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Abstract We work out details of defining the spatial densi-
ties corresponding to the gravitational form factors of spin-0
and spin-1/2 systems using spherically symmetric sharply
localized wave packets. The expressions for the spatial den-
sities are provided in the frames with both zero and non-zero
expectation values of the momentum operator.

1 Introduction

In close analogy with the electric charge density of hadrons
[1–3], the interpretation of Fourier transforms of gravita-
tional form factors in the Breit frame as local densities of var-
ious physical quantities characterizing the system was sug-
gested in Refs. [4–6]. For systems whose intrinsic size is com-
parable with their Compton wavelength, this identification of
spatial density distributions with the Fourier transforms of the
electromagnetic and gravitational form factors was criticized
in Refs. [7–13]. This issue has raised much interest recently
[14–21]. The light-front approach has been used to define
purely intrinsic electromagnetic spatial densities as two-
dimensional distributions in the impact parameter space [7–
10,16]. The relationship between these densities and the non-
relativistic three-dimensional distributions in the Breit frame
in terms of the Abel transform was studied in Refs. [19,22].
The phase-space approach of Refs. [14,15,17] allows one
to define fully relativistic three-dimensional spatial densi-
ties. However, these densities do not have a strict probabilis-
tic interpretation due to their dependence on both coordi-
nates and momenta. In Refs. [13,17], the two-dimensional
light-front Fourier transforms of the energy-momentum ten-

a e-mail: Juliia.Panteleeva@rub.de (corresponding author)

sor form factors have been interpreted as the spatial densities
of the energy-momentum and the internal forces in hadrons.
In Ref. [23], a definition of spatial densities of local operators
for systems with arbitrary Compton wavelengths has been
suggested by considering an example of the charge density
of a spin-0 system, see also Ref. [24] for an early study along
this line. Recently this novel definition was also applied to the
electromagnetic spatial densities for spin-1/2 systems [25].
For illuminating comments and extensions on the approach
using sharply localized packets see Ref. [18].

In this work we consider the one-particle matrix elements
of the energy-momentum tensor (EMT) in localized states
of spin-0 and spin-1/2 systems. Specifying the one-particle
state by a spherically symmetric wave packet and sharply
localizing it in space we define spatial distributions corre-
sponding to gravitational form factors in the zero average
momentum frame (ZAMF). Next, we generalize the new def-
inition to Lorentz-boosted frames. Analogously to Ref. [11],
which dealt with the electromagnetic case, we also consider
the static approximation and discuss the limitations of the
results obtained in this limit.

Recently in Ref. [21] it has been claimed that the idea
of obtaining internal densities via wave packet localization
is fallacious, because it does not reproduce the “true inter-
nal densities”. The authors first clarify what they understand
under true internal densities of hadrons and how these are
related to the physical densities obtained from expectation
values of local operators. Next, using the formulated criteria
they observe that the wave packet localization does not result
in meaningful internal densities for instant form coordinates.
We believe that the parameterization of the physical densities
in terms of internal densities and smearing functions which
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is suggested in Ref. [21] as the basis for defining the true
internal densities has an oversimplified form and is inade-
quate for a complicated hadronic system in a state described
by a wave packet.

Our work is organized as follows. In Sect. 2 we define
spatial densities of the EMT in the ZAMFs of a spin-0 and a
spin-1/2 systems and consider the static approximation. Spa-
tial densities in moving reference frames are considered in
Sect. 3. Section 4 contains our interpretation of the obtained
results and we summarize in Sect. 5.

2 Gravitational densities in the zero average
momentum frame

Spatial densities of the EMT defined via localized states differ
significantly from the ones of the electromagnetic current. A
superposition of eigenstates of the charge operator, which
makes the localized packet, remains an eigenstate of the
charge operator with the same eigenvalue. However this is not
the case for the energy-momentum operator. That is, a packet
which is a superposition of one-particle eigenstates of the
four-momentum operator with different four-momenta is not
an eigenstate of the same operator. On the other hand, such
a state does not contain admixtures of states with particle-
antiparticle pairs and, therefore, can be used to define spatial
distributions for one-particle states.

Below we work out details of the spatial densities cor-
responding to the EMT of spin-0 and spin-1/2 systems in
the ZAMF and in moving frames. Throughout this work we
closely follow the notations of Ref. [11]. We choose the four-
momentum eigenstates |p, s〉 characterizing our system to be
normalized as

〈p′, s′|p, s〉 = 2E(2π)3δs′sδ
(3)(p′ − p), (1)

where (p, s) and (p′, s′) are momentum and polarization of
the initial and final states of a spin-1/2 system, respectively.
For spin-0 systems we have analogous expressions without
polarizations s and s′ (this is also the case for the expressions
below, which are applicable to both spin-0 and spin-1/2 sys-
tems). Further, we have p = (E,p), with E = √

m2 + p2,
where m is the particle mass.

