36 & {(q ¢’ —q’6") KZJTLFg,o(—qQ)JFQE 3F21(—q2))5s’s

F21( )qkq"in}i@Fw[(qiqj 25”)555

—Fi1(—q )qkané’Z}

24m3 3

13 1 n n 2 7 F3,1 _q2 iJ n Akn
(PQ%,+67¢" " QY —¢"q' QY — ¢ QY g)] #quq QY

1
3
q2 2 2m
- (mF?,,O (—(12) "‘F%Fs,l (—q )"‘r?

Fool(-a) ) %64 5 o (~a) 02, | (330
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tOO

9. (s';s,r) and t9. (s s, 1) agree with the corresponding Breit-

The above results for
frame expressions of ref. [34] modulo terms of higher-orders in the 1/m expansion, contained
in the Breit-frame expressions. On the other hand, for the ijth component, ref. [34] only

quotes the result corresponding to the second term of ¢ s',s,r), contained in the last

nalve(
four lines of eq. (3.30), which is to be interpreted as characterizing the internal forces of the
considered system [26, 30]. Again, the two expressions agree modulo terms of higher-orders

in the 1/m expansion, contained in the Breit-frame expression of ref. [34].

4 Large distance behavior of the energy, spin, pressure and shear forces
distributions of the delta resonance in chiral EFT

In ref. [37] the GFFs of the delta resonance have been calculated up to third chiral order. Us-
ing these results and restricting ourselves to the region of distances 1/Aggrong < 7 << 1/M;x
we obtained approximate asymptotic behavior of the spatial densities from the singularities
of GFFs at t = 0 in the chiral limit. The third order one-loop calculations of ref. [37] led
to the following expressions for corresponding leading non-analytical parts of the GFFs:

2547

Froll) = ~gat6rm, 'V
5gma
Fialt) = 15?1,615’2 v
5g5m
Foo(t) = 79618F§ v,
5g9m3 /—t
59% 2
F470(t) = —m tln(—t/mN),
Fy1(t) =0,
5g5m
Fso(t) = gima (4.1)

9216F2

where t = ¢2. Using the above results we obtain the following long-range behavior for the
densities derived in the previous section

P = gL mfhﬁw(@) (143)
A1) = ozt  ~ somsrag O () (49
pﬁﬂ:%ﬁiﬁ@jé M§£m2;+o(;)’ (4.5)
o) = i o~ ot O () (49

- 11 -



597 1 1597 1 ( 1 )
= - —+0(= 4.7
so(r) 96F%ma 10 64F2m3 r® r8) "’ (4.7)
85gima 1 155¢7 1 ( 1 >
_ 1_ - - 4.8
P3(") = 511842 11 196608FZm s 10 8 )0 (48)
25g3ma 1 1597 1 (1)
- - —10(~]). 4.9
53(r) 9216F2 % ' 4096F2mp 10 s (4.9)

Notice that while the delta resonances are unstable particles, our expressions satisfy the
general stability conditions of ref. [6], i.e. pf(r) > 0 and 2so(r) + po(r) > 0. This result
is in agreement with the observation of ref. [6] that the general stability conditions are
necessary but not sufficient for a system to be stable.

5 Summary and conclusions

In this work we applied the novel definition of local spatial densities using sharply localized
wave packets [21] to spin-3/2 systems. Matrix elements of the electromagnetic current and
the energy-momentum tensor in the ZAMF were considered and integral representations
of associated spatial densities in terms of form factors were derived. Following ref. [11],
the corresponding expressions in the Breit-frame were obtained by first expanding the
integrands in inverse powers of the mass of the system and then taking the limit of sharply
localized wave packets. This corresponds to considering packet sizes that are much larger
than the Compton wavelength of the system. To apply the new definition as well as the
Breit-frame formulas one needs to take the packet sizes much smaller than any length
scales characterizing internal structure of the system. This makes clear that the Breit-
frame spatial densities cannot be used for systems whose Compton wavelengths and the
radii have comparable sizes [11]. However, the novel definition used here does not impose
any lower bound on the size of the wave packet and therefore can be applied to any systems.

