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2Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, D-52425 Jülich, Germany
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ABSTRACT

The carbon atom provides the backbone for the complex organic chemistry composing the building blocks of life. The physics

of the carbon nucleus in its predominant isotope, 12C, is similarly full of multifaceted complexity. Some nuclear states of 12C

can be preferentially treated as a collection of independent particles held by the mean field of the nucleus, while other states

behave more as a collection of three alpha-particle clusters. But these two pictures are not mutually exclusive, and some

states can be described in either fashion.1,2 In this work, we provide the first model-independent tomographic scan of the

three-dimensional geometry of the nuclear states of 12C using the ab initio framework of nuclear lattice effective field theory.

We find that the well-known but enigmatic Hoyle state is composed of a “bent-arm” or obtuse triangular arrangement of alpha

clusters. We identify all of the low-lying nuclear states of 12C as having an intrinsic shape composed of three alpha clusters

forming either an equilateral triangle or an obtuse triangle. From these basic structural formations, the various nuclear states

correspond to different rotational and vibrational excitations as well as either distortions or large-amplitude displacements of

the alpha clusters. The states with the equilateral triangle formation also have a dual description in terms of particle-hole

excitations in the mean-field picture. We compare our theoretical calculations with experimental data for binding energies,

quadrupole moments, electromagnetic transitions, charge densities, and form factors. The overall agreement is good, and

further studies using higher-fidelity interactions are planned.

Introduction: The physics of the 12C nucleus is a fascinating subject with a long and fabled history,3,4 and recent ground-

breaking experimental results have provided hints of new states with exotic structures.5–15 However, the underlying structures

of several nuclear states of 12C remain without a consensus of agreement, and answers to such questions would provide deep

insights into the emergent correlations relevant to nuclear binding and the panoply of possible structures that may appear in

other nuclear systems. The most famous example is the case of the so-called Hoyle state, and its hypothetical rotational band

partners. The Hoyle state is a narrow resonance, whose close proximity to the energy threshold for three alpha particles greatly

enhances the reaction rate of the triple-alpha process, which is key to the production of carbon in evolved, helium-burning

stars.16,17 Much progress has been made in understanding the spectrum of 12C including the Hoyle state, in theoretical

studies using the no-core shell model,18,19 symmetry-adapted no-core shell model,20 shell model,21 quantum Monte Carlo

simulations (QMC),22 replica exchange MC (RXMC),23 antisymmetrized molecular dynamics (AMD),1,24 fermion molecular

dynamics (FMD),25 density functional theory,26–28 Bose-Einstein condensate (BEC) wave functions,29–31 alpha cluster mod-

els (ACM),25 and nuclear lattice effective field theory (NLEFT).32,33 There are two main impediments to reaching definitive

conclusions about the structure of the low-lying 12C states. The first is the inability to perform calculations that can handle

strong multi-particle correlations. The second is the inability to measure the detailed spatial correlations required to determine

the intrinsic structure of the twelve-particle wave function. In this work we address both problems. We perform unconstrained

lattice Monte Carlo simulations using the framework of NLEFT,34,35 including all possible multi-particle quantum correla-

tions. From these simulations, we determine the full twelve-particle correlations and use a model-independent tomographic

projection to determine the intrinsic three-dimensional structure of each nuclear state.

In our calculations, we use a simple interaction between the nucleons that is independent of spin and whether the nucleon is

a proton or neutron, i.e., of isospin. Conveniently, this is similar to the interactions used in most AMD and BEC calculations.

Therefore, any significant differences in the conclusions are likely due to differences in the computational method, or in

the choice of calculated observables, rather than to differences in the nucleon-nucleon interaction. The same type of lattice
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Figure 1. Left Panel: Spectrum of 12C (red squares) in comparison with experimental data (black stars). The error bars

correspond to one standard deviation errors. The grey shaded regions indicate decay widths for cases where it has been

measured. Previous results for lattice spacing a = 1.64 fm (blue circles) and a = 1.97 fm (green pentagons) are also shown.39

The triangular shapes indicate the intrinsic shape of each nuclear state, either equilateral or obtuse triangle arrangements of

alpha clusters. The dotted lines for some equilateral triangles indicate significant distortions or large-amplitude

displacements of the alpha clusters. Right Panel: The absolute value of the charge form factor F(q). The top figure (a)

shows the ground state (red squares) and Hoyle state (green circles), and the bottom figure (b) shows the transition from the

ground state to the Hoyle state (red squares). The error bars correspond to one standard deviation errors. Experimental data

(purple stars) are shown for comparison.7,48–50

interaction has been used to describe the ground state energies of light and medium-mass nuclei36 and the thermodynamics of

symmetric nuclear matter.37 Perhaps most importantly, it reproduces the low-energy spectrum of 12C well.39

