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We calculate the decay width of the Λ+
c → Σ+γ using light-cone sum rules. For the initial

quark radiation an effective Hamiltonian is constructed, where the internal quark line shrinks

to a point. The final quark radiation is studied within the full theory. The leading twist

light-cone distribution amplitudes of the Σ+ serve as the non-perturbative input for the sum

rules calculation, and the perturbative kernel is calculated at leading order. The branching

fraction we obtain is B(Λ+
c → Σ+γ) = 1.03 ± 0.36 × 10−4, which is below the recent upper

limit < 2.6× 10−4 given by the Belle collaboration.

I. INTRODUCTION

Weak radiative decays of charmed hadrons are an ideal platform for investigating the interplay

of the strong and the weak interactions. Unlike the flavor-changing neutral-current transition of

bottom hadrons, the penguin contribution in such charm decays is highly suppressed. As a result,

the weak radiative decay of charmed hadrons are Cabibbo-favored and dominated by long-distance

non-perturbative effects, where the decay is induced by internal W-exchange bremsstrahlung pro-

cesses such as cd → usγ. Studying the weak radiative decays of charmed hadrons both from

the experimental and the theoretical side can help us to understand the strong dynamics inside

hadrons.

Over the past few decades, there are several measurements of the weak radiative decays of

charmed meson [1–3], and the corresponding theoretical researches [4–16]. However, the exper-

imental researches in the charmed baryon sector are rare. Recently, the Belle collaboration an-

nounced the first search for the weak radiative decays Λ+
c → Σ+γ and Ξ0

c → Ξ0γ [17], where the

upper limits for their absolute branching fractions are given as:

Bexp(Λ+
c → Σ+γ) < 2.6× 10−4, Bexp(Ξ0

c → Ξ0γ) < 1.7× 10−4. (1)

On the theoretical side, the corresponding branching fractions have been predicted by various

theoretical approaches, which include a modified nonrelativistic quark model [18], the constituent
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quark model [19] and the effective Hamiltonian approach combined with the pole model [20]. The

theoretical predictions of the branching fractions of Λ+
c → Σ+γ and Ξ0

c → Ξ0γ are in the range

(4.5− 29.1)× 10−5 and (3.0− 19.5)× 10−5, respectively. Most of these predictions are consistent

with the experimental constraints given above, while the one from the constituent quark model are

slightly larger than the upper limits in Eq. (1).

Nowadays, except the model-based theoretical approaches mentioned above, there is no model-

independent calculation for the weak radiative decays of charmed baryons. In this work, we will

fill this gap and calculate the decay width of the Λ+
c → Σ+γ with the use of light-cone sum rules

(LCSR). In terms of the initial quark radiation, following Refs. [19, 20], we construct an effective

Hamiltonian to simplify the calculation. Since the radiating quark comes from the heavy baryon

Λ+
c , its velocity can be assumed to be parallel to the velocity of the Λ+

c . This enables us to

shrink the internal off-shell quark line to a point so that the decay amplitude can be effectively

induced by a local Hamiltonian of cd→ usγ. In terms of the final quark radiation, since the final

state Σ+ is a light baryon, thus we cannot make the same assumption on its composite quark

velocities. Therefore we have to treat the final quark radiation in the full theory. The leading twist

light-cone distribution amplitudes (LCDAs) of the Σ+ will serve as the non-perturbative input for

the sum rules calculation. These LCDAs are taken from the latest Lattice QCD calculation with

Nf = 2+1 [21]. Furthermore, the perturbative kernel will be calculated at leading order. It should

be mentioned that these LCDAs are defined according to the light-cone expansion, which are most

reliable when the quark masses vanish. Therefore the LCDAs of Ξ0 are not as good as those of Σ+

which has less massive s quarks, and we will not consider Ξ0
c → Ξ0γ in this work.

This paper is organized as follows. In Sec. II, we construct an effective Hamiltonian for the

initial quark radiation in the Λ+
c → Σ+γ decay and express the decay amplitude by several calcu-

lable matrix elements. In Sec. III, we define suitable correlation functions to calculate the decay

amplitude at the hadron level. In Sec. IV, we perform the QCD level calculation for the correlation

function defined above with the use of Σ+ LCDAs. Sec.V contains the numerical results on the

decay amplitudes and branching fraction. We will also compare them with those from literature.