When calculating matrix elements of the EMT we use
normalizable Heisenberg-picture states written in terms of
wave packets as follows:

|�,X, s〉 =
∫

d3 p
√

2E(2π)3
φ(s,p) e−ip·X|p, s〉, (2)

where X is the spatial translation vector whose interpretation
will be discussed below and φ(s,p) is the profile function

satisfying the normalization condition
∫

d3 p |φ(s,p)|2 = 1. (3)

To define the density distributions in the ZAMF of the system
we use spherically symmetric wave packets.1 In the case of
spin-1/2 systems, the profile functions are also chosen to
be spin-independent, i.e. φ(s,p) = φ(p) = φ(|p|). It is
convenient to define dimensionless profile functions

φ(p) = R3/2 φ̃(Rp), (4)

where R specifies the size of the wave packet. A sharp local-
ization of the system is achieved by taking small values of
R.

2.1 Spin-0 particles

To define spatial densities associated with the EMT of a scalar
particle we consider its matrix element in a state specified by
Eq. (2) for a spin-0 state and take its limit when R → 0.
Using the parametrization of matrix elements of the EMT in
single-particle momentum eigenstates in terms of the form
factors �1(q2) and �2(q2) [26,27] we obtain:

tμν
φ (x − X) = 〈�,X|T̂μν(x, 0)|�,X〉

=
∫

d3 p′d3 p

(2π)3
√

4E ′E
φ�(p′) φ(p)〈p′|T̂μν(x, 0)|p〉

=
∫

d3P d3q

(2π)3
√

4EE ′
[(
q2gμν − qμqν

)
�1

(
q2

)

+ 2PμPν�2

(
q2

)]
φ

(
P − q

2

)

× φ�

(
P + q

2

)
e−iq·(x−X) , (5)

where we have introduced new variables q = p′ − p and
P = (p + p′)/2. In terms of these variables the ener-
gies are given as E = (m2 + P2 − P · q + q2/4)1/2 and
E ′ = (m2 + P2 + P · q + q2/4)1/2.

By applying the method of dimensional counting of Ref.
[28], the leading contribution in Eq. (5) for R → 0 can be
obtained without performing the integration over momenta
and without specifying the expressions for the form-factors
and the spherically symmetric profile function. For the form
factors �1

(
q2

)
and �2

(
q2

)
decaying for large q2 as 1/q4

and 1/q2, or faster, respectively,2 the only non-vanishing

1 The average momentum of the system vanishes in states correspond-
ing to such packets.
2 In Ref. [29] using perturbative QCD the large-q2 behavior of the
gravitational form factors of the (pseudo)scalar hadrons has been found
to be �1

(
q2

) ∼ 1/q4 and �2
(
q2

) ∼ 1/q2. However, according to
Ref. [30] in case of pions perturbative QCD leads to �1

(
q2

) ∼ 1/q2,
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contribution for R → 0 originates from the large P region.
This contribution can be obtained by substituting P = P̃/R
and expanding the resulting integrand in Eq. (5) in powers of
R around R = 0. Doing so and introducing a new variable
r = x − X we obtain

tμν
φ (r) =

∫
d3 P̃d3q

(2π)3

(
P̃μ P̃ν

P̃ R
�2

[
q̃2

]

+ R

2 P̃

(
q̃2gμν − q̃μq̃ν

)
�1

[
q̃2

] )

×|φ̃(P̃)|2 e−iq·r + Rest, (6)

where we introduced four-vectors q̃μ = (
ˆ̃P · q,q) and

P̃μ = (P̃, P̃) with P̃ = |P̃| and ˆ̃P = P̃/P̃ . Notice that
we wrote explicitly only terms that contribute to the final
expressions for the densities, see the discussion in Sect. 4,
and “Rest” stands for all other terms of the expansion. Using
Eq. (3) and spherical symmetry we arrive at the final form of
the local density distributions in the ZAMF of the system

tμν(r) = Nφ,R

∫
d2 ˆ̃P d3q

(2π)3
ˆ̃Pμ ˆ̃Pν

�2

[
−q2⊥

]
e−iq·r − Nφ,R,2

×
∫

d2 ˆ̃P d3q

(2π)3

(
q̃μq̃ν + q2⊥gμν

)
�1

[
−q2⊥

]
e−iq·r

+ Rest , (7)

where ˆ̃Pμ =
(

1,
ˆ̃P
)

, q⊥ = ˆ̃P ×
(
q × ˆ̃P

)
, q2⊥ ≡ −q̃2 and

Nφ,R = 1

R

∫
d P̃ P̃3|φ̃(|P̃|)|2,

Nφ,R,2 = R

2

∫
d P̃ P̃|φ̃(|P̃|)|2. (8)

Unlike the electromagnetic case (see Refs. [23] and [25]),
the dependence on the form of the profile function and the
size of the packet remains in the normalization factors Nφ,R

and Nφ,R,2 of the local density distributions. Notice that for
R → 0 the first term in Eq. (7) goes to infinity while the
second term vanishes.