Lattice methods: For the lattice simulations presented here, we use a spatial lattice spacing a = 1.64 fm and a temporal

lattice spacing of at = 0.55 fm/c, where c is the speed of light. While the individual nucleons must reside on lattice sites,

the center of mass (c.m.) of the 12C nucleus is constrained to a much finer three-dimensional grid of lattice spacing a/12 =
0.137 fm, which equals the resolution of our tomographic projection for each 12C state. The lattice interaction has the form

V =
C2

2!
∑
n

ρ̃(n)2 +
C3

3!
∑
n

ρ̃(n)3, (1)

where C2 and C3 are the two-body and the three-body interaction coefficients, respectively. The vector n denotes the spatial

lattice sites. The definition of the smeared density operator ρ̃(n) is given in Methods, and it entails two parameters, sL, and

sNL. The four parameters C2,C3,sL, and sNL are determined by a joint fit to the ground-state energies of 4He and 12C, to the

ground-state charge radius of 12C, and to several electromagnetic transition rates.

A summary of the auxiliary-field Monte Carlo calculations is given in Methods. We use an assortment of different initial

states for each state of 12C and verify that our choice of initial state does not affect the final observables. The initial states

we consider include a wide variety of mean-field states composed of products of harmonic oscillator (shell model) states

as well as different geometric configurations of alpha clusters. We use the pinhole algorithm to determine the probability

distribution for the nucleon positions, spins, and isospins.38 For each pinhole configuration, we know the positions of all A

nucleons, and thus the position of each nucleon relative to the center of mass is easily calculated. From this information, we

can compute any observable that does not involve displacements of the nucleons. For example, the electric charge density can

be determined from the distribution of protons, taking into account the charge radius of protons. The charge form factor F(q)
is then calculated by performing the Fourier transform of the charge density.

Spectrum and electromagnetic properties: We have calculated the 12C spectrum up to excitation energies of about 15 MeV.

The results are plotted as red squares in the left panel of Fig. 1 for different values of the angular momentum and parity.

For comparison we show the experimental data (black stars)41 and results from our previous work with lattice spacing a =
1.64 fm (blue circles) and a = 1.97 fm (green pentagons), which were performed without three-nucleon forces.39 Overall, the

agreement with the empirical results is quite good. The triangular shapes surrounding the data points are explained later in
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Table 1. Energies and charge radii rc (or point radii r) of 12C calculated by NLEFT, compared to calculations from FMD,25

ACM,25 BEC,30,31 and RXMC23 as well as experiment.41,42 All energies are in MeV and radii in fm. For rc(0
+
1 ), the charge

radius of the proton r
p
E = 0.84 fm43 is added in quadrature. For the NLEFT results, the first error bars are one standard

deviation estimates due to stochastic errors and Euclidean time extrapolation. The second error bars are an estimate of

systematic errors due to broken rotational invariance from the finite periodic volume and nonzero lattice spacing. Additional

systematic errors due to the choice of interaction are described in Methods.

NLEFT FMD α cluster BEC RXMC Exp.

E(0+1 ) −91.6(1) −92.6 −89.6 −89.5 −88.0 −92.2
E(0+2 ) −85.7(1) −83.1 −81.7 −81.8 −81.4 −84.5
E(0+3 ) −82.7(1) −80.7 −79.2 – −79.0 −81.9(3)
E(2+1 ) −86.9(1)(1.5) −87.3 −87.0 −86.7 – −87.7
E(2+2 ) −82.5(1)(2.1) −80.8 −80.4 −80.5 – −82.3
rc(0

+
1 ) 2.54(1) 2.53 2.54 2.53 2.65 2.47(2)

r(0+2 ) 3.45(2) 3.38 3.71 3.83 4.00 –

r(0+3 ) 3.47(1) 4.62 4.75 – 4.80 –

r(2+1 ) 2.42(1)(1) 2.50 2.37 2.38 – –

r(2+2 ) 3.30(1)(4) 4.43 4.43 – – –

Table 2. Quadrupole moment and transition rates of 12C calculated by NLEFT, compared to calculations based on FMD,25

α cluster models,25 in-medium no-core shell model (NCSM),44 generator coordinate method (GCM) calculation52 and

experiment.45,46 Units for Q and M(E0) are e fm2, and for B(E2) e2 fm4. For the NLEFT results, the first errors bar refer to

the Euclidean time extrapolation uncertainties. The second error bars are an estimate of errors due to broken rotational

invariance from the finite periodic volume and nonzero lattice spacing. Additional systematic errors due to the choice of

interaction are described in Methods.

NLEFT FMD α cluster NCSM GCM Exp.

Q(2+1 ) 6.8(3)(1.2) – – 6.3(3) – 8.1(2.3)
Q(2+2 ) −35(1)(1) – – – – –

M(E0,0+1 → 0+2 ) 4.8(3) 6.5 6.5 – 6.2 5.4(2)
M(E0,0+1 → 0+3 ) 0.4(3) – – – 3.6 –

M(E0,0+2 → 0+3 ) 7.4(4) – – – 47.0 –

B(E2,2+1 → 0+1 ) 11.4(1)(4.3) 8.7 9.2 8.7(9) – 7.9(4)
B(E2,2+1 → 0+2 ) 2.4(2)(7) 3.8 0.8 – – 2.6(4)

our discussion. In the right panel of Fig. 1, we show the form factors for the ground state and the Hoyle state in the top figure

(a), and the transition form factor from the ground state to the Hoyle state in the bottom figure (b). For comparison, we show

the experimental data for the ground state and transition form factors,7,48–50 and the agreement is fairly good.

