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We work out details of defining the spatial densities corresponding to the gravitational form
factors of spin-0 and spin-1/2 systems using spherically symmetric sharply localized wave packets.
The expressions for the spatial densities are provided in the frames with both zero and non-zero
expectation values of the momentum operator.

I. INTRODUCTION

In close analogy with the electric charge density of hadrons [1–3], the interpretation of Fourier transforms of
gravitational form factors in the Breit frame as local densities of various physical quantities characterizing the system
was suggested in Refs. [4–6]. For systems whose intrinsic size is comparable with their Compton wavelength, this
identification of spatial density distributions with the Fourier transforms of the electromagnetic and gravitational
form factors was criticized in Refs. [7–13]. This issue has raised much interest recently [14–21]. The light-front
approach has been used to define purely intrinsic electromagnetic spatial densities as two-dimensional distributions
in the impact parameter space [7–10, 16]. The relationship between these densities and the non-relativistic three-
dimensional distributions in the Breit frame in terms of the Abel transform was studied in Refs. [19, 22]. The
phase-space approach of Refs. [14, 15, 17] allows one to define fully relativistic three-dimensional spatial densities.
However, these densities do not have a strict probabilistic interpretation due to their dependence on both coordinates
and momenta. In Refs. [13, 17], the two-dimensional light-front Fourier transforms of the energy-momentum tensor
form factors have been interpreted as the spatial densities of the energy-momentum and the internal forces in hadrons.
In Ref. [23], a definition of spatial densities of local operators for systems with arbitrary Compton wavelengths has
been suggested by considering an example of the charge density of a spin-0 system, see also Ref. [24] for an early study
along this line. Recently this novel definition was also applied to the electromagnetic spatial densities for spin-1/2
systems [25]. For illuminating comments and extensions on the approach using sharply localized packets see Ref. [18].

In this work we consider the one-particle matrix elements of the energy-momentum tensor (EMT) in localized
states of spin-0 and spin-1/2 systems. Specifying the one-particle state by a spherically symmetric wave packet and
sharply localizing it in space we define spatial distributions corresponding to gravitational form factors in the zero
average momentum frame (ZAMF). Next, we generalize the new definition to Lorentz-boosted frames. Analogously
to Ref. [11], which dealt with the electromagnetic case, we also consider the static approximation and discuss the
limitations of the results obtained in this limit.

Recently in Ref. [21] it has been claimed that the idea of obtaining internal densities via wave packet localization is
fallacious, because it does not reproduce the “true internal densities”. The authors first clarify what they understand
under true internal densities of hadrons and how these are related to the physical densities obtained from expectation
values of local operators. Next, using the formulated criteria they observe that the wave packet localization does
not result in meaningful internal densities for instant form coordinates. We believe that the parameterization of the
physical densities in terms of internal densities and smearing functions which is suggested in Ref. [21] as the basis for
defining the true internal densities has an oversimplified form and is inadequate for a complicated hadronic system in
a state described by a wave packet.

Our work is organized as follows. In Sec. II we define spatial densities of the EMT in the ZAMFs of a spin-0 and a
spin-1/2 systems and consider the static approximation. Spatial densities in moving reference frames are considered
in Sec. III. Section IV contains our interpretation of the obtained results and we summarize in Sec. V.

II. GRAVITATIONAL DENSITIES IN THE ZERO AVERAGE MOMENTUM FRAME

Spatial densities of the EMT defined via localized states differ significantly from the ones of the electromagnetic
current. A superposition of eigenstates of the charge operator, which makes the localized packet, remains an eigenstate
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of the charge operator with the same eigenvalue. However this is not the case for the energy-momentum operator.
That is, a packet which is a superposition of one-particle eigenstates of the four-momentum operator with different
four-momenta is not an eigenstate of the same operator. On the other hand, such a state does not contain admixtures
of states with particle-antiparticle pairs and, therefore, can be used to define spatial distributions for one-particle
states.

Below we work out details of the spatial densities corresponding to the EMT of spin-0 and spin-1/2 systems in
the ZAMF and in moving frames. Throughout this work we closely follow the notations of Ref. [11]. We choose the
four-momentum eigenstates |p, s⟩ characterizing our system to be normalized as

⟨p′, s′|p, s⟩ = 2E(2π)3δs′sδ
(3)(p′ − p) , (1)

where (p, s) and (p′, s′) are momentum and polarization of the initial and final states of a spin-1/2 system, respectively.
For spin-0 systems we have analogous expressions without polarizations s and s′ (this is also the case for the expressions

below, which are applicable to both spin-0 and spin-1/2 systems). Further, we have p = (E,p), with E =
√
m2 + p2,

where m is the particle mass.
When calculating matrix elements of the EMT we use normalizable Heisenberg-picture states written in terms of

wave packets as follows:

|Φ,X, s⟩ =
∫

d3p√
2E(2π)3

ϕ(s,p) e−ip·X|p, s⟩, (2)

where X is the spatial translation vector whose interpretation will be discussed below and ϕ(s,p) is the profile function
satisfying the normalization condition ∫

d3p |ϕ(s,p)|2 = 1 . (3)

To define the density distributions in the ZAMF of the system we use spherically symmetric wave packets.1 In the
case of spin-1/2 systems, the profile functions are also chosen to be spin-independent, i.e. ϕ(s,p) = ϕ(p) = ϕ(|p|). It
is convenient to define dimensionless profile functions

ϕ(p) = R3/2 ϕ̃(Rp) , (4)

where R specifies the size of the wave packet. A sharp localization of the system is achieved by taking small values
of R.