Considering the spatial components of the matrix elements of the EMT we obtained
the expressions of the pressure and the shear forces inside the spin 3/2-systems. We also
obtained a differential equation satisfied by these quantities due to the conservation of the
EMT.

The formalism can be extended to the A — N transition form factors, however, this is
not straightforward and requires a separate investigation. Work along such lines is under
way.
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A Coefficient functions
Coefficient functions for jg(s’, s,r) and jj(s', s, 1):

Zo(—q1) = FKO( )+7[ QFKO(—QQL)‘FF&(—Qi>+F2‘7/o(—Qi)}

6m2
q
+24J_4 [_2F1‘,/1(_qi)+F2Yl(_Qi)]’ (Al)
Zi(—q1) = 6 3 [3F1 ol—a%)— 2Fy Yo(—aq )]+24 4[3F1 1(= Qi)_zel(—Qi)L (A.2)
1
Zy(—q3) = —6[—2F1‘fo(—Qi)+F1,1( QL)+2F20( q1 )]‘1'12 [Fl 1(= Qi)—Fz‘ﬁ(—fﬁ)]a (A.3)
2 4
Ao(=4) = Flo(=a) 555 220 (~a)+ TR (=aD)] - gt Fl (=ad). (A-4)
1 2 4
Ar(=a1) = S Fo(~0) 4 s [0 (e F (~ad)] - gy P (b, (A.5)
2 4
q q
As(=a1) = o5 Fo(=al)+ 5 7 Fla(—al), (A.6)
1
As(=q1) = —gFiL(=dD), (A7)
2 4 Vv 2 q 2
As(—q1) = 7L2 20l J_)+24;L Fy1(—=q1) (A.8)
1
As(—qi) = _ng‘,/1(_Qi)' (A,Q)

Coefficient functions for tg)o(s’ ,8,r) and tfio(s’ ,8,T):

2 3 1
Eo(ql) = Fl,o(—Qi)—gFe,o(—Qi)-i— a1 {—Fl,o(—qi)-i-§F1,1(—Qi)+F4,o(—Qi)+2F5,0(—q2¢)}

3m?
4
+1§ 7 [~Fua(=al)+Faa(=q1)], (A.10)
2 1 2 2
&(at) = gFﬁ,o(—qm% [5Fro(-a) =5 Fio(=a1) - 3 Fro(—a2)]

Lriq )}, (A.11)

&(dt) = é[Fl,()(—qi)—éﬂ1<—qi>—2F4,o<—qi>]+12  [Fua(=ad) 2P (=q1)], (A.12)

a(r) = / (;ljf)g pia / &h 2%2 {Flo( )~ 2Foo(~a%) (A.13)
I [Fot-at)~ S Fua(-aD)~Fuo(-a)~2Pso(-aD)] - 1Lk [Fia (-t~ Fu( )]}

as(r) = /(;ﬁjg /d(j(l?) {m( @)= 2 Foo(~a?) (A.14)
i [Frot-a)= P )= Fuol-a) 2P0 ()] - i [a(-at) - P -] |
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2

_ d3q —iq-r 2 A qi 2 2 q 2 2 2
as(r) = (277)36 d 1 gFﬁ,o(*qL)+w[2F1,0(7QJ_)*F1,1(7‘]J_)74F4,0(7QJ_)]

2 2 2

-‘r% [F1,0 (—Qi) +Fi (—qi) —4F5 (—qi)] + 323; [Fl,l (—qi) —2Fy1 (_qi)]
4

‘*‘QZﬁFLl (—41) },

*q  _igr [ 2. 1 2y 10¢% 2y, 351 2
a4(r) :/(271_)3@ a /d n@ QFG’O(—qL)— e FG,O(_qi)‘l‘ g0 Fa,o(—qL)

2
+4(i_jl'2 [4F1,0 (—qi) +F1a (—Qi) —4F, 0 (_qi) —8F% 0 (_Qi)]