Sec. VI is a brief summary of this work.

II. DECAY AMPLITUDES FOR INITIAL AND FINAL RADIATION

The weak effective Hamiltonian contributing to the Λ+
c → Σ+γ decay reads

Heff =
GF√

2
VcdV

∗
ud (C1O1 + C2O2) ,

O1 = s̄γµ(1− γ5)c ūγµ(1− γ5)d,

O2 = ūγµ(1− γ5)c s̄γµ(1− γ5)d, (2)
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FIG. 1: W-exchange bremsstrahlung processes cd → usγ induced by O1, where the double crossed dots

denote O1,2. The diagrams for O2 are similar, just exchanging u and s.

where the C1,2 are the Wilson coefficients. Fig. 1 shows the W-exchange bremsstrahlung processes

cd→ usγ. In the case of initial radiation where the photon is emitted by the c or d quark as shown

in Fig. 1, following the approach given in Ref. [20] we can construct an effective Hamiltonian

to simplify the calculation. Here, we take the c quark radiation in the O1 contribution, namely

Fig. 1(a) as an example to illustrate the procedure.

The amplitude of Fig.1(a) reads

AO1
Initial,c = i

GF√
2
VcsV

∗
udε
∗µ(k)s̄(ps)γ

ν(1− γ5)
/pc − /k + m̄c

(pc − k)2 − m̄2
c

γµc(pc)ū(pu)γν(1− γ5)d(pd), (3)

where pc,s,u,d are the on-shell quark momenta, m̄c,d are the constituent quark masses in the Λc and

k satisfies k2 = 0 and k · ε = 0. Since the initial c, d quarks are confined in the heavy baryon Λc,

we can assume that c, d and Λc have the same velocity, in other words pc,d = (m̄c,d/mΛc)pΛc . Thus

the denominator of Eq. (3) becomes

(pc − k)2 −m2
c =

m̄c

mΛc

(m2
Σ −m2

Λc
), (4)

which implies that effectively the internal off-shell quark line shrinks to a point. Further, the

numerator of Eq. (3) can be simplified by using the equation of motion of the c quark. For the

case of d quark radiation the derivation is almost the same. Finally, the amplitude in Eq. (3) can

be effectively generated by the following Hamiltonian

HO1
eff =

GF√
2
VcsV

∗
ud C1

∑
q

[
AµJ

µ
O1,q
− i

2
FµνK

µν
O1,q

]
, (5)

where q = c, d and JO1,q,KO1,q are the effective four-quark currents

JµO1,c
= 2i Qcλc s̄γ

ν(1− γ5)∂µc ūγν(1− γ5)d,

Kµν
O1,c

= i Qcλc s̄γ
α(1− γ5)σµνc ūγα(1− γ5)d,

JµO1,d
= 2i Qdλd s̄γ

ν(1− γ5)c ūγν(1− γ5)∂µd,

Kµν
O1,d

= i Qdλd s̄γ
α(1− γ5)c ūγα(1− γ5)σµνd . (6)
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Here, Qq is the electric charge and λq =
mΛc

m̄q(m2
Λc
−m2

Σ)
. For the case of O2 the corresponding

operators can be obtained by just exchanging the u, s fields. Now the initial radiation amplitude

induced by O1,2 can be expressed as:

AOi
Initial = −iGF√

2
VcsV

∗
ud Ci ε

∗
µ(k)

[
〈Σ(p)|JµOi

(0)|Λc(q)〉+ 〈Σ(p)|kαKαµ
Oi

(0)|Λc(q)〉
]
, (7)

where i = 1, 2, JµOi
= JµOi,c

+ JµOd
and Kµν

Oi
= Kµν

Oi,c
+ Kµν

Od
. k = q − p is the on-shell photon

momentum.