A. Spin-0 particles

To define spatial densities associated with the EMT of a scalar particle we consider its matrix element in a state
specified by Eq. (2) for a spin-0 state and take its limit when R → 0. Using the parametrization of matrix elements of
the EMT in single-particle momentum eigenstates in terms of the form factors Θ1(q

2) and Θ2(q
2) [26, 27] we obtain:

tµνϕ (x−X) = ⟨Φ,X|T̂µν(x, 0)|Φ,X⟩ =
∫

d3p′d3p

(2π)3
√
4E′E

ϕ⋆(p′)ϕ(p)⟨p′|T̂µν(x, 0)|p⟩

=

∫
d3P d3q

(2π)3
√
4EE′

[(
q2gµν − qµqν

)
Θ1

(
q2
)
+ 2PµP νΘ2

(
q2
)]
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·(x−X) , (5)

where we have introduced new variables q = p′ − p and P = (p + p′)/2. In terms of these variables the energies are
given as E = (m2 +P2 −P · q+ q2/4)1/2 and E′ = (m2 +P2 +P · q+ q2/4)1/2.
By applying the method of dimensional counting of Ref. [28], the leading contribution in Eq. (5) for R → 0 can be

obtained without performing the integration over momenta and without specifying the expressions for the form-factors
and the spherically symmetric profile function. For the form factors Θ1

(
q2
)
and Θ2

(
q2
)
decaying for large q2 as 1/q4

1 The average momentum of the system vanishes in states corresponding to such packets.
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and 1/q2, or faster, respectively,2 the only non-vanishing contribution for R → 0 originates from the large P region.

This contribution can be obtained by substituting P = P̃/R and expanding the resulting integrand in Eq. (5) in
powers of R around R = 0. Doing so and introducing a new variable r = x−X we obtain

tµνϕ (r) =

∫
d3P̃ d3q

(2π)3

(
P̃µP̃ ν

P̃R
Θ2

[
q̃2
]
+

R

2P̃

(
q̃2gµν − q̃µq̃ν

)
Θ1

[
q̃2
])

|ϕ̃(P̃)|2 e−iq·r +Rest, (6)

where we introduced four-vectors q̃µ = ( ˆ̃P · q,q) and P̃µ = (P̃ , P̃) with P̃ = |P̃| and ˆ̃P = P̃/P̃ . Notice that we
wrote explicitly only terms that contribute to the final expressions for the densities, see the discussion in Sec. IV, and
”Rest” stands for all other terms of the expansion. Using Eq. (3) and spherical symmetry we arrive at the final form
of the local density distributions in the ZAMF of the system

tµν(r) = Nϕ,R

∫
d2 ˆ̃P d3q

(2π)3
ˆ̃Pµ ˆ̃P ν Θ2

[
−q2

⊥
]
e−iq·r −Nϕ,R,2

∫
d2 ˆ̃P d3q

(2π)3
(
q̃µq̃ν + q2

⊥g
µν
)
Θ1

[
−q2

⊥
]
e−iq·r +Rest , (7)

where ˆ̃Pµ =
(
1, ˆ̃P

)
, q⊥ = ˆ̃P×

(
q× ˆ̃P

)
, q2

⊥ ≡ −q̃2 and

Nϕ,R =
1

R

∫
dP̃ P̃ 3|ϕ̃(|P̃|)|2 ,

Nϕ,R,2 =
R

2

∫
dP̃ P̃ |ϕ̃(|P̃|)|2 . (8)

Unlike the electromagnetic case (see Refs. [23] and [25]), the dependence on the form of the profile function and the
size of the packet remains in the normalization factors Nϕ,R and Nϕ,R,2 of the local density distributions. Notice that
for R → 0 the first term in Eq. (7) goes to infinity while the second term vanishes.

Postponing the interpretation of the expression in Eq. (7) to Sec. IV we now consider the “static” approximation.
The local densities of Refs. [4–6] in terms of the Fourier transforms of the form factors in the Breit frame emerge
by expanding the integrand in Eq. (5) in powers of 1/m up to leading-order terms before performing the integration
[11] and localizing the wave packet by taking R → 0 limit.3 The resulting expressions after the 1/m-expansion of the
integrand have the form:

t00ϕ,naive(r) = m

∫
d3P d3q

(2π)3
Θ2

(
−q2

)
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r,

t0iϕ,naive(r) =

∫
d3P d3q

(2π)3
P i Θ2

(
−q2

)
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r,

tijϕ,naive(r) =
1

2m

∫
d3P d3q

(2π)3
[(
q2δij − qiqj

)
Θ1

(
−q2

)
+ 2P iP j Θ2

(
−q2

)]
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r. (9)

To localize the wave packet we take the R → 0 limit again by using the method of dimensional counting. The desired
result is obtained by substituting P = P̃/R, expanding the integrands in Eq. (9) in powers of R around R = 0 and
keeping explicitly only terms which are relevant, we obtain

t00naive(r) = m

∫
d3P̃ d3q

(2π)3
Θ2

(
−q2

)
|ϕ̃(P̃)|2e−iq·r +Rest =

∫
d3q

(2π)3
mΘ2

(
−q2

)
e−iq·r +Rest ,

t0inaive(r) =

∫
d3P̃ d3q

(2π)3
P̃ i

R
Θ2

(
−q2

)
|ϕ̃(P̃)|2 e−iq·r +Rest = 0 + Rest ,

tijnaive(r) =
4π δij

3mR2

∫
dP̃ P̃ 4 |ϕ̃(P̃)|2

∫
d3q

(2π)3
Θ2

(
−q2

)
e−iq·r

+
1

2m

∫
d3q

(2π)3
(
q2δij − qiqj

)
Θ1

(
−q2

)
e−iq·r +Rest , (10)

2 In Ref. [29] using perturbative QCD the large-q2 behavior of the gravitational form factors of the (pseudo)scalar hadrons has been found
to be Θ1

(
q2

)
∼ 1/q4 and Θ2

(
q2

)
∼ 1/q2. However, according to Ref. [30] in case of pions perturbative QCD leads to Θ1

(
q2

)
∼ 1/q2,

Θ2

(
q2

)
∼ 1/q2 for large q2. Notice that our derivation would not be applicable for the latter case.