In Table 1, the energies and radii of 0+1 ,0
+
2 ,0

+
3 ,2

+
1 , and 2+2 states are shown, in comparison with other theoretical calcula-

tions23,25,30,31 and experimental data.41,42 Our Jπ
n notation indicates the angular momentum J, parity π , and ordinal number

n. The NLEFT energies and radii agree very well with empirical results. Since the 0+2 ,0
+
3 and 2+2 states are unbound or nearly

unbound with respect to the three-alpha threshold, the radii are calculated when the corresponding state is placed in a periodic

cube with length L = 14.8 fm. The first error bars are one standard deviation estimates due to stochastic errors and Euclidean

time extrapolation uncertainties. The second error bars are an estimate of systematic errors due to broken rotational invariance

from the finite periodic volume and nonzero lattice spacing. Additional systematic errors due to the choice of interaction are

described in Methods. In Table 2, the electric quadrupole moments of the 2+ states and electric transition rates involving

the 0+1 ,0
+
2 ,0

+
3 , and 2+1 states of 12C obtained by NLEFT are given in comparison with other theoretical calculations25,44 and

experimental data.45,46 While the quadrupole transitions have significant errors due to broken rotational invariance, the overall

agreement with empirical results is good.

Intrinsic structures: We compute the intrinsic structure of the nuclear states in the following manner. We first select

pinhole configurations which contain exactly three spin-up protons. For the spin-independent interactions used in this work,

this corresponds to all configurations. For each spin-up proton, we locate the closest spin-down proton, spin-up neutron, and

spin-down neutron. We identify these four nucleons as an alpha cluster, and determine its center of mass. In this manner,

we locate the positions of three alpha clusters for each nuclear state of 12C. The root-mean-square (RMS) matter radii of the

alpha clusters defined in this manner range from 1.57 fm to 1.62 fm for the low-lying states in 12C. Since this is very close
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to the matter radius of an isolated alpha particle using the same interactions, rα = 1.63 fm, we conclude that our process of

identifying alpha cluster configurations is accurate and free of significant artifacts.

The three alpha clusters that we have identified define a triangle in three-dimensional space with interior angles θ1, θ2, and

180◦−θ1−θ2. In the left panel of Fig. 2, we show the probability distributions as a function of θ1 and θ2 for (a) the 0+1 ground

state, (b) 0+2 Hoyle state, (c) 2+1 , (d) 2+2 , (e) 3−1 , and (f) 0+3 states. The black solid line at θ2 = 180◦−θ1 separates the physical

region (lower left) and the unphysical region (upper right). The dashed white triangle formed by the line segments θ1 = 90◦,

θ2 = 90◦, and θ2 = 90◦−θ1, represents cluster configurations that are right triangles. The interior region of the dashed white

triangle corresponds to configurations that are acute triangles, and the exterior region corresponds to obtuse triangles. The

other three white dashed line segments along the lines θ1 = θ2, θ1 = θ3, and θ2 = θ3 represent cluster configurations that

are obtuse isosceles triangles. For the 0+1 ground state, the probability distribution is strongly centered around an equilateral

triangle, θ1 = θ2 = θ3 = 60◦. The 2+1 and 3−1 states have similar equilateral triangular shapes. In contrast, the 0+2 Hoyle state

corresponds to an obtuse isosceles triangle. This finding is consistent with older NLEFT studies.32,33 The 2+2 and 0+3 states

also have obtuse isosceles triangular shapes.

0

60

120

180
12C, 0 +

1

(a)

α

θ1 θ2

0 +
2

(b)

0

60

120

180

θ 2
[◦
]

2 +
1

(c)

2 +
2

(d)

0 60 120
0

60

120

180
3 −1

(e)

0 60 120 180
θ1[

◦]

0 +
3

(f)

0.0000 0.0005 0.0010 0.0015

−6

−3

0

3

6
12C 0 +

1

(a)

0 +
2

(b)

−6

−3

0

3

6

z (
fm

)

2 +
1

(c)

2 +
2

(d)

−6 −3 0 3
−6

−3

0

3

6
3 −1

(e)
−6 −3 0 3 6

y (fm)

0 +
3

(f)

0.000 0.001 0.002 0.003 0.004

Figure 2. Nuclear density distributions for the (a) 0+1 ground state, (b) 0+2 Hoyle state, (c) 2+1 , (d) 2+2 , (e) 3−1 , and (f) 0+3
states. The red (blue) color signals a high (low) probability. Left Panel: Density distribution for the two inner angles of the

triangle formed by the three alpha clusters. The two axes are for the two inner angles θ1 and θ2 measured in degrees. Right

Panel: Tomographic projection of the nuclear density for different states of 12C. In each case the orientation of the shortest

root-mean-square direction is aligned with the x axis.