For the final quark radiation this effective Hamiltonian approach is not suitable. The reason

is that in our case the final baryon Σ+ contains no heavy quark, and thus we cannot equate its

velocity with its constituent quarks, namely the momentum relation pu,s = (m̄u,s/mΣ)pΣ cannot

be used any more. The amplitude for the final quark radiation is calculated in the full theory. It

can be written as

AOi
Final = −iGF√

2
VcsV

∗
ud Ci ε

∗
µ(k)

∫
d4x 〈Σ(p)|T{jµ(0)Oi(x)}|Λc(q)〉, (8)

where jµ = iQuūγ
µu + iQss̄γ

µs is the quark electromagnetic current. According to the Ward-

identity, the matrix elements appearing in Eq. (7) and Eq. (8) can be parameterized as

〈Σ(p)|J µOi
(0)|Λc(q)〉 = i ε∗µ(k)ūΣ

(
a+
i,J + b+i,J γ5

)
σµν

kν
mΛc

uΛc(q), (9)

where J µOi
= JµOi

+ kαK
αµ
Oi

for the initial radiation and J µOi
=
∫
d4xT{jµOi(x)} for the final

radiation. The amplitudes a+
i,J , b

+
i,J will be calculated using LCSR in the next section.

III. HADRON LEVEL CALCULATION IN LCSR

Now we present the calculation of Λ+
c → Σ+γ decay width within the LCSR approach. To

obtain the matrix elements given in Eq. (9), one has to define a suitable correlation function and

calculate it both at the hadron and the QCD level. Matching these two levels by the quark-hadron

duality enables us to extract the decay amplitudes. Here we define a two-point correlation function

as:

ΠOi,J (p, q) = pµ
∫
d4x e−iq·x〈Σ(p)|T{J Oi

µ (0)J̄Λc(x)}|0〉, (10)

where J̄Λc is a current creating the Λc baryon and its explicit form will be given

later. Here, we have contracted the correlation function with a momentum vector pµ.

Without this contraction, the correlation function will have 12 independent structures

γµ, γµγ5, γµ/q, γµ/qγ5, pµ, pµγ5, pµ/q, pµ/qγ5, qµ, qµγ5, qµ/q, qµ/qγ5, 1, γ5, /q, and /qγ5. However, in Eq. (9)

there are only two independent amplitudes. Thus it will become ambiguous which two of the 12

structures should be chosen to extract the two amplitudes. Contracting the momentum vector pµ
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reduces the number of independent structures to four, namely 1, γ5, /q, /qγ5, which is still too much.

This mismatch can be solved by doubling the number of amplitudes, as will be explained next.

At the hadron level, this correlation function is calculated by inserting a complete set of states

between the two currents. The lowest single particle state should be explicitly kept while the

higher excited states will be attributed to the continuous spectrum. To match the four independent

structures of the correlation function with the number of decay amplitudes, we have to introduce

two extra amplitudes from the decay of the negative parity state Λc(1/2
−). Similarly to Eq. (9),

the corresponding amplitudes are

i ε∗µ(k)ūΣ

(
a−i,J + b−i,J γ5

)
σµν

kν

mΛc

(iγ5)uΛc(q). (11)

Now we have four amplitudes a±i,J , b
±
i,J mapping to the four structures 1, γ5, /q, /qγ5. Keeping both

the two lowest states Λc(1/2
±) and attributing higher excited states to the continuous spectrum,

we express the hadron level correlation function of Eq. (10) as

ΠOi,J (p, q)H =
λ+

m2
Λc+ − q2

ūΣ(a+
i,J + b+i,J γ5)σµν(/q +mΛc+)

pµkν

mΛc+

+
λ−

m2
Λc− − q

2
ūΣ(a−i,J + b−i,J γ5)σµν(/q −mΛc−)

pµkν

mΛc−
+

∫ ∞
sth

ds
ρOi,J (s, p)

s− q2
. (12)

The last term is the continuous spectrum contribution including all the states above the Λc(1/2
−).

sth is the threshold parameter of this continuous spectrum and should be larger than m2
Λc−. λ±

are the decay constants of the Λc(1/2
±) which are defined as

〈Λc(1/2+)(q)|J̄Λc(0)|0〉 = ūΛc(q)λ+,

〈Λc(1/2−)(q)|J̄Λc(0)|0〉 = ūΛc(q)(iγ5)λ−. (13)

The same correlation function should also be calculated at the QCD level, which can be ex-

pressed as a dispersion integral:

ΠOi,J (p, q)QCD =
1

2πi

∫ ∞
m2

c

ds
Disc ΠOi,J (p, s)QCD

s− q2
. (14)