3 Notice that the R → 0 and m → ∞ limits do not commute as pointed out in Ref. [23], and therefore the static expression does not
emerge from Eq. (7) by expanding it in powers of 1/m.
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where we used Eq. (3) and the fact that for spherically symmetric packets integral over an odd function of P̃ vanishes.

The t00naive and the second term of tijnaive in Eq. (10) coincide with the corresponding expressions of spatial densities
obtained as the Fourier transforms of the gravitational form factors in the Breit frame. Notice that both of these
terms do not depend on the packet profile function and the size of the packet.

B. Spin-1/2 particles

The matrix elements of the EMT of a spin-1/2 system in one-particle eigenstates of the four-momentum operator
are parametrized in terms of three form factors as follows [6]:

⟨p′, s′|T̂µν(x, 0)|p, s⟩ = e−iq·xū(p′, s′)

[
A(q2)

PµP ν

m
+ iJ(q2)

Pµσναqα + P νσµαqα
2m

+D(q2)
qµqν − gµνq2

4m

]
u(p, s) ,

(11)
where the momenta q and P are defined as in the previous section and the Dirac spinors are normalized as
ū(p, s′)u(p, s) = 2mδs′s. The matrix element of the EMT in localized states specified by Eq. (2) is written as

tµνϕ (s′, s,x−X) ≡ ⟨Φ,X, s′|T̂µν(x, 0)|Φ,X, s⟩

=

∫
d3P d3q

(2π)3
√
4EE′

ū(p′, s′)

[
A
(
(E − E′)2 − q2

) PµP ν

m
+ iJ

(
(E − E′)2 − q2

) Pµσναqα + P νσµαqα
2m

+D
(
(E − E′)2 − q2

) qµqν − gµνq2

4m

]
u(p, s)ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·(x−X). (12)

Taking the R → 0 limit in Eq. (12) by using the method of dimensional counting in a complete analogy to the case
of spin-0 systems, and assuming that form factors A(q2), J(q2) and D(q2) decay for large q2 as 1/q2, 1/(q2)3/2 and
1/q4, or faster, respectively,4 we obtain for the operators in spin space

tµνϕ (r) = Nϕ,R

∫
d2 ˆ̃P d3q

(2π)3

[
i

2m

(
ˆ̃Pµ(σ⊥ × q)ν + ˆ̃P ν(σ⊥ × q)µ + ˆ̃P · (σ⊥ × q)(δµ0 ˆ̃P ν + δν0 ˆ̃Pµ)

)
J
(
−q2

⊥
)

+ ˆ̃Pµ ˆ̃P νA
(
−q2

⊥
)]

e−iq·r +
1

2
Nϕ,R,2

∫
d2 ˆ̃P d3q

(2π)3
(
q̃µq̃ν + gµνq2

⊥
)
D
(
−q2

⊥
)
e−iq·r +Rest , (13)

where r = x − X and (σ⊥ × q)0 = 0. Again, we wrote explicitly only those terms which contribute to the final
expressions for the densities in Sec. IV.

Postponing again the discussion of the obtained result to the Sec. IV, we consider next the static approximation.
Expanding the integrand in Eq. (12) in powers of 1/m up to leading-order terms we obtain for the operators in spin
space

t00ϕ,naive(r) = m

∫
d3P d3q

(2π)3
A
(
−q2

)
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r,

t0iϕ,naive(r) =

∫
d3P d3q

(2π)3

[
A
(
−q2

)
P i − i

2
ϵijkqjσk J

(
−q2

)]
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r,

tijϕ,naive(r) =
1

m

∫
d3P d3q

(2π)3

[
A
(
−q2

)
P iP j +

1

4
D
(
−q2

) (
−q2δij + qiqj

)
− i

2

(
ϵilkqlP j + ϵjlkqlP i

)
σk J

(
−q2

)]
ϕ

(
P− q

2

)
ϕ⋆

(
P+

q

2

)
e−iq·r. (14)

To localize the wave packet by taking the limit R → 0 we use the method of dimensional counting and obtain the

4 This condition is actually satisfied by the large-q2 behavior of the gravitational form factors of the proton obtained in perturbative QCD
in Refs. [29–31], in our notation corresponding to A(q2) ∼ J(q2) ∼ 1/q4 and D(q2) ∼ 1/q6, modulo logarithms.
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following expressions for the “naive” spatial densities:

t00naive(r) = m

∫
d3q

(2π)3
A
(
−q2

)
e−iq·r +Rest,

t0inaive(r) = − i

2
ϵijkσk

∫
d3q

(2π)3
qjJ

(
−q2

)
e−iq·r +Rest,

tijϕ,naive(r) =
1

R2

∫
dP̃ P̃ 4|ϕ̃(P̃)|2 4π δij

3m

∫
d3q

(2π)3
A
(
−q2

)
e−iq·r

+
1

4m

∫
d3q

(2π)3
D
(
−q2

) (
−q2δij + qiqj

)
e−iq·r +Rest , (15)

where we made use of Eq. (3) and the fact that the integral over P̃ of an odd function of this variable vanishes.