We now define a model-independent tomographic projection of the three-dimensional nuclear density for the states of 12C.

In order to construct this projection, we first identify the x axis as the direction with the smallest RMS deviation of the nucleon

positions relative to the center of mass. For the nuclear states that we have already identified as having an equilateral triangular

shape, we rotate the density configurations along the x axis so that one of the three clusters is pointing along the positive z

direction. We then symmetrize with respect to 0◦, 120◦ and 240◦ rotations about the x axis. For nuclear states that we have

already identified as having an obtuse isosceles shape, we identify the z axis as the direction with the longest RMS deviation

of the nucleon positions relative to the c.m. We then rotate the density configurations along the z axis so that the alpha cluster

with the smallest z value has a positive y coordinate.

4/16



In the right panel of Fig. 2, we show the density distribution of selected states of 12C prepared in the model-independent

manner described above. The 0+1 , 2+1 , 3−1 , 4−1 , and 4+2 states (see Methods for the last two) have similar intrinsic equilateral

triangular shapes, consistent with an interpretation as members of a rotational band built on top of the 0+1 state. The 0+2 , 2+2 , 4+1
states (see Methods for the last one) have similar intrinsic obtuse isosceles triangle shapes and are consistent with belonging

to a rotational band built on top of the 0+2 state. These findings are consistent with previous studies in the literature based on

group theoretical considerations.11 We note that models where the Hoyle state has an equilateral triangle symmetry predict an

additional 3− and 4− state in the Hoyle state rotational band.

The 0+3 state has been discussed as a breathing mode excitation of the Hoyle state,15,51,52 but its detailed structure remains

a matter of debate. For example, in a recent work15,51 the 0+3 and Hoyle states are suggested to have an equilateral triangular

shape. A gas-like structure with a very large radius has also been predicted52 for the 0+3 state. Our lattice findings suggest that

the 0+3 state is a small-amplitude vibrational excitation of the Hoyle state. Our findings for the intrinsic shapes of the low-lying

states of 12C are summarized by the triangular shapes in the left panel of Fig. 1. The triangular symbols indicate the intrinsic

shape of each nuclear state, either equilateral or obtuse triangle arrangements of alpha clusters. The dotted lines for some

equilateral triangles indicate significant distortions or large-amplitude displacements of the alpha clusters. Examples of these

states are shown in Methods. We find that all of the low-lying states with an equilateral triangle formation have significant

overlap with some initial state composed of an antisymmetrized product of mean-field shell model states. This constitutes the

aforementioned duality between shell model and cluster states. In contrast, all of the low-lying states with an obtuse isosceles

triangle formation have very little overlap with shell model initial states.

In summary, we have presented the first model-independent tomographic scan of the three-dimensional geometry of the

nuclear states of 12C using the ab initio framework of nuclear lattice effective field theory. We find that the Hoyle state and

its 2+2 and 4+1 rotational excitations are composed of an obtuse isosceles triangular arrangement of alpha clusters. All of the

low-lying nuclear states of 12C have an intrinsic shape composed of three alpha clusters forming either an equilateral triangle

or an obtuse triangle. From these basic structural formations, the various nuclear states correspond to different rotational and

vibrational excitations as well as either distortions or large-amplitude displacements of the alpha clusters. Future studies are

planned to revisit this analysis using high-fidelity chiral effective field theory interactions.
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Methods

Auxiliary-field lattice Monte Carlo

We start from a set of trial initial states |Φi〉 with i = 1,2, . . . ,Nch, for Nch channels, and perform Euclidean time projection

with the transfer matrix M =: exp(−αtH) :, where the colons denote normal ordering and αt = at/a. The Hamiltonian is

H = T +V , where the kinetic energy T is p2/(2mN) and the interaction V is defined in the main text in Eq. (1). The Euclidean

projection amplitude at time step Nt is Zkl(Nt) = 〈Φk|M
Nt |Φl〉. Each of the trial states |Φi〉 is a Slater determinant of single-

particle wave functions. For the cluster initial states, we consider an antisymmetrized product of alpha clusters with spatially

distributed Gaussian wave packets, φ(r) = exp
(

−r2/2w2
)

, with w = 1.6− 1.8fm for the width of the wave packet. Each

wave function is projected onto specific irreducible representations (irrep) of the cubic group.1,2 More details on such trial

states can be found in Ref.3 The energies at Euclidean time step Nt are obtained from the eigenvalues of the adiabatic transfer

matrix,

M
(a)
qq′

(Nt) = ∑
q′′

Z−1
qq′′

(Nt)Zq′′q′(Nt + 1). (S1)