The discontinuity part can be parameterized as:

Disc ΠOi,J (s, p)QCD = F
(1)
Oi,J /qγ5 + F

(2)
Oi,J /q + F

(3)
Oi,J γ5 + F

(4)
Oi,J . (15)

In principle, the correlation function calculated at the hadron and the QCD level should be equiv-

alent. According to the quark-hadron duality, the continuous spectrum contribution in Eq. (12)

is canceled by the corresponding QCD level dispersion integral in the region sth < s < ∞. Fur-

thermore, since the QCD level calculation can only be explicitly performed using a light-cone

expansion (LCE), one has to perform a Borel transformation of the correlation function at both

levels to improve the LCE convergence. Finally one can extract the amplitudes as

a+
i,J =

1

π

∫ sth

m2
c

ds e
m2

Λc+−s

T2

mΛc+

[
mΛc−F

(2)
Oi,J + F

(4)
Oi,J

]
λ+(mΛc+ +mΛc−)(mΛc+ −mΣ)2

,
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b+i,J =
1

π

∫ sth

m2
c

ds e
m2

Λc+−s

T2

mΛc+

[
F

(3)
Oi,J −mΛc−F

(1)
Oi,J

]
λ+(mΛc+ +mΛc−)(mΛc+ +mΣ)2

, (16)

where T2 is the Borel parameter which will be determined during the numerical calculation. Here,

a−i,J , b
−
i,J are not shown since we only care about the decay amplitudes of the Λc(1/2

+). The

coefficients F
(n)
Oi,J will be explicitly calculated by the LCE at the QCD level.

IV. QCD LEVEL CALCULATION IN LCSR

In this section, we will use light-cone expansion to calculate the correlation function defined in

Eq. (10), and extract the coefficients F
(n)
Oi,J . Now the correlation function reads

ΠOi,J (p, q)QCD = pµ
∫
d4x e−iq·x〈Σ(p)|T{J Oi

µ (0)J̄Λc(x)}|0〉,

with J̄ΛQ
= −εabcQ̄c(d̄bCγ5ū

T
a ), (17)

where a, b, c are color indices. Here, q2 � 0 is taken in the deep Euclidean region to realize the

light-cone expansion. Let us take i = 1 and J = J as an example to illustrate the detailed

calculation for the c quark radiation.

At leading order the corresponding correlation function becomes

Πc
Oi,J (p, q)QCD =− 2i Qcλcεabc pµ

∫
d4x e−iq·x[γν(1− γ5)∂µwSc(w, x)]ig

× [γν(1− γ5)Sd(0, x)Cγ5]kn〈Σ(p)|s̄ic(0)ūkb (0)ūna(x)|0〉, (18)

where Sq(x, y) is the free propagator of the quark q. Fig. 2(a) shows the corresponding Feynman

diagram, where the black dot at coordinate x denotes the Λc current and the white crossed dot at

coordinate 0 denotes the effective current JµO1,c
. The last matrix element in Eq. (18) is represented

by the grey ellipse in Fig. 2, which can be parameterized by three leading twist LCDAs of the

Σ+[21–25]

〈Σ(p)|s̄ic(0)ūkb (0)ūna(x)|0〉 =− 1

4
εabc

∫
du1du2du3δ(1− u1 − u2 − u3) eiu1p·x

×
{

[ūBγ5]i[C/̃n]knV
B(u1, u2, u3) + [ūB]i[Cγ5 /̃n]knA

B(u1, u2, u3)

+ iñαgβρ⊥ [Cσβα]kn[ūBγργ5]iT
B(u1, u2, u3)

}
, (19)

where g⊥µν = gµν− (ñµnν + ñνnµ)/(ñ ·n) with ñµ = pµ− (m2
Σ/2p ·n)nµ and n is a light-cone vector.

ūB = ūΣ/n/p/2mΣ with uΣ the Dirac spinor of the Σ+ baryon. The coordinate x of the quark field

is parallel to n, x = (x · p/mΣ)n, where we have used p = mΣv, v = (n + n̄)/2 and n · n̄ = 2. In

the chiral limit mu = md = 0 the contribution of V B and AB to the correlation function vanishes.

The explicit form of TB of the Σ+ baryon now reads

TB(u1, u2, u3) = 120u1u2u3

(
πB00P00 + πB11P11 + . . .