Analogously to the case of a spin-0 system, the t00naive, t
0i
naive and the second term of tijϕ,naive in Eq. (15) coincide with

the corresponding expressions of spatial densities obtained as the Fourier transforms of the gravitational form factors
in the Breit frame.

Defining the mean squared energy radius of a system via

⟨r2⟩ =
∫
d3r t00(r)r2∫
d3r t00(r)

, (16)

for a spin-1/2 system in the static approximation of Eq. (15) we obtain ⟨r2⟩naive = 6A′(0), while Eq. (13) leads to
⟨r2⟩ = 4A′(0). Analogous result holds also for spin-0 systems. The same smaller mean squared radius, compared
to the Breit-frame result, has been obtained previously in Ref. [13] using the two-dimensional formalism utilizing
light-front coordinates.

III. GRAVITATIONAL DENSITIES IN MOVING FRAMES

A. Spin-0

To generalize the results of the previous section to moving frames we replace ϕ(p) with its boosted expression
ϕv(p), given in terms of the spherically symmetric ZAMF quantity as follows [32]

ϕv(p) =

√
γ
(
1− v · p

E

)
ϕ
[
p⊥ + γ(p∥ − vE)

]
, (17)

where v is the boost velocity, γ = (1− v2)−1/2, p∥ = (p · v̂)v̂, p⊥ = p− p∥ and E =
√

m2 + p2.
In exact analogy to the case of the ZAMF, we obtain for a spin-0 system in the R → 0 limit using the method of

dimensional counting:

tµνϕ,v(r)=

∫
d3P̃ d3q

(2π)3
γ
(
1−v · ˆ̃P

){P̃ ˆ̃Pµ ˆ̃P ν

R
Θ2

[
q̃2
]
+

R

2P̃

[
q̃2gµν−q̃µq̃ν

]
Θ1

[
q̃2
]}∣∣∣ϕ̃ [P̃⊥+γ(P̃∥−vP̃)

]∣∣∣2e−iq·r +Rest,

(18)

where ˆ̃P, ˆ̃Pµ and q̃µ are defined as in the previous section. Next, we change the integration variable P̃ → P̃′ =

v̂ ×
(
P̃× v̂

)
+ γ
(
P̃ · v̂ − vP̃

)
v̂, denote m̂ ≡ ˆ̃P′ and introduce a vector-valued function

n
(
v, m̂

)
= v̂ ×

(
m̂× v̂

)
+ γ
(
m̂ · v̂ + v)v̂ . (19)

Taking into account that P̃ = v̂×
(
P̃′ × v̂

)
+ γ
(
P̃′ · v̂+ vP̃ ′)v̂, it follows that n̂ = ˆ̃P. The Jacobian of the change of
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variables P̃ → P̃′ cancels the first factor in the integrand in Eq. (18), and we finally obtain

t00ϕ,v(r)=

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 e−iq·r

{
γ(P̃ ′ + vP̃ ′

∥)

R
Θ2

[
(n̂ · q)2 − q2

]
− q2R

2γ(P̃ ′ + vP̃ ′
∥)

Θ1

[
(n̂ · q)2 − q2

]}
+Rest ,

t0iϕ,v(r)=

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 e−iq·r

{
γ(P̃ ′ + vP̃ ′

∥)n̂
i

R
Θ2

[
(n̂ · q)2−q2

]
−R

2

n̂ · q
γ(P̃ ′ + vP̃ ′

∥)
qiΘ1

[
(n̂ · q)2−q2

]}
+Rest ,

tijϕ,v(r)=

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2e−iq·r

{
γ(P̃ ′ + vP̃ ′

∥)

R
n̂in̂jΘ2

[
(n̂ · q)2 − q2

]
− R

2

1

γ(P̃ ′ + vP̃ ′
∥)

[(
(n̂ · q)2 − q2

)
δij + qiqj

]
Θ1

(
n̂ · q)2 − q2

]}
+Rest . (20)

Using the spherical symmetry of ϕ̃
(
P̃′), the integration over P̃ ′ factorizes out in Eq. (20). To carry out the remaining

angular integration over m̂ in spherical coordinates we align the z- and x-axes along the v and q⊥ directions,
respectively, denote η = cos θ and obtain

tµνv (r) = Nϕ,R

∫
d3q

(2π)3
t̄µν

(
q∥, q⊥

)
e−iq·r +Nϕ,R,2

∫
d3q

(2π)3
t̄µν2

(
q∥, q⊥

)
e−iq·r +Rest , (21)

with q∥ ≡ v̂ · q, q⊥ ≡ |q⊥| and

t̄µν(q∥, q⊥) =

∫ +1

−1

dη

∫ 2π

0

dϕ
ΩµΩν

γ(1 + vη)
Θ2

[
q̄2
]
,

t̄µν2 (q∥, q⊥) = −
∫ +1

−1

dη

∫ 2π

0

dϕ
1

γ(1 + vη)

[
q̄µq̄ν − q̄2gµν

]
Θ1

[
q̄2
]
, (22)

where Ωµ = (γ(1 + vη), ω̂⊥ + γ(ω̂∥ + v)), q̄µ = (
[√

1− η2 cosϕ q⊥ + γ(η + v)q∥
]
/(γ(1 + vη)),q) and ω̂ =

(
√

1− η2 cosϕ,
√

1− η2 sinϕ, η).