Postponing the interpretation of the expression in Eq. (7)
to Sect. 4 we now consider the “static” approximation. The
local densities of Refs. [4–6] in terms of the Fourier trans-
forms of the form factors in the Breit frame emerge by
expanding the integrand in Eq. (5) in powers of 1/m up to
leading-order terms before performing the integration [11]
and localizing the wave packet by taking R → 0 limit.3 The

Footnote 2 continued
�2

(
q2

) ∼ 1/q2 for large q2. Notice that our derivation would not be
applicable for the latter case.
3 Notice that the R → 0 and m → ∞ limits do not commute as
pointed out in Ref. [23], and therefore the static expression does not
emerge from Eq. (7) by expanding it in powers of 1/m.

resulting expressions after the 1/m-expansion of the inte-
grand have the form:

t00
φ,naive(r) = m

∫
d3P d3q

(2π)3 �2

(
−q2

)

× φ

(
P − q

2

)
φ�

(
P + q

2

)
e−iq·r,

t0i
φ,naive(r) =

∫
d3P d3q

(2π)3 Pi �2

(
−q2

)
φ

(
P − q

2

)

× φ�

(
P + q

2

)
e−iq·r,

t i jφ,naive(r) = 1

2m

∫
d3P d3q

(2π)3

[(
q2δi j − qiq j

)
�1

(
−q2

)

+ 2Pi P j �2

(
−q2

)]
φ

(
P − q

2

)

× φ�

(
P + q

2

)
e−iq·r. (9)

To localize the wave packet we take the R → 0 limit again
by using the method of dimensional counting. The desired
result is obtained by substituting P = P̃/R, expanding the
integrands in Eq. (9) in powers of R around R = 0 and
keeping explicitly only terms which are relevant, we obtain

t00
naive(r) = m

∫
d3 P̃ d3q

(2π)3 �2

(
−q2

)

×|φ̃(P̃)|2e−iq·r+Rest=
∫

d3q

(2π)3 m �2

(
−q2

)

×e−iq·r + Rest ,

t0i
naive(r) =

∫
d3 P̃ d3q

(2π)3

P̃i

R
�2

(
−q2

)

×|φ̃(P̃)|2 e−iq·r + Rest = 0 + Rest,

t i jnaive(r) = 4π δi j

3mR2

∫
d P̃ P̃4

×|φ̃(P̃)|2
∫

d3q

(2π)3 �2

(
−q2

)
e−iq·r

+ 1

2m

∫
d3q

(2π)3

(
q2δi j − qiq j

)
�1

(
−q2

)

×e−iq·r + Rest, (10)

where we used Eq. (3) and the fact that for spherically sym-
metric packets integral over an odd function of P̃ vanishes.
The t00

naive and the second term of t i jnaive in Eq. (10) coin-
cide with the corresponding expressions of spatial densities
obtained as the Fourier transforms of the gravitational form
factors in the Breit frame. Notice that both of these terms do
not depend on the packet profile function and the size of the
packet.
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2.2 Spin-1/2 particles

The matrix elements of the EMT of a spin-1/2 system in
one-particle eigenstates of the four-momentum operator are
parametrized in terms of three form factors as follows [6]:

〈p′, s′|T̂μν(x, 0)|p, s〉 = e−iq·xū(p′, s′)
[
A(q2)

PμPν

m

+i J (q2)
Pμσναqα + Pνσμαqα

2m

+D(q2)
qμqν − gμνq2

4m

]
u(p, s), (11)

where the momenta q and P are defined as in the pre-
vious section and the Dirac spinors are normalized as
ū(p, s′)u(p, s) = 2m δs′s . The matrix element of the EMT
in localized states specified by Eq. (2) is written as

tμν
φ (s′, s, x − X) ≡ 〈�,X, s′|T̂μν(x, 0)|�,X, s〉

=
∫

d3P d3q

(2π)3
√

4EE ′ ū(p′, s′)
[
A

(
(E−E ′)2−q2

) PμPν

m

+i J
(
(E − E ′)2 − q2

) Pμσναqα + Pνσμαqα

2m

+D
(
(E − E ′)2 − q2

) qμqν − gμνq2

4m

]
u(p, s)

× φ

(
P − q

2

)
φ�

(
P + q

2

)
e−iq·(x−X). (12)