We convert the eigenvalues λi(Nt) to energies using the relation exp(−αtEi(Nt)) = λi(Nt). In the calculation, the two-body

interactions among A nucleons are replaced by one-body interactions between single nucleons with auxiliary fields that are

sampled by Monte Carlo methods.4

Pinhole algorithm

We use the pinhole algorithm (PA)38 to determine a classical distribution for the nucleon positions, spins, and isospins. For

this, we compute the amplitude

Zkl(n1, . . . ,nA,Nt ) = 〈Φk|M
Nt/2ρ(n1, . . . ,nA)M

Nt/2|Φl〉, (S2)

with the A-body density operator ρ(n1, . . . ,nA) constructed from the normal-ordered product of density operators ρ(ni) =

a†
i (n)ai(n). Since the SU(4)-symmetric interaction used here does not change spin or isospin, such indices have been sup-

pressed. The positions for A nucleons (or “pinholes”) ni are sampled stochastically. The finite size of the nucleons is accounted

for by a random Gaussian smearing of the nucleon positions.

Nucleon density operators

The definition of the density operator ρ̃(n) that appears in main text as Eq.(1) is given by:5

ρ̃(n) =
A

∑
i=1

ã
†
i (n)ãi(n)+ sL ∑

|n′−n|=1

A

∑
i=1

ã
†
i (n

′)ãi(n
′). (S3)

Here sL is the local smearing parameter, and the smeared annihilation operator is

ãi(n) = ai(n)+ sNL ∑
|n′−n|=1

ai(n
′), (S4)

where sNL is the non-local smearing parameter.

Euclidean time extrapolation

In NLEFT, energies and operator expectation values are computed using auxiliary-field lattice MC at finite Euclidean projec-

tion time. As an example, the low-energy spectrum is obtained from the transient energies Ei(Nt) = −log(λi(Nt ))/αt . Some

extrapolation is then usually required to obtain the corresponding values at infinite projection time. For instance, we obtain

energies at infinite projection time by fitting the lattice data using the ansatz6,7

Ei(t) =

Ei +
kmax

∑
k=1

(Ei +∆Ei,k)ci,ke−∆Ei,kt

1+
kmax

∑
k=1

ci,ke−∆Ei,kt

, (S5)

where Ei,∆Ei,k,ci,k are fit parameters. The number of exponentials kmax should be kept as small as possible,6 in order to avoid

fitting statistical fluctuations. For expectation value of operators of the type 〈i|Ô|i〉, or transition operators 〈i|Ô| j〉, we use the

lowest order extrapolation formulas7

Oi(t) =
Oi +Oi,1e−∆Ei,1t/2 +Oi,2e−∆Ei,1t

1+ ci,1e∆Ei,1t
, Oi j(t) =

Oi +Oi,1e−∆Ei,1t/2 +O j,1e−∆E j,1t/2

1+ ci,1e∆Ei,1t + c j,1e∆E j,1t
, (S6)
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Figure S1. Transient energies (open symbols) of the lowest three 0+ states, as a function of Euclidean projection time. The

example shown is a three-channel auxiliary field lattice MC calculation using alpha-cluster trial states and A+
1 projection.

The data are fitted and extrapolated using Eq. (S5). The widths of the horizontal lines reflect the extrapolation error.

with only one ∆Ei,k (or ∆E j,k). In Fig. S1, we show the extrapolation using Eq. (S5) for the lowest three 0+ states of 12C. With

kmax = 2, the convergence of the auxiliary-field MC data is well described.

Interaction parameters and systematic errors

In Table 3, we summarize the interaction parameters, together with the observables used to determine them. Our preferred

set of parameters is denoted V1. It is then of interest to assess the systematic error associated with this choice of parameters.

Since we are here considering an SU(4) symmetric interaction without a specific EFT power counting scheme, our strategy to

estimate the systematic errors is to perform a number of fits with a different choice of the non-local smearing parameter sNL.

The remaining three parameters C2,C3,sL are again, in each case, fitted to the ground state energies of 4He and 12C, and to

the electromagnetic radius of the 12C ground state. While this procedure allows for a large number of possibilities, we have

chosen two interactions denoted V2 and V3, for closer comparison.

The results of our systematic error analysis are given in Table 3. For simplicity, calculated energies and matrix elements

are given at finite Euclidean projection time, as the additional computational effort required for a full extrapolation would not

substantially alter the results nor the conclusions. Based on earlier experience, we take t = 0.4MeV−1 for 3H and 12C, and

t = 0.2MeV−1 for 4He. Such projection times should suffice for the purposes of the error analysis. From Table 3, we find that

all three interactions give a similarly good description of the fitted observables. While the energy of the Hoyle state and the
4He radius appear insensitive to the choice of interaction, the triton energy is influenced more. In particular, we observe that

smaller values of sNL give a more deeply bound 3H. We find that such systematic errors for the 12C spectrum do not exceed

2%, while for the alpha particle they are about 2 . . .3%. The radii of 4He and 12C are even less affected (≤ 1%). For the bound

states (0+1 and 2+1 ) and those near threshold (0+2 ,2
+
2 ,3

−
1 ), adding the 3NF has little influence. For the higher-lying states, the

3NF in general contributes more repulsion. Overall, the agreement with experiment is quite good.