In the infinite momentum frame (IMF) with v → 1, γ → ∞, we obtain

t̄µν(q∥, q⊥) = 4π γ v̂µv̂ν Θ2

[
−q2

⊥
]
,

t̄µν2 (q∥, q⊥) = −2π

γ
α
[
q2
⊥g

µν + qµv q
ν
v

]
Θ1

[
−q2

⊥
]
, (23)

where v̂µ = (1, v̂), qµv = (q∥,q) and

α = lim
v→1

∫ +1

−1

dη

1 + vη
. (24)

Notice that α/γ ∼
√
1− v ln(1 − v) when the v → 1 limit is taken. Substituting these expressions into Eq. (21) for

the IMF we obtain:

t00IMF(r) = N∞ δ(r∥)Θ̃2 [r⊥] +N0

[
δ(r∥)

∂2Θ̃1 [r⊥]

∂rk⊥∂r
k
⊥

+
∂2δ(r∥)

∂rk∥∂r
k
∥
Θ̃1 [r⊥]

]
+Rest ,

t0iIMF(r) = N∞ δ(r∥)v̂
iΘ̃2 [r⊥] +N0 v̂

k

(
∂2δ(r∥)

∂rk∥∂r
i
∥
Θ̃1 [r⊥] +

∂δ(r∥)

∂rk∥

∂Θ̃1 [r⊥]

∂ri⊥

)
+Rest ,

tijIMF(r) = N∞ δ(r∥)v̂
iv̂jΘ̃2 [r⊥] +N0

(
−δ(r∥)

∂2Θ̃1 [r⊥]

∂rk⊥∂r
k
⊥

δij +
∂2δ(r∥)

∂ri∥∂r
j
∥
Θ̃1 [r⊥] +

∂δ(r∥)

∂ri∥

∂Θ̃1 [r⊥]

∂rj⊥

+
∂δ(r∥)

∂rj∥

∂Θ̃1 [r⊥]

∂ri⊥
+ δ(r∥)

∂Θ̃1 [r⊥]

∂ri⊥∂r
j
⊥

)
+Rest , (25)

where N0 = 2π α
γ Nϕ,R,2, N∞ = 4πγNϕ,R. Furthermore the Fourier transforms of the form factors are given by

Θ̃i [r⊥] =

∫
d2q⊥
(2π)2

Θi

[
−q2

⊥
]
e−iq⊥·r⊥ . (26)
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B. Spin-1/2

For a spin-1/2 system in a moving frame, we consider the state specified by the following wave packet

|Φ,X, s⟩v =

∫
d3p√

2E(2π)3

√
γ
(
1− v · p

E

)
ϕ
[
Λ−1
v p

]
e−ip·X

∑
s1

Ds1s

[
W
(
Λv,

Λ−1
v p

m

)]
|p, s1⟩, (27)

where γ = (1 − v2)−1/2, E =
√

m2 + p2, Λ−1
v p = v̂ ×

(
p × v̂

)
+ γ

(
p · v̂ − vE

)
v̂ with Λv denoting the Lorentz

boost from the ZAMF to the moving frame. The Ds1s [W ] matrices build the spin-1/2 representation of the Wigner
rotations [33].

For the matrix elements of the EMT of a spin-1/2 system in a moving frame we obtain the following expressions in
the R → 0 limit using the method of dimensional counting:

t00ϕ,v(r) =

∫
d3P̃ d3q

(2π)3
γ
(
1− v · ˆ̃P

){ P̃

R

(
1− i

2m
ϵijkσkqi ˆ̃P

j
)
A
[
q̃2
]
+

P̃ qi

2Rm

[
Σi

v,m̂, ˆ̃P · σ
]
−
J
[
q̃2
]

+
Rq2

4P̃

(
1− i

2m
ϵlnkσkql ˆ̃P

n
)
D
[
q̃2
]} ∣∣∣ϕ̃(P̃′)∣∣∣2 e−iq·r +Rest ,

t0iϕ,v(r) =

∫
d3P̃ d3q

(2π)3
γ
(
1− v · ˆ̃P

){
P̃

ˆ̃P
i

R

(
1− i

2m
ϵljkσkql ˆ̃P

j
)
A
[
q̃2
]

− iP̃

4Rm

[
i ˆ̃P

i

qj
[
Σj

v,m̂, ˆ̃P · σ
]
−
+ i ˆ̃P · q

[
Σi

v,m̂, ˆ̃P · σ
]
−
− ϵijkqj ˆ̃P · σ

[
Σk

v,m̂, ˆ̃P · σ
]
−

]
J
[
q̃2
]

+
R ˆ̃P · q qi

4P̃

(
1− i

2m
ϵlnkσkql ˆ̃P

n
)

D
[
q̃2
]} ∣∣∣ϕ̃(P̃′)∣∣∣2 e−iq·r +Rest ,

tijϕ,v(r) =

∫
d3P̃ d3q

(2π)3
γ
(
1− v · ˆ̃P

){ P̃ ˆ̃P
i ˆ̃P

j

R

(
1− i

2m
ϵlnkσkql ˆ̃P

n
)
A
[
q̃2
]

− iP̃

4Rm

[
i ˆ̃P · q

(
ˆ̃P
i [
Σj

v,m̂, ˆ̃P · σ
]
−
+ ˆ̃P

j [
Σi

v,m̂, ˆ̃P · σ
]
−

)
−
(
ϵjkl ˆ̃P

i

qk + ϵikl ˆ̃P
j

qk
)

ˆ̃P · σ
[
Σl

v,m̂, ˆ̃P · σ
]
−

]
J
[
q̃2
]