)
, (20)



7

p

q

x

k1, c

k2, d

0

u u s

k
q

x

k1, c

k2, d

0

uu
s

k
s

p

(a) (b)

FIG. 2: Diagrams for the QCD level correlation function in Eq. (17). (a) is the initial quark radiation where

the white crossed dot denotes the effective four-quark currents in Eq. (6). (b) is the final s quark radiation

where the white crossed dot denotes the current jµ. The black dot denotes the Λc current. The grey ellipse

represents the LCDAs of the Σ+.

where the Pij are polynomials, P00 = 1, P11 = 7 (u1 − 2u3 + u2) [21]. πB00 and πB11 are the shape

parameters which encode all non-perturbative information of the baryon. The ellipsis denotes

terms of higher power polynomials, which are suppressed and omitted here.

Using the Σ+ LCDAs given above, we can express the correlation function in Fig. 2(a) as

Πc
Oi,J (p, q)QCD =− 3iQcλc

1

2mΣ

∫
du1du2

∫
d4x

∫
d4k1

(2π)4

d4k2

(2π)4
e−i(q−k1−k2−u1p)·x

× TB(u1, u2, 1− u1 − u2)
1

k2
1 −m2

c

1

k2
2

p · k1

×
[
pαgρβ + (

1

2
mΣg

ρα − 1

mΣ
pρpα)nβ +

1

2
pαnβnρ

]
nκ

× ūΣγκ/pγργ5γ
ν(1− γ5)(/k1 +mc) tr[γν(1− γ5)/k2σαβ]. (21)

Here, we have defined T̃B(u1, u2) = TB(u1, u2, 1− u1 − u2). Note that since n = (mΣ/x · p)x, we

can use the following trick to remove the x in the denominator:∫
du1du2

∫
d4x e−i(q−k1−k2−u1p)·x T̃B(u1, u2)nκ · · ·

= mΣ
∂

∂qκ

∫
du1du2

∫
d4x e−i(q−k1−k2−u1p)·x T̃B(1)(u1, u2) · · · , (22)

where the ellipses represents all the terms independent of u1, u2, and

T̃B(i)(u1, u2) =

∫ u1

0
dt T̃B(i−1)(t, u2) with T̃B(0)(t, u2) = T̃B(t, u2). (23)

From Eq. (22), it follows that for each nκ one can equivalently replace it with an operator n̂κ =

mΣ ∂/∂qκ and simultaneously replace T̃B with T̃B(1). Therefore, the correlation function takes the

form

Πc
Oi,J (p, q)QCD =− 3iQcλc

1

2mΣ

∫
du1du2 N [n̂, TB(i)]

αβρκ

∫
d4k1

(2π)4

d4k2

(2π)4
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× (2π)4δ4(q − u1p− k1 − k2)
1

k2
1 −m2

c

1

k2
2

p · k1

× ūΣγκ/pγργ5γ
ν(1− γ5)(/k1 +mc) tr[γν(1− γ5)/k2σαβ], (24)

where the operator N is defined as

N [n̂, TB(i)]
αβρκ

= n̂κ
[
pαgρβT̃B(1)(u1, u2) +

(
1

2
mΣg

ρα − 1

mΣ
pρpα

)
n̂βT̃B(2)(u1, u2) +

1

2
pαn̂βn̂ρT̃B(3)(u1, u2)

]
. (25)

Now we have to express the QCD level correlation function as a dispersive integral. The

discontinuity part can be extracted from the cutting rules:

Disc Πc
Oi,J (p, q)QCD =− 3iQcλc

(2π)2

2mΣ
N [n̂, TB(i)]

αβρκ

∫
du1du2

∫
dΦ2[(q − u1p)

2] p · k1

× ūΣγκ/pγργ5γ
ν(1− γ5)(/k1 +mc) tr[γν(1− γ5)/k2σαβ], (26)

where

dΦ2[(q − u1p)
2] =

∫
d3k1

(2π)3

1

2Ek1

d3k1

(2π)3

1

2Ek1

δ4(q − u1p− k1 − k2) (27)

is the two-body phase space integration, which corresponds to cutting off the c, d quark loop in

Fig. 2(a). Further, Πc
O2,J (p, q)QCD = −Πc

O1,J (p, q)QCD so that we only have to calculate the

amplitudes induced by O1. The integration in Eq. (26) is involved but straightforward, so we will

not present further calculational details here.