Taking the R → 0 limit in Eq. (12) by using the method of
dimensional counting in a complete analogy to the case of
spin-0 systems, and assuming that form factors A(q2), J (q2)

and D(q2) decay for large q2 as 1/q2, 1/(q2)3/2 and 1/q4,
or faster, respectively,4 we obtain for the operators in spin
space

tμν
φ (r) = Nφ,R

∫
d2 ˆ̃P d3q

(2π)3

[
i

2m

( ˆ̃Pμ(σ⊥ × q)ν

+ ˆ̃Pν(σ⊥ × q)μ

+ ˆ̃P · (σ⊥ × q)(δμ0 ˆ̃Pν + δν0 ˆ̃Pμ)
)
J

(
−q2⊥

)

+ ˆ̃Pμ ˆ̃Pν A
(
−q2⊥

) ]
e−iq·r + 1

2
Nφ,R,2

×
∫

d2 ˆ̃P d3q

(2π)3

(
q̃μq̃ν + gμνq2⊥

)
D

(
−q2⊥

)

× e−iq·r + Rest , (13)

4 This condition is actually satisfied by the large-q2 behavior of the
gravitational form factors of the proton obtained in perturbative QCD in
Refs. [29–31], in our notation corresponding to A(q2) ∼ J (q2) ∼ 1/q4

and D(q2) ∼ 1/q6, modulo logarithms.

where r = x−X and (σ⊥×q)0 = 0. Again, we wrote explic-
itly only those terms which contribute to the final expressions
for the densities in Sect. 4.

Postponing again the discussion of the obtained result
to the Sect. 4, we consider next the static approximation.
Expanding the integrand in Eq. (12) in powers of 1/m up to
leading-order terms we obtain for the operators in spin space

t00
φ,naive(r) = m

∫
d3P d3q

(2π)3 A
(
−q2

)

× φ

(
P − q

2

)
φ�

(
P + q

2

)
e−iq·r,

t0i
φ,naive(r) =

∫
d3P d3q

(2π)3

×
[
A

(
−q2

)
Pi − i

2
εi jkq jσ k J

(
−q2

)]

× φ

(
P − q

2

)
φ�

(
P + q

2

)
e−iq·r,

t i jφ,naive(r) = 1

m

∫
d3P d3q

(2π)3

[
A

(
−q2

)
Pi P j

+1

4
D

(
−q2

) (
−q2δi j + qiq j

)

− i

2

(
εilkql P j + ε jlkql Pi

)
σ k J

(
−q2

)]

× φ

(
P − q

2

)
φ�

(
P + q

2

)
e−iq·r. (14)

To localize the wave packet by taking the limit R → 0 we use
the method of dimensional counting and obtain the following
expressions for the “naive” spatial densities:

t00
naive(r) = m

∫
d3q

(2π)3 A
(
−q2

)
e−iq·r + Rest,

t0i
naive(r) = − i

2
εi jkσ k

∫
d3q

(2π)3 q
j J

(
−q2

)
e−iq·r + Rest,

t i jφ,naive(r) = 1

R2

∫
d P̃ P̃4|φ̃(P̃)|2 4π δi j

3m

×
∫

d3q

(2π)3 A
(
−q2

)
e−iq·r

+ 1

4m

∫
d3q

(2π)3 D
(
−q2

) (
−q2δi j + qiq j

)

×e−iq·r + Rest, (15)

where we made use of Eq. (3) and the fact that the integral
over P̃ of an odd function of this variable vanishes. Anal-
ogously to the case of a spin-0 system, the t00

naive, t0i
naive and

the second term of t i jφ,naive in Eq. (15) coincide with the cor-
responding expressions of spatial densities obtained as the
Fourier transforms of the gravitational form factors in the
Breit frame.

123



Eur. Phys. J. C (2023) 83 :617 Page 5 of 10 617

Defining the mean squared energy radius of a system via

〈r2〉 =
∫
d3r t00(r)r2

∫
d3r t00(r)

, (16)

for a spin-1/2 system in the static approximation of Eq. (15)
we obtain 〈r2〉naive = 6A′(0), while Eq. (13) leads to
〈r2〉 = 4A′(0). Analogous result holds also for spin-0 sys-
tems. The same smaller mean squared radius, compared to
the Breit-frame result, has been obtained previously in Ref.
[13] using the two-dimensional formalism utilizing light-
front coordinates.