In Fig. S2, we show the 12C form factors obtained at finite Euclidean projection time t = 0.4 MeV−1 for the three inter-

actions V1, V2, and V3, characterized by a different strength of the non-local smearing. For the ground state, as the three

interactions are constrained to give a similar radius, the results for the form factor also appear similar. However, the transition

form factor from the ground state to the Hoyle state is more affected. In particular, the shapes and positions of the maxima

and minima are shifted.

Electromagnetic observables

Details on the calculation of electromagnetic observables can be found in the literature.8 Here, we only give the final re-

sults and discuss issues directly relevant to the lattice calculation. The quadrupole moment Q for a given state with angular

momentum I and projection M along the z-axis is defined as

Q = 〈I,M = I|Q̂|I,M = I〉, (S7)
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Table 3. Summary of interaction parameters C2,C3,sL, and sNL, along with an estimation of the systematic uncertainty due

to the choice of interaction. The column labeled V1 denotes the preferred interaction used in this work, while V2 and V3 are

used to quantify the systematic uncertainty. Observables shown are the ground state energies of 3H, 4He and 12C, the energy

of the Hoyle state, and the charge radii of 4He and 12C calculated by rc =
√

r2 +(0.84 fm)2. The interaction parameters are

fitted to E4He, E12C and r12C. As a measure of the resulting systematic error, we give Q(2+1 ) along with the E0 and E2

transition matrix elements, for each interaction. For these, results at finite Euclidean time are shown for simplicity. The

errors in the round brackets are purely statistical.

V1 V2 V3

sNL 0.05 0.1 0.2
sL 0.08 0.071 0.06

C2 [MeV−2] −2.15× 10−5 −1.11× 10−5 −3.47× 10−6

C3 [MeV−5] 6.17× 10−12 −5.92× 10−13 −1.46× 10−12

E4He [MeV] −28.1(1) −28.3(1) −27.3(1)
E12C [MeV] −91.6(1) −91.8(1) −90.7(2)
rc, 12C [fm] 2.52(1) 2.55(1) 2.58(1)

EHoyle [MeV] −84.2(1) −84.8(5) −83.2(11)
E3H [MeV] −10.1(1) −8.1(1) −5.1(1)
rc, 4He [fm] 1.63(1) 1.63(1) 1.64(1)

Q(2+1 ) [e fm2] 6.9(3) 7.2(4) 6.1(8)

M(E0,0+1 → 0+2 ) [e fm2] 4.3(3) 2.9(3) 5.9(7)

B(E2,2+1 → 0+1 ) [e2fm4] 10.3(2) 10.7(3) 12.0(5)

B(E2,2+1 → 0+2 ) [e2fm4] 1.8(1) 3.6(2) 4.1(5)
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Figure S2. Absolute value of the form factor of (a) the ground state and (b) the transition from the ground state to the

Hoyle state calculated at finite Euclidean projection time t = 0.4 MeV−1 for the three interactions V1, V2 and V3

corresponding to sNL = 0.1,0.2,0.05, respectively, along with experimental data.7,48–50

where the quadrupole moment operator is given by

eQ̂ =

∫

ρc(r)r
2(3cos2 θ − 1)dτ, (S8)
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with e the electric charge, ρc the charge density distribution and dτ is the integration measure for the whole space. The reduced

transition probability B(E2) is defined as

B(E2, I1 → I2) = ∑
µ,M2

|〈I2M2|M (E2,µ)|I1M1〉|
2. (S9)

The electric quadrupole operator for different µ components is given by

M (E2,µ) =

∫

ρc(r)r
2Y2µ(θ ,ϕ)dτ, (S10)

with Y2µ(θ ,ϕ) the pertinent spherical harmonics.

In the above expressions, the coordinate r for each nucleon is defined in the c.m. frame of the nucleus. For the quadrupole

moment and the B(E2) strength, the operator to be evaluated is r2 (or x2, . . . ,xy, . . . , depending on the choice of µ), as for the

RMS radius. We evaluate expressions such as

〈r2
p〉=

∫ A

∏
i=1

dri|Ψ(r1,r2, . . . ,rA)|
2

[

Z

∑
j=1

r̂ j −
1

A

∫ A

∏
l=1

dr′l |Ψ(r′1,r
′
2, . . . ,r

′
A)|

2
A

∑
k=1

r̂′k

]2

=
1

A

∫ A

∏
i=1

dridr′i|Ψ(r1,r2, . . . ,rA)|
2

[(

Z

∑
j=1

r̂ j −
A

∑
k=1

r̂′k

)]2

|Ψ(r′1,r
′
2, . . . ,r

′
A)|

2

−
Z

2A2

∫ A

∏
i=1

dridr′i|Ψ(r1,r2, . . . ,rA)|
2

[(

A

∑
j=1

r̂ j −
A

∑
k=1

r̂′k

)]2

|Ψ(r′1,r
′
2, . . . ,r

′
A)|

2, (S11)

where we consider the proton density with Z the number of protons and A the number of nucleons.