For the case of the final quark radiation, the corresponding diagram is shown in Fig. 2(b), where

we take the s quark radiation as an example. The calculation for this diagram is similar to Fig. 2(a)

and the only difference is that now we have an extra s quark propagator:

1

(q − (u1 + u2)p)2
=

1

u3(s− (u1 + u2)m2
Σ)
. (28)

It should be mentioned that for the final quark radiation J Oi
µ (0) is an composite operator of jq′µ

and Oi, so that the hadron level correlation function in Eq. (10) is actually induced by three

operators. However, since we only insert a complete set of states between J Oi
µ (0) and J̄Λc(x), the

composite operator J Oi
µ (0) is not disconnected. Therefore, at the QCD level when extracting the

discontinuity part, we only have to cut off the c, d quark loop in Fig. 2(b) and keep the s quark

propagator unchanged.

V. NUMERICAL RESULTS

We first give the input parameters. We use the MS masses for the quarks, mc(µ) = 1.27 GeV and

ms(µ) = 0.103 GeV with µ = 1.27 GeV [26]. The masses of u, d quarks are omitted. The composite
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FIG. 3: Decay amplitudes a+J and b+J (in unit 10−3 GeV2) as functions of the Borel parameter T 2. In each

diagram, the blue band denotes the error from the uncertainty of the threshold sth = 2.852±0.5 GeV2. The

upper and lower red bands denote the error from the uncertainty of λ+.

masses of the c, d quarks are taken as m̄c = 1.6 GeV and m̄d = 0.32 GeV [20]. The masses of the

baryons are mΣ = 1.19 GeV, mΛc+ = 2.286 GeV and mΛc− = 2.6 GeV [26]. The decay constant of

the Λc(1/2
+) is taken as λ+ = 0.01± 0.001 [27]. From Eq. (16), it can be seen that the amplitudes

are proportional to the inverse of λ+ so that its uncertainty may affect the result a lot. Therefore,

we will include the uncertainty of λ+ when evaluating the uncertainty of the decay amplitudes.

The shape parameters of the Σ+ LCDAs are taken from a lattice calculation with Nf = 2 + 1 and

vanishing lattice spacing limit a→ 0 : πB00 = 5.14× 10−3 GeV2 and πB11 = −0.09× 10−3 GeV2[21].

Further, the LCSR contains two kinds of extra parameters, namely the threshold parameter sth

and the Borel parameter T2. The threshold parameter should in principle be process independent

and only related to the corresponding hadron state. Here, sth is taken from a QCD sum rules

study on the decay constant of the Λc [27]: sth = 2.852 GeV2. Generally, the sum rules results are

sensitive to the threshold parameter, thus here we consider a small uncertainty ±0.5 GeV2 near

this value to evaluate the uncertainty from the threshold parameter on the decay amplitudes.

Generally, the Borel parameter T2 is chosen to satisfy three requirements. First, T2 cannot be

too large so that the continuous spectrum contribution is suppressed. Second, T2 must be large

enough to ensure the light-cone expansion to convergence. Finally, the result must be stable in a

window of T2. The first and the second requirement can determine the upper and lower bound
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TABLE I: Decay amplitudes a+J and b+J (in unit 10−3 GeV2) and the corresponding Borel parameters (GeV2)

for the initial- and the final-state radiation.

a+Ini T2 b+Ini T2 a+Fin T2 b+Fin T2

−6.03± 1.22 5.5± 1.0 0.37± 0.11 4.7± 1.0 −1.56± 0.17 2.3± 0.5 0.13± 0.05 1.45± 0.5

of the T2 window, respectively. Fig. 3 shows the amplitudes a+
i,J and b+i,J as functions of T2.