3 Gravitational densities in moving frames

3.1 Spin-0

To generalize the results of the previous section to moving
frames we replace φ(p) with its boosted expression φv(p),
given in terms of the spherically symmetric ZAMF quantity
as follows [32]

φv(p) =
√

γ
(

1 − v · p
E

)
φ
[
p⊥ + γ (p‖ − vE)

]
, (17)

where v is the boost velocity, γ = (1−v2)−1/2,p‖ = (p·v̂)v̂,
p⊥ = p − p‖ and E = √

m2 + p2.
In exact analogy to the case of the ZAMF, we obtain for

a spin-0 system in the R → 0 limit using the method of
dimensional counting:

tμν
φ,v(r) =

∫
d3 P̃ d3q

(2π)3 γ
(
1−v · ˆ̃P

){
P̃ ˆ̃Pμ ˆ̃Pν

R
�2

[
q̃2

]

+ R

2 P̃

[
q̃2gμν −q̃μq̃ν

]
�1

[
q̃2

]}

×
∣∣∣φ̃

[
P̃⊥+γ (P̃‖−v P̃)

]∣∣∣
2
e−iq·r + Rest, (18)

where ˆ̃P, ˆ̃Pμ and q̃μ are defined as in the previous section.
Next, we change the integration variable P̃ → P̃′ = v̂ ×
(
P̃ × v̂

) + γ
(
P̃ · v̂ − v P̃

)
v̂, denote m̂ ≡ ˆ̃P′ and introduce a

vector-valued function

n
(
v, m̂

) = v̂ × (
m̂ × v̂

) + γ
(
m̂ · v̂ + v)v̂. (19)

Taking into account that P̃ = v̂×(
P̃′× v̂

)+γ
(
P̃′ · v̂+v P̃ ′)v̂,

it follows that n̂ = ˆ̃P. The Jacobian of the change of variables
P̃ → P̃′ cancels the first factor in the integrand in Eq. (18),
and we finally obtain

t00
φ,v(r) =

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

e−iq·r
{

γ (P̃ ′ + v P̃ ′‖)
R

�2

[
(n̂ · q)2 − q2

]
− q2R

2γ (P̃ ′ + v P̃ ′‖)

×�1

[
(n̂ · q)2 − q2

] }
+ Rest,

t0iφ,v(r) =
∫

dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

×e−iq·r
{

γ (P̃ ′ + v P̃ ′‖)n̂i

R
�2

[
(n̂ · q)2−q2

]

− R

2

n̂·q
γ (P̃ ′+v P̃ ′‖)

qi�1

[
(n̂ · q)2−q2

]}

+Rest,

t i jφ,v(r) =
∫

dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

×e−iq·r
{

γ (P̃ ′ + v P̃ ′‖)
R

n̂i n̂ j�2

[
(n̂·q)2−q2

]

− R

2

1

γ (P̃ ′ + v P̃ ′‖)
[(

(n̂ · q)2−q2
)
δi j

+qi q j
]
�1

[
(n̂ · q)2 − q2

] }
+ Rest. (20)

Using the spherical symmetry of φ̃
(
P̃′), the integration over

P̃ ′ factorizes out in Eq. (20). To carry out the remaining
angular integration over m̂ in spherical coordinates we align
the z- and x-axes along the v and q⊥ directions, respectively,
denote η = cos θ and obtain

tμν
v (r) = Nφ,R

∫
d3q

(2π)3 t̄ μν
(
q‖, q⊥

)
e−iq·r

+Nφ,R,2

∫
d3q

(2π)3 t̄ μν
2

(
q‖, q⊥

)
e−iq·r + Rest, (21)

with q‖ ≡ v̂ · q, q⊥ ≡ |q⊥| and

t̄ μν(q‖, q⊥) =
∫ +1

−1
dη

∫ 2π

0
dφ

�μ�ν

γ (1 + vη)
�2

[
q̄2

]
,

t̄ μν
2 (q‖, q⊥) = −

∫ +1

−1
dη

∫ 2π

0
dφ

1

γ (1 + vη)

×
[
q̄μq̄ν − q̄2gμν

]
�1

[
q̄2

]
, (22)

where �μ = (γ (1 + vη), ω̂⊥ + γ (ω̂‖ + v)), q̄μ =
(
[√

1 − η2 cos φ q⊥ + γ (η + v)q‖
]
/(γ (1 + vη)),q) and

ω̂ = (
√

1 − η2 cos φ,
√

1 − η2 sin φ, η).
In the infinite momentum frame (IMF) with v → 1,

γ → ∞, we obtain

t̄ μν(q‖, q⊥) = 4π γ v̂μv̂ν �2

[
−q2⊥

]
,

t̄ μν
2 (q‖, q⊥) = −2π

γ
α

[
q2⊥gμν + qμ

v q
ν
v

]
�1

[
−q2⊥

]
, (23)

where v̂μ = (1, v̂), qμ
v = (q‖,q) and

α = lim
v→1

∫ +1

−1

dη

1 + vη
. (24)
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Notice that α/γ ∼ √
1 − v ln(1 − v) when the v → 1 limit

is taken. Substituting these expressions into Eq. (21) for the
IMF we obtain:

t00
IMF(r) = N∞ δ(r‖)�̃2 [r⊥]

+N0

[

δ(r‖)
∂2�̃1 [r⊥]

∂rk⊥∂rk⊥
+ ∂2δ(r‖)

∂rk‖∂rk‖
�̃1 [r⊥]

]