4
_875:7;_(]2 [5F1,0 (—QQL)-F%FM (—(ﬁ) —2F4 0 (—Qi) —16F5,0 (—Qi)}
q‘i 2 2 35(1?_ 2 2 2
et 1 (02) = Fun (=a2) |+ 55 [Fro (—a1) P (—al) 4850 (—41) ]
5¢5 35¢°
et (5 () +2u () o () }

g igr [ 2. @ 5¢4
as (T) = / (271_)3 e /dQn 1224 4F%,0 (—qi) —T;Fe,o (—qi)
2

+2q7:l‘2 [5F1,0 (—Qi) +%F1,1 (_Qi) —6Fu0 (_qi) —8F5.0 (_qi)]

4
—4:’3222 [Fio(=q1)+Fi1(—q1)—4Fs50(—q1)] +8qﬁ [5F11(—q1) —6Fu1(—q1)]
540
7167quj4_q2 1,1 (qi)}’
d3q —iq-r 2 A qi 2 5(ﬁ 2
ag(r) = /(27()36 /d 3q0 2Fs,0 (*QJ_)*T(FFG,O (*QJ_)
2
+8q722 [2F1,0 (—Qi) +5F11 (—Qi) +4Fy4 0 (—Qi) —16F5,0 (—Qi)]
4 4
—8,332; s [Fro (=) +Fia (=) ~4Fs0 (~a8) ]+ 12 [Fia (—a) +2Fu1 (2]

5 6
_327(3;(12 g (_qi) }

Coefficient functions for tfij(s’ ,S,T):

2
Wo(a1) = Fao(-ad)+ g [~2Fo0(=a2) + Faa(—ad)] - g Fan(—a2),

2 4

Wi(ql) = g5 Fao(—ai) + ggFaa(—al).

1 2
W (q1) = 5 [2F50(—q1) — Fou(—q1)] + 15;2 Foa(—q1),

2 4
U (¢1) = Fg,o(*qi)+6q7;2 [—2F50(—q) + F31(—q)] 7#;141’3,1(*qi),
2 q2 2 q4 2

U (q1) = QntQFzs,o(*qL)JrﬁFzs,l(*qL),

1 2
Us (1) = 3 [2Fao(—q1) = Faa(=a])] + Ty Faa(—a1),

(A.15)

(A.16)

(A.17)

Bq i ) 2 3
vo (1) :/ 4 _g—id /d2 {—2F3,0(—qi)+ L [——Fz,o(—qi)wFs,o(—qi)—Fg,l(—qi)]

3Im 2

Pk

4 6
a1 2 1 2 2 a1 2
il [Fao=a2) — 3 Faa (o) + Faa ()| + s F2,1<—ql)},
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*nd’q —igr_di 2 4 a1 2 2
- iq-7 sS4 ) (- Fool—a?)—2Fs o(—
v () / (2m)* € 2m2q2 3 2¢? 2m? 2.0(=q1) 3,0(—q1) |,

11, ¢ ¢ 4 o 2\ _op 5 (A.26)
+§ §+3m2—q72_4m2q2 —2m2 2,1(_QL)_ 3,1(_QL) . .

Coefficient functions for tgf(s’ ,S,T):

4

Fio(—q1) — —Fso(—q1)

Co (Qi) = Fio(—q}) — ! B

3

2
7
+1g;2 ~Fio(—q1) + §F1,1(—<ﬁ) + Fio(—q1) — Fai(—q1) +4F50(—q7)
qjl_ _F 2 F 2 A
60m4 171( qL) + 4,0( qL) ) ( 27)
1 q2 q4
C1(a1) = gFuo(—a1) + [rg |[~Fao(ad) + Fas(—aD)| = S Fua(=al),  (A28)
2 q2
Ca (Qi) = §F6,0(—(ﬁ) + 671;2 [Fl,o(—(ﬁ) — Fyo(—q7) - 4F5,0(—Qi)}
4
+2Z;4 {Fm(—qz) - F471(—Qi)} ; (A.29)
1
Cs (fﬁ) =35 {—F1,1(—tﬁ) + F4,1(—Qi)} ) (A.30)
2 4
q q
Ca (Qi) = 67;174,0(—&) + 24;4174,1(—&)7 (A.31)
1
Cs (qi) = —6F4,1(—qi)- (A.32)
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