To determine the upper bound, we require that the pole contribution must be larger than the

continuous spectrum contribution, namely:∫ sth

m2
c

ds e−s/T
2
Disc ΠOi,J (p, s)QCD∫ ∞

m2
c

ds e−s/T
2
Disc ΠOi,J (p, s)QCD

> 0.5. (29)

The numerator is the pole contribution, which represents the integral on the right-hand side of

Eq. (16). The denominator is the same integral but the upper limit of s is extended to infinity,

which contains both pole and continuous spectrum contributions. Note that although the value for

this fraction is derived from experience, as long as the third requirement for stability is satisfied,

the result will be insensitive to this fraction, and its uncertainty can be attributed to choosing the

window of T2.

On the other hand, in principle, the lower bound of the T2 is determined by the ratio between the

contribution from the leading order and next-to-leading order QCD corrections to the perturbative

kernel. However, in this work only the leading order contribution is considered so that this method

cannot be used. Following our previous work [28], to get the window of T2, we can set the center

value of T2 as its upper bound, and find a range ±1 GeV2 around this center value. The amplitudes

and the corresponding errors from the uncertainties of sth, T2 and λ+ are listed in Table I. Note

that the center value of the T2 is already in a relatively stable region as shown in Fig. 3, thus the

procedure given above is sufficient for determining the errors of the amplitudes. Generally, the

Borel parameters are close to the corresponding mass square of hadrons. From Table I, the T2 s

for initial-state radiation are close to m2
Λc

which is as expected. However, the T2 s for final-state

radiation are much smaller. The reason is that in Fig. 2(b) the extra propagator as shown in

Eq. (28) provides a lighter mass scale mΣ. Now the s dominates around m2
Σ, which reduces the

optimal value of T2.

Using the amplitudes given in Table I, we can obtain the decay width of the Λ+
c → Σ+γ from

the formula

Γ
(
Λ+
c → Σ+γ

)
=

1

8π m2
Λc+

(
m2

Λc+ −m2
Σ

mΛc+

)3
G2
F

2
|VcsVud|2(C1 − C2)2

(
|a|2 + |b|2

)
(30)

with a = a+
Ini + a+

Fin and b = b+Ini + b+Fin. The Wilson coefficients are taken as C1 = 1.22 and

C2 = −0.43 at µ = mc [29]. The CKM matrix elements are |Vcs| = 0.975 and |Vud| = 0.973 [26].
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TABLE II: Comparison of the branching fraction B(Λ+
c → Σ+γ) from this work with those from the literature

and the Belle experiment.

Method B(Λ+
c → Σ+γ)

This Work 1.03± 0.36× 10−4

NRQM [18] 3.2× 10−5

CQM [19] 2.8± 0.6× 10−4

EHA [20] 4.9× 10−5

Exp. [17] < 2.6× 10−4

Using the Λ+
c lifetime τ(Λ+

c ) = 2.01× 10−13 s [26], we can obtain the branching fraction

B(Λ+
c → Σ+γ) = 1.03± 0.36× 10−4, (31)

which is below the experimental upper limit given recently by the Belle Collaboration [17]:

Bexpr(Λ
+
c → Σ+γ) < 2.6× 10−4. (32)

Table II gives a comparison of the Λ+
c → Σ+γ branching fraction from this work, the result from

the Belle Collaboration, the modified nonrelativistic quark model (NRQM) [18], the constituent

quark model (CQM) [19] and the effective Hamiltonian approach (EHA) [20]. The branching

fraction from the CQM is slightly larger than the experimental upper limit, while the branching

fractions from other theoretical methods are nearly one order smaller than the upper limit. Our

result is between these theoretical predictions and the experimental upper limit. Due to the

limitation on the data sample and resolution, an extremely small branching fraction is difficult to

be measured. However, the relatively larger branching fraction predicted in this work is more likely

to be tested by future experiments.

VI. CONCLUSION

We have calculated the decay width of Λ+
c → Σ+γ using light-cone sum rules. For the initial

quark radiation we constructed an effective Hamiltonian to simplify the calculation, where the

internal quark line shrinks to a point. The final quark radiation is studied utilizing the full theory.

The leading twist light-cone distribution amplitudes of the Σ+ serve as the non-perturbative input

for the sum rule calculation, and the perturbative kernel is calculated at leading order. The branch-

ing fraction we obtain is B(Λ+
c → Σ+γ) = 1.03±0.36×10−4, which is between previous theoretical

predictions and the experimental upper limit. Considering the data sample and resolution of the

experiment, we believe that our prediction can be tested in the near future.
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