+ Rest,

t0i
IMF(r) = N∞ δ(r‖)v̂i �̃2 [r⊥]

+N0 v̂k

(
∂2δ(r‖)
∂rk‖∂ri‖

�̃1 [r⊥] + ∂δ(r‖)
∂rk‖

∂�̃1 [r⊥]

∂ri⊥

)

+ Rest,

t i jIMF(r) = N∞ δ(r‖)v̂i v̂ j �̃2 [r⊥] + N0

(
−δ(r‖)

∂2�̃1 [r⊥]

∂rk⊥∂rk⊥
δi j

+ ∂2δ(r‖)
∂ri‖∂r

j
‖

�̃1 [r⊥] + ∂δ(r‖)
∂ri‖

∂�̃1 [r⊥]

∂r j⊥

+ ∂δ(r‖)
∂r j‖

∂�̃1 [r⊥]

∂ri⊥
+ δ(r‖)

∂�̃1 [r⊥]

∂ri⊥∂r j⊥

)
+ Rest, (25)

where N0 = 2π α
γ

Nφ,R,2, N∞ = 4πγ Nφ,R . Furthermore the
Fourier transforms of the form factors are given by

�̃i [r⊥] =
∫

d2q⊥
(2π)2 �i

[
−q2⊥

]
e−iq⊥·r⊥ . (26)

3.2 Spin-1/2

For a spin-1/2 system in a moving frame, we consider the
state specified by the following wave packet

|�,X, s〉v =
∫

d3 p
√

2E(2π)3

√
γ
(

1 − v · p
E

)
φ
[
�−1

v p
]
e−ip·X

×
∑

s1

Ds1s

[
W

(
�v,

�−1
v p
m

)]
|p, s1〉, (27)

where γ = (1−v2)−1/2, E = √
m2 + p2, �−1

v p = v̂×(
p×

v̂
)+γ

(
p · v̂−vE

)
v̂ with �v denoting the Lorentz boost from

the ZAMF to the moving frame. The Ds1s [W ] matrices build
the spin-1/2 representation of the Wigner rotations [33].

For the matrix elements of the EMT of a spin-1/2 system
in a moving frame we obtain the following expressions in the
R → 0 limit using the method of dimensional counting:

t00
φ,v(r) =

∫
d3 P̃ d3q

(2π)3 γ
(

1 − v · ˆ̃P
)

×
{
P̃

R

(
1 − i

2m
εi jkσ kqi ˆ̃P

j
)

× A
[
q̃2

]
+ P̃qi

2Rm

[
�i

v,m̂,
ˆ̃P · σ

]

− J
[
q̃2

]

+ R q2

4P̃

(
1 − i

2m
εlnkσ kql ˆ̃P

n
)

× D
[
q̃2

]} ∣∣∣∣φ̃
(
P̃′)

∣∣∣∣

2

e−iq·r + Rest,

t0i
φ,v(r) =

∫
d3 P̃ d3q

(2π)3 γ
(

1 − v · ˆ̃P
){

P̃
ˆ̃P
i

R

×
(

1 − i

2m
εl jkσ kql ˆ̃P

j
)
A

[
q̃2

]

− i P̃

4R m

[
i ˆ̃P

i
q j

[
�

j
v,m̂,

ˆ̃P · σ
]

− + i ˆ̃P · q
[
�i

v,m̂,
ˆ̃P · σ

]

−

−εi jkq j ˆ̃P · σ
[
�k

v,m̂,
ˆ̃P · σ

]

−

]
J

[
q̃2

]

+ R ˆ̃P · q qi
4P̃

(
1 − i

2m
εlnkσ kql ˆ̃P

n
)

×D
[
q̃2

]} ∣∣∣∣φ̃
(
P̃′)

∣∣∣∣

2

e−iq·r + Rest,

t i jφ,v(r) =
∫

d3 P̃ d3q

(2π)3 γ
(

1 − v · ˆ̃P
) {

P̃ ˆ̃P
i ˆ̃P

j

R

×
(

1 − i

2m
εlnkσ kql ˆ̃P

n
)
A

[
q̃2

]

− i P̃

4R m

[
i ˆ̃P · q

(
ˆ̃P
i [

�
j
v,m̂,

ˆ̃P · σ
]

− + ˆ̃P
j [

�i
v,m̂,

ˆ̃P · σ
]

−

)

−
(

ε jkl ˆ̃P
i
qk + εikl

ˆ̃P
j
qk

) ˆ̃P · σ
[
�l

v,m̂,
ˆ̃P · σ

]

−

]
J

[
q̃2

]

+ R(q̃ i q̃ j + δi j q̃2)

4P̃

(
1 − i

2m
εlnkσ kql ˆ̃P

n
)

×D
[
q̃2

]} ∣∣∣φ̃
(
P̃′)