+
R(q̃iq̃j + δij q̃2)

4P̃

(
1− i

2m
ϵlnkσkql ˆ̃P

n
)

D
[
q̃2
]} ∣∣∣ϕ̃(P̃′)∣∣∣2 e−iq·r +Rest , (28)

where [A,B]− = AB−BA, P̃′ = v̂×
(
P̃× v̂

)
+ γ
(
P̃ · v̂− vP̃

)
v̂ and the unit vector m̂ is defined as m̂ ≡ ˆ̃P

′
. Further,

the Σi
v,m̂ refers to the Wigner-rotated spin operator

Σi
v,m̂ = D† [W (Λv,m̂)]σiD [W (Λv,m̂)] , (29)

with

D [W (Λv,m̂)] = lim
R→0

D

[
W
(
Λv,

Λ−1
v

(
P̃/R

)
m

)]
. (30)
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Next, we change the integration variables P̃ → P̃′ to obtain

t00ϕ,v(r) =
1

R

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 γ(P̃ ′ + vP̃ ′

∥)

{(
1− i

2m
ϵijkσkqin̂j

)
A
[
(n̂ · q)2 − q2

]
+

1

2m
qi
[
Σi

v,m̂, n̂ · σ
]
− J

[
(n̂ · q)2 − q2

]}
e−iq·r

+
R

2

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 q2

2γ(P̃ ′ + vP̃ ′
∥)

(
1− i ϵlnkσkqln̂n

2m

)
D
[
(n̂ · q)2 − q2

]
e−iq·r +Rest ,

t0iϕ,v(r) =
1

R

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 γ(P̃ ′ + vP̃ ′

∥)

{
n̂i

(
1− i ϵljkσkqln̂j

2m

)
A
[
(n̂ · q)2 − q2

]
− i

4m

[
i n̂iqj

[
Σi

v,m̂, n̂ · σ
]
− + i n̂ · q

[
Σi

v,m̂, n̂ · σ
]
− − ϵijkqjn̂ · σ

[
Σi

v,m̂, n̂ · σ
]
−

]
J
[
(n̂ · q)2 − q2

]}
e−iq·r

+
R

2

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 n̂ · q qi

2γ(P̃ ′ + vP̃ ′
∥)

(
1− i ϵlnkσkqln̂n

2m

)
D
[
(n̂ · q)2 − q2

]
e−iq·r +Rest,

tijϕ,v(r) =
1

R

∫
dm̂ dP̃ ′P̃ ′2 d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 γ (P̃ ′ + vP̃ ′

∥

){
n̂in̂j

(
1− i

2m
ϵlnkσkqln̂n

)
A
[
(n̂ · q)2 − q2

]
− i

4m

[
i n̂ · q

(
n̂i
[
Σj

v,m̂, n̂ · σ
]
−
+ n̂j

[
Σi

v,m̂, n̂ · σ
]
−

)
−
(
ϵjkln̂iqk + ϵikln̂jqk

)
n̂ · σ

[
Σl

v,m̂, n̂ · σ
]
−

]
× J

[
(n̂ · q)2 − q2

]}
e−iq·r

+
R

2

∫
dm̂ dP̃ ′P̃ ′2d3q

(2π)3
∣∣ϕ̃(P̃′)∣∣2 qjqi + δij

(
(n̂ · q)2−q2

)
2γ(P̃ ′ + vP̃ ′

∥)

(
1− i

2m
ϵlnkσkql n̂n

)
D
[
(n̂ · q)2−q2

]
e−iq·r+Rest.(31)

The expressions in Eq. (31) simplify considerably in two extreme cases. First, in the particle’s ZAMF, with v = 0,
γ = 1 and D [W (Λ0, m̂)] = identity, we have n

(
v, m̂

)
= m̂, so that we can replace the integration measure dm̂ by

dn̂.
Next, in the infinite-momentum frame (IMF) with v → 1 and γ → ∞, the vector-valued function n̂ turns to v̂,

so that the integrands in Eq. (31) depend on m̂ only through the Wigner rotation matrices. We use the spherical

symmetry of ϕ̃
(
P̃′) and factor out the integration over P̃ ′ in Eq. (31). To carry out the remaining angular integration

over m̂ in spherical coordinates we align the z- and x-axes along the v and q⊥ directions, respectively, and denote
η = cos θ. Finally we obtain the following expressions for spatial densities in the IMF:

tµνv (r) = Nϕ,R

∫
d3q

(2π)3
t̄µν
(
q∥, q⊥

)
e−iq·r +Nϕ,R,2

∫
d3q

(2π)3
t̄µν2
(
q∥, q⊥

)
e−iq·r +Rest , (32)

with

t̄µν
(
q∥, q⊥

)
= 4πγ

{
v̂µv̂ν

(
1 +

i

2m
ϵilkv̂iσkql

)
A
[
−q2

⊥
]
+

i

4m

(
v̂µ(σ⊥ × q)ν + v̂ν(σ⊥ × q)µ

+ (δµ0v̂ν + δν0v̂µ)v̂ · (σ⊥ × q)

)
J
[
−q2

⊥
]}

,

t̄µν2
(
q∥, q⊥

)
=

π

γ
α
(
qµv q

ν
v + gµνq2

⊥
)(

1 +
i

2m
ϵilkv̂iσkql

)
D
[
−q2

⊥
]
, (33)

where (σ⊥×q)0 = 0 and α is defined in Eq. (24). Substituting Eq. (33) in Eq. (32) we obtain, analogously to Eq. (26),
expressions for the two-dimensional spatial distributions in the IMF.