For the quadrupole moment and the B(E2) matrix element have a similar form. For example, when µ = 0 the operator is

proportional to

Q ∼ 3z2 − r2, (S12)

which can be treated along the lines of Eq. (S11).

Tomography of lattice states
In the NLEFT simulation for a given state with good angular momentum, the wave function is projected onto a given irrep

of the cubic group. For example, the case of Jπ = 0+ corresponds to the A+
1 irrep,1 which entails an equal superposition of

all possible rotations of the wave function. In other words, for 0+ states there is no preference in the angular distribution and

the density distribution should be spherical. However, one may inquire as to the intrinsic shape of a 12C nucleus, without

such a superposition of all possible spatial rotations. Here, we adopt the following strategy: With the PA we can obtain the

superposition of a large number of coordinates ri (i = 1, . . . ,A) for A nucleons in all possible rotations. For the ground state,

we already have the (model-independent) information from Fig. 2 (a) that an equilateral triangular configuration is preferred.

Hence, for each configuration ri we calculate its principal axis and align it in such a way that the shortest axis coincides with

the x-axis. In this way, the three alpha clusters will be located on the y− z plane. This can be achieved by calculating the

matrix

Ri j =
A

∑
i=1





xix j xiy j xiz j

yix j yiy j yiz j

zix j ziy j ziz j



 (S13)

and solving the eigenvalue problem

Rv = λ v. (S14)

The resulting three eigenvalues correspond to the length along the longest, shortest, and intermediate principal axes, respec-

tively. The eigenvectors can be used to rotate the original distribution so that the longest, shortest, and intermediate principal

axes coinciding with the coordinate axes. For example, if we want to align the shortest axis with the x-axis, the intermediate

axis with the y-axis, and the longest axis with the z-axis, we let vmin,vmid, and vmax be the corresponding eigenvectors, and the

rotation matrix can be constructed as

O = (vmin,vmid,vmax). (S15)

Then one can rotate all particles i = 1, . . . ,A from the old coordinates to the new ones as

(x,y,z)new = (x,y,z)old ×O. (S16)
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For nuclear states that we have already identified as having an equilateral triangle shape, we rotate the configuration along

the x-axis so that one of the alpha clusters is positioned on the y = 0 plan. We then symmetrize with respect to 0◦, 120◦,

and 240◦ rotations. For nuclear states that we have already identified as having an obtuse isosceles shape, we identify the z

axis as the direction with the longest RMS deviation of the nucleon positions relative to the c.m. We then rotate the density

configurations along the z axis so that the alpha cluster with the smallest z value has a positive y coordinate.
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Figure S3. Top Panel: Density distribution for the two inner angles of the triangle formed by the three alpha clusters.

Middle Panel: Tomographic projection of the nuclear density. Lower Panel: Sketch of the orbitals for the shell model

initial states used in each of these calculations.

In Fig. S3, we show the density distribution for the two inner angles of the triangle in the top panel and the tomographic

projection of the nuclear density in the middle panel for the states 1−1 ,4
+
2 ,1

+
2 ,2

+
3 ,4

−
2 obtained using shell model initial states.

The color scales are same as in Fig. 2. The corresponding orbitals are shown in the lower panel of Fig. S3. The red circles

are for protons and blue circles for neutrons, with solid ones for particles and hollow ones for holes. For those configurations

not showing neutrons explicitly, the neutrons are occupied in the lowest possible levels (that is, fully s1/2 and 1p3/2). They all

show a similar equilateral triangle structure as the ground state, but in some cases with a less of a pronounced alpha cluster

structure. It is also interesting to see that among those selected states, the alpha cluster structure is less pronounced when the

particle excitation is in s−d shell rather than the 1p1/2 level. Furthermore, the separation between the clusters is larger when

the particle excitation reaches the 1d5/2 level.

For completeness, the density distributions for the other six states calculated in this work are shown in Fig. S4 and are

ordered by excitation energies. The color scales are the same as in Fig. 2. The 4+1 appears to be a rotational excitation of the

Hoyle state, while the 1+1 is similar to the Hoyle state but with a smaller angle and more compact structure. The 2−1 ,1
+
1 ,4

+
1 ,

and 4−1 are obtained with cluster wave functions, while 2−2 is obtained with shell model wave function 2s1/2 ⊗ 1p3/2. The 0+4
is obtained using a shell model state with two-particle and two-holes in the 1p1/2 ⊗ 1p3/2 orbitals (see the schematic plot in

Fig. S3).

We should emphasize that the intrinsic shapes we are showing are not the result of initial state bias. This can be seen clearly
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Figure S4. Left Panel: Density distribution for the two inner angles of the triangle formed by the three alpha clusters.