∣∣∣
2
e−iq·r + Rest, (28)

where [A, B]− = AB−BA, P̃′ = v̂×(
P̃×v̂

)+γ
(
P̃·v̂−v P̃

)
v̂

and the unit vector m̂ is defined as m̂ ≡ ˆ̃P′. Further, the �i
v,m̂

refers to the Wigner-rotated spin operator

�i
v,m̂ = D† [

W (�v,m̂)
]
σ i D

[
W (�v,m̂)

]
, (29)

with

D
[
W (�v,m̂)

] = lim
R→0

D

[

W
(
�v,

�−1
v

(
P̃/R

)

m

)]

. (30)

Next, we change the integration variables P̃ → P̃′ to obtain

t00
φ,v(r) = 1

R

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

γ (P̃ ′ + v P̃ ′‖)

×
{(

1 − i

2m
εi jkσ kqi n̂ j

)
A

[
(n̂ · q)2 − q2

]

+ 1

2m
qi

[
�i

v,m̂, n̂ · σ
]

− J
[
(n̂ · q)2 − q2

]}
e−iq·r

+ R

2

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2 q2

2γ (P̃ ′ + v P̃ ′‖)

×
(

1 − i εlnkσ kql n̂n

2m

)
D

[
(n̂ · q)2 − q2

]
e−iq·r + Rest,

t0i
φ,v(r) = 1

R

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

γ (P̃ ′ + v P̃ ′‖)

×
{
n̂i

(
1 − i εl jkσ kql n̂ j

2m

)
A

[
(n̂ · q)2 − q2

]

− i

4m

[
i n̂i q j

[
�i

v,m̂, n̂ · σ
]

− + i n̂ · q
[
�i

v,m̂, n̂ · σ
]

−

−εi jkq j n̂ · σ
[
�i

v,m̂, n̂ · σ
]

−

]
J

[
(n̂ · q)2 − q2

]}
e−iq·r
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+ R

2

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2 n̂ · q qi

2γ (P̃ ′ + v P̃ ′‖)

×
(

1 − i εlnkσ kql n̂n

2m

)
D

[
(n̂ · q)2 − q2

]
e−iq·r + Rest,

t i jφ,v(r) = 1

R

∫
dm̂ d P̃ ′ P̃ ′2 d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2

γ
(
P̃ ′ + v P̃ ′‖

)

×
{
n̂i n̂ j

(
1 − i

2m
εlnkσ kql n̂n

)
A

[
(n̂ · q)2 − q2

]

− i

4m

[
i n̂ · q

(
n̂i

[
�

j
v,m̂, n̂ · σ

]

− + n̂ j
[
�i

v,m̂, n̂ · σ
]

−

)
−

×
(
ε jkl n̂i qk + εikl n̂ j qk

)
n̂ · σ

[
�l

v,m̂, n̂ · σ
]

−

]

×J
[
(n̂ · q)2 − q2

]}
e−iq·r

+ R

2

∫
dm̂ d P̃ ′ P̃ ′2d3q

(2π)3

∣∣φ̃
(
P̃′)∣∣2 q j qi + δi j

(
(n̂ · q)2−q2

)

2γ (P̃ ′ + v P̃ ′‖)

×
(

1− i

2m
εlnkσ kql n̂n

)
D

[
(n̂ · q)2−q2

]
e−iq·r+Rest. (31)

The expressions in Eq. (31) simplify considerably in two
extreme cases. First, in the particle’s ZAMF, with v = 0,
γ = 1 and D

[
W

(
�0, m̂

)] = identity, we have n
(
v, m̂

) =
m̂, so that we can replace the integration measure dm̂ by dn̂.

Next, in the infinite-momentum frame (IMF) with v → 1
and γ → ∞, the vector-valued function n̂ turns to v̂, so
that the integrands in Eq. (31) depend on m̂ only through the
Wigner rotation matrices. We use the spherical symmetry of
φ̃
(
P̃′) and factor out the integration over P̃ ′ in Eq. (31). To

carry out the remaining angular integration over m̂ in spher-
ical coordinates we align the z- and x-axes along the v and
q⊥ directions, respectively, and denote η = cos θ . Finally
we obtain the following expressions for spatial densities in
the IMF:

tμν
v (r) = Nφ,R

∫
d3q

(2π)3 t̄μν
(
q‖, q⊥

)
e−iq·r

+Nφ,R,2

∫
d3q

(2π)3 t̄μν
2

(
q‖, q⊥

)
e−iq·r + Rest, (32)

with

t̄μν
(
q‖, q⊥

) = 4πγ

{
v̂μv̂ν

(
1+ i

2m
εilk v̂iσ kql

)
A

[
−q2⊥

]

+ i

4m

(
v̂μ(σ⊥ × q)ν + v̂ν(σ⊥ × q)μ

+ (δμ0v̂ν + δν0v̂μ)v̂ · (σ⊥ × q)

)
J

[
−q2⊥

]}
,

t̄μν
2

(
q‖, q⊥

) = π

γ
α

(
qμ
v q

ν
v + gμνq2⊥

)

×
(

1 + i

2m
εilk v̂iσ kql

)
D

[
−q2⊥

]
, (33)

where (σ⊥ ×q)0 = 0 and α is defined in Eq. (24). Substitut-
ing Eq. (33) in Eq. (32) we obtain, analogously to Eq. (26),

expressions for the two-dimensional spatial distributions in
the IMF.