IV. INTERPRETATION OF THE RESULTS

We are now in the position to discuss the physical interpretation of the new expressions obtained in the current
work. It is clear from Eq. (25) that in the IMF, the matrix elements of the EMT in localized states represent two-
dimensional distributions in the plane perpendicular to the velocity of the reference frame. Analyzing Eqs. (21) and
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(23) we conclude that there are two types of contributions: those depending on the velocity of the reference frame and
thus characterizing the movement of the system as a whole and the other contributions which are related to internal
properties of the system under consideration. The contribution generated by t̄µν corresponds to the motion of the
system as a whole, while the term generated by t̄µν2 is not related to this motion and, therefore, should be interpreted
as related to internal characteristics. Notice that essentially the same argument supporting separate interpretation of
different contributions to the matrix elements of EMT has been given previously in Refs. [19, 21].

Integrating Eq. (21) for the IMF over all possible directions of the frame velocity, it is easily seen that the resulting
two terms are proportional to the corresponding terms in Eq. (7), i.e. to the terms which involve the same form
factors.5 Thus, the spatial distributions in the ZAMF, given by Eq. (7), can be understood as an integral over all
directions of the IMF velocity. As evidenced by Eq. (25), the spatial distributions are given by two dimensional images
of the system in the IMF. The same can be concluded for the spin-1/2 system using equations (13) and (32). Thus
the three-dimensional “picture” of the system emerges as a “composition” of its all possible two-dimensional cuts.

As mentioned above for the IMF, the term corresponding to t̄µν2 characterizes the internal structure. Therefore also
in the ZAMF the term

tij2 (r) = Nϕ,R,2

∫
d2n̂ d3q

(2π)3
(
−qiqj + q2

⊥δ
ij
)
Θ1

[
−q2

⊥
]
e−iq·r (34)

characterizes the distribution of internal forces. Notice that while the normalization of this quantity depends on the
wave packet profile function its spatial distribution is uniquely determined by the EMT form factor. We identify the
traceless and the trace parts via

tij2 (r) =

(
rirj

r2
− 1

3
δij
)
s(r) + δijp(r) , (35)

where

s(r) = Nϕ,R,2

∫
d2n̂d3q

(2π)3

(
r2q2 − 3(r · q)2

2 r2

)
Θ1

[
−q2

⊥
]
e−iq·r

= Nϕ,R,2

∫
d2n̂ r

d

dr

1

r

d

dr

(
δ(r∥)Θ̃1 [r⊥]

)
,

p(r) = Nϕ,R,2

∫
d2n̂ d3q

(2π)3

(
q2
⊥ − q2

3

)
Θ1

[
−q2

⊥
]
e−iq·r

= Nϕ,R,2

∫
d2n̂

(
1

3

1

r2
d

dr
r2

d

dr
− 1

r2⊥

d

dr⊥
r2⊥

d

dr⊥

)(
δ(r∥)Θ̃1 [r⊥]

)
. (36)

The quantities s(r) and p(r) have been interpreted in Refs. [5, 6] as the shear force and the pressure, respectively.6 It
is evident from Eq. (36) that the overall normalizations of these quantities depend on the packet while their functional
form is uniquely determined by the form factor Θ1. It is not surprising that the normalization factors of the pressure
and shear force distributions vanish in the limit of sharply localized states as these functions are related to the
variation of the action with respect to the spatial metric gik(r). This variation corresponds to a change of the location
of the system in three-dimensional space, which vanishes for sharply localized states. Notice that the shape of these
distributions does not depend on the localization of the system and is uniquely determined by the corresponding form
factor.

In exact analogy to the case of the spin-0 system, by integrating the IMF density in Eq. (32) over all possible
directions of the frame velocity, we obtain terms involving different form factors of a spin-1/2 system, which are
proportional to the corresponding terms in Eq. (13). Thus, analogously to Eq. (35), the term

tij2 (s
′, s, r) =

1

2
Nϕ,R,2 δs′s

∫
d2n̂ d3q

(2π)3
(
qiqj − δijq2

⊥
)
D
(
−q2

⊥
)
e−iq·r (37)

can be interpreted as the distribution of the shear force and the internal pressure.

5 Notice that while the coefficients of proportionality are different for different terms, the behavior for R → 0 remains the same, i.e. the
first term diverges while the second term vanishes.

6 Notice that this interpretation has been questioned recently in Ref. [34].
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FIG. 1: Normalized energy, pressure and shear force density distributions in the static approximation (dashed lines) and in
the ZAMF (solid lines). Normalizations of densities are chosen by dividing the corresponding matrix elements of the EMT by
their integrals over the three dimensional space.

As mentioned above, a superposition of eigenstates of the energy-momentum vector with different eigenvalues is not
an eigenstate of this operator. Therefore, in general, the interpretation of the t00(r) and t0i(r) in terms of the energy
and momentum distributions seems to be problematic. However, in sharply localized states, where the wave packets
are dominated by large momenta, these quantities can be interpreted as energy and momentum spatial distributions,
respectively.7 For a spin-0 system in the ZAMF we have:

t00(r) = Nϕ,R

∫
d2n̂ d3q

(2π)3
Θ2

[
−q2

⊥
]
e−iq·r, (38)

and for the spin-1/2 system in the ZAMF we obtain the following expressions

t00(r) = Nϕ,R

∫
d2n̂ d3q

(2π)3
A
[
−q2

⊥
]
e−iq·r, (39)

t0i(r) = Nϕ,R
iεjkl

2m

∫
d2n̂ d3q

(2π)3
σk
⊥q

l
(
δij + n̂in̂j

)
J
[
−q2

⊥
]
e−iq·r. (40)