Right Panel: Tomographic projection of the nuclear density. From (a) to (f), the selected states are ordered by their energies

from low to high.
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Figure S5. Tomographic projection of the nuclear density of the ground state of 12C obtained by NLEFT with Euclidean

projection time ranging from t = 0 to 0.2 in units in MeV−1. For (a)-(d), the initial state is a shell model wave function

composed of harmonic oscillator orbitals. For (e)-(h), the initial state is a cluster wave function.
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in Fig. S5 for the ground state of 12C. In the upper panel (a)-(d), the initial state is a shell model wave function with harmonic

oscillator orbitals. In the lower panel (e)-(h), the initial state is a cluster wave function. We see that the density distributions

from very different initial wave functions begin to look similar as the projection time increases. This independence with respect

to the choice of initial state was also demonstrated in previous work.32,33,39 At Euclidean projection time t = 0.2MeV−1 each

of the distributions in the upper and lower panels look similar to the one shown for the converged ground state in Fig. 2,

obtained at larger values of t. At projection time t = 0 MeV−1, the intrinsic density for the shell model initial wave function

is quite different from the converged ground state. In particular, there is a higher probability at the center and less probability

to be restricted to the y− z plane, and it is therefore more spherical.

Model-independent probes of cluster geometry

To more clearly assess the angular distribution of the various states, we show in Fig. S6 the probability of θ3 when θ1 = θ2,

which corresponds to the diagonal line along θ1 = θ2 ∈ [0◦,90◦] in Fig. 2. For the ground state, we find a clear peak around
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Figure S6. Probability distribution for the third angle of the triangle formed by the three alpha clusters of 12C when the

other two angles are equal (θ1 = θ2). This coincides with the diagonal line along θ1 = θ2 in Fig. 2.

60◦ as discussed above, but there is also a non-vanishing probability for an obtuse triangle (θ3 > 90◦). For the Hoyle state,

there is little probability for an acute triangle, with a peak probability around 170◦. The probability to form an exactly linear

chain appears to be strongly suppressed (θ3 ∈ [176◦,180◦] with 4◦ resolution). This supports the notion that the intrinsic shape

of Hoyle state is a large-angle obtuse triangle, but not exactly a linear chain. The lowest two 2+ states show the same intrinsic

shapes as the corresponding 0+ states, which gives credit to the assertion made e.g. in Ref.33 that the 2+2 state is a rotational

excitation of the Hoyle state. We also note that the lowest negative-parity state, the 3−1 , shows a distribution similar to the

ground state. The angular distribution of the 0+3 state is very similar to the Hoyle state, but with a reduced probability for an

exactly isosceles triangles with θ1 = θ2. This could be interpreted as a signal of a small-amplitude vibrational excitation.

Further model-independent information can be gained from Fig. S7, where the probability distributions for the distance

between two alpha particles are shown, for the six lowest states in 12C. The distance between two alpha particles is state-

dependent, for the ground state it peaks at ∼ 3 fm and for the Hoyle state near ∼ 4 fm, as can also seen from the corresponding

density distributions in Fig. 2. For the Hoyle state, one observes an extended tail, which reflects the distance between the two

alpha particles associated with the longest side of the obtuse triangle. Again, we note the stunning similarity in this distribution

for the 0+1 ,2
+
1 and 0+2 ,2

+
2 states, reinforcing the notion of the 2+ states being rotational excitations of the corresponding 0+

states. Note also that the 3−1 state is somewhat broader than the ground state, but by far less extended than the Hoyle state.

The similarity of 0+3 and Hoyle state, but with a slightly larger separation distance distribution, again supports the notion of a

small amplitude vibrational excitation.

Electromagnetic density distributions

Here, we display the electromagnetic density distribution not shown in the main text. In Fig. S8 the proton radial density

distribution of the 0+1 , 0+2 states is displayed, and the transition of 0+1 → 0+2 in comparison with the available experimental

data.7,9 The density distribution of the ground state is nicely reproduced. The slight decrease in the center at r = 0 fm reflects

the fact that the three alpha clusters are equally far away from the center. For the Hoyle state, the density distribution shown in
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Figure S7. Probability distribution for the distance between two alpha particles, for the low-lying states of 12C.
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Figure S8. Proton densities of 12C calculated by NLEFT in comparison with experiment7,9 for (a) the ground state and the

Hoyle state; (b) the transition from the ground state to the Hoyle state.

Fig. S8 (a) has no such decrease. This is also consistent from the shape information, that one alpha cluster is closely located

near the center. The decrease of the density distribution as r increases has a visible slow down from r = 2fm to r = 6fm, and

this corresponds to the separation between the two alpha clusters forming the longest side of the obtuse triangle. The pattern

of the transition density 0+1 → 0+2 is also reproduced, with a minimum near r = 2fm, which is the approximate distance from

the center to the α clusters in the ground state. The maximum occurs near r = 4fm, which is the approximate distance from

the center of the Hoyle state to the two α clusters furthest from the center.
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