On the other hand, in the static approximation the states are defined by packets with sizes much larger than the
Compton wavelength of the system. For this case, our expressions of the spatial distributions in the static approxima-
tion for a spin-0 system, Eq. (10), and for a spin-1/2 system, Eq. (15), coincide with the corresponding Breit-frame
expressions for the t00 and t0i components, while for the tij components the Breit-frame expression reproduces the
part describing the internal structure only. Thus, the Breit-frame expressions indeed correspond to the system in the
ZAMF in a state described by a packet with the characteristic scale much larger than the Compton wavelength of
the system. For such a packet the integral is governed by momenta much smaller than the mass of the system and,

7 Notice here that for these terms we do not offer separate interpretation of the t̄ and t2 contributions and therefore the second are
dropped as compared to the first.
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therefore, replacing the corresponding energies by the first term in the expansion E =
√
m2 + p2 = m+p2/(2m)+ · · ·

is a good approximation. That is, the packet is dominated by eigenstates of the energy with the same eigenvalue m,
and therefore it is also an eigenstate of the energy operator with the eigenvalue m. Thus, t00(r) can be interpreted
in this case as the spatial distribution of the mass, which is the same as the full energy of the system in the ZAMF
in the static approximation. More details of interpretation of the Fourier transforms of the gravitational form factors
in the Breit frame in terms of various spatial distributions can be found in Ref. [6]. Taking into account that sharp
localization of the system requires a huge amount of energy, it is not surprising that the normalization factor for the
energy and the momentum distributions Nϕ,R explodes. Again, the functional form of these densities is uniquely de-
termined by the corresponding form factors. To illustrate the comparison of the static approximation and the ZAMF
expressions, in Fig. 1 we plot the normalized energy, pressure and shear force density distributions for a hypothetical
spin-0 system with gravitational form factors Θ1(q

2) = 1/(1− q2/Λ2)3 and Θ2(q
2) = 1/(1− q2/Λ2)2, where we take

Λ = 1GeV.
Finally, as the spatial densities are given in terms of r = x − X, X should be interpreted as the position of the

center-of-gravity of the system.

V. SUMMARY AND CONCLUSIONS

To summarize, in the current work we considered the one-particle matrix elements of the EMT in localized states of
spin-0 and spin-1/2 systems. Specifying the one-particle states by spherically symmetric wave packets, independent
of the spin polarization for the case of spin-1/2 systems, and sharply localizing system we obtained the definition of
spatial distributions which are independent of the specific radial form of the packet. This definition is applicable for
an arbitrary relative size of the Compton wavelength and other internal characteristics of the system. We obtained
the expressions for the newly defined quantities in the ZAMF as well as in moving reference frames. Writing the
spatial distributions in the ZAMF as integrals of the corresponding expressions in the IMF over all possible directions,
we offered a physical interpretation of the obtained results.

Finally, using the results of Ref. [11], we also considered the static approximation and obtained the spatial distri-
butions, which coincide with the Fourier transforms of the form factors in the Breit frame as originally suggested as
spatial distributions of various quantities [6].
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[20] Y. Chen and C. Lorcé, [arXiv:2210.02908 [hep-ph]].
[21] A. Freese and G. A. Miller, [arXiv:2210.03807 [hep-ph]].
[22] J. Y. Panteleeva and M. V. Polyakov, Phys. Rev. D 104 (2021) no.1, 014008, [arXiv:2102.10902 [hep-ph]].
[23] E. Epelbaum, J. Gegelia, N. Lange, U.-G. Meißner and M. V. Polyakov, Phys. Rev. Lett. 129, no.1, 012001 (2022),

[arXiv:2201.02565 [hep-ph]].
[24] G. N. Fleming, Physical Reality & Math. Descrip., 357 (1974).
[25] J. Y. Panteleeva, E. Epelbaum, J. Gegelia and U.-G. Meißner, Phys. Rev. D 106, no.5, 056019 (2022), [arXiv:2205.15061

[hep-ph]].
[26] J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343-351 (1991).
[27] B. Kubis and U.-G. Meißner, Nucl. Phys. A 671, 332-356 (2000) [erratum: Nucl. Phys. A 692, 647-648 (2001)], [arXiv:hep-

ph/9908261 [hep-ph]].
[28] J. Gegelia, G. S. Japaridze and K. S. Turashvili, Theor. Math. Phys. 101, 1313-1319 (1994).
[29] K. Tanaka, Phys. Rev. D 98, no.3, 034009 (2018), [arXiv:1806.10591 [hep-ph]].
[30] X. B. Tong, J. P. Ma and F. Yuan, Phys. Lett. B 823, 136751 (2021), [arXiv:2101.02395 [hep-ph]].
[31] X. B. Tong, J. P. Ma and F. Yuan, JHEP 10, 046 (2022), [arXiv:2203.13493 [hep-ph]].
[32] S. E. Hoffmann, [arXiv:1804.00548 [quant-ph]].
[33] S. Weinberg, “The Quantum theory of fields. Vol. 1, : Foundations,” Cambridge University Press (2005-06-02).
[34] X. Ji and Y. Liu, Phys. Rev. D 106, no.3, 034028 (2022), [arXiv:2110.14781 [hep-ph]].


	Introduction
	Gravitational densities in the zero average momentum frame
	Spin-0 particles
	Spin-1/2 particles

	Gravitational densities in moving frames
	Spin-0
	Spin-1/2

	Interpretation of the results
	Summary and conclusions
	Acknowledgments
	References