4 Interpretation of the results

We are now in the position to discuss the physical interpre-
tation of the new expressions obtained in the current work. It
is clear from Eq. (25) that in the IMF, the matrix elements of
the EMT in localized states represent two-dimensional dis-
tributions in the plane perpendicular to the velocity of the
reference frame. Analyzing Eqs. (21) and (23) we conclude
that there are two types of contributions: those depending
on the velocity of the reference frame and thus characteriz-
ing the movement of the system as a whole and the other
contributions which are related to internal properties of the
system under consideration. The contribution generated by
t̄μν corresponds to the motion of the system as a whole, while
the term generated by t̄μν

2 is not related to this motion and,
therefore, should be interpreted as related to internal charac-
teristics. Notice that essentially the same argument support-
ing separate interpretation of different contributions to the
matrix elements of EMT has been given previously in Refs.
[19,21].

Integrating Eq. (21) for the IMF over all possible direc-
tions of the frame velocity, it is easily seen that the result-
ing two terms are proportional to the corresponding terms in
Eq. (7), i.e. to the terms which involve the same form fac-
tors.5 Thus, the spatial distributions in the ZAMF, given by
Eq. (7), can be understood as an integral over all directions of
the IMF velocity. As evidenced by Eq. (25), the spatial distri-
butions are given by two dimensional images of the system
in the IMF. The same can be concluded for the spin-1/2 sys-
tem using Eqs. (13) and (32). Thus the three-dimensional
“picture” of the system emerges as a “composition” of its all
possible two-dimensional cuts.

As mentioned above for the IMF, the term corresponding
to t̄μν

2 characterizes the internal structure. Therefore also in
the ZAMF the term

t i j2 (r) = Nφ,R,2

∫
d2n̂ d3q

(2π)3

(
−qiq j + q2⊥δi j

)

×�1

[
−q2⊥

]
e−iq·r (34)

characterizes the distribution of internal forces. Notice that
while the normalization of this quantity depends on the wave
packet profile function its spatial distribution is uniquely
determined by the EMT form factor. We identify the traceless

5 Notice that while the coefficients of proportionality are different for
different terms, the behavior for R → 0 remains the same, i.e. the first
term diverges while the second term vanishes.
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and the trace parts via

t i j2 (r) =
(
r ir j

r2 − 1

3
δi j

)
s(r) + δi j p(r), (35)

where

s(r) = Nφ,R,2

∫
d2n̂d3q

(2π)3

(
r2q2 − 3(r · q)2

2 r2

)

×�1

[
−q2⊥

]
e−iq·r

= Nφ,R,2

∫
d2n̂ r

d

dr

1

r

d

dr

(
δ(r‖)�̃1 [r⊥]

)
,

p(r) = Nφ,R,2

∫
d2n̂ d3q

(2π)3

(
q2⊥ − q2

3

)
�1

[
−q2⊥

]
e−iq·r

= Nφ,R,2

∫
d2n̂

(
1

3

1

r2

d

dr
r2 d

dr
− 1

r2⊥

d

dr⊥
r2⊥

d

dr⊥

)

×
(
δ(r‖)�̃1 [r⊥]

)
. (36)

The quantities s(r) and p(r) have been interpreted in Refs.
[5,6] as the shear force and the pressure, respectively.6 It
is evident from Eq. (36) that the overall normalizations of
these quantities depend on the packet while their functional
form is uniquely determined by the form factor �1. It is not
surprising that the normalization factors of the pressure and
shear force distributions vanish in the limit of sharply local-
ized states as these functions are related to the variation of
the action with respect to the spatial metric gik(r). This vari-
ation corresponds to a change of the location of the system in
three-dimensional space, which vanishes for sharply local-
ized states. Notice that the shape of these distributions does
not depend on the localization of the system and is uniquely
determined by the corresponding form factor.

In exact analogy to the case of the spin-0 system, by inte-
grating the IMF density in Eq. (32) over all possible direc-
tions of the frame velocity, we obtain terms involving differ-
ent form factors of a spin-1/2 system, which are proportional
to the corresponding terms in Eq. (13). Thus, analogously to
Eq. (35), the term

t i j2 (s′, s, r) = 1

2
Nφ,R,2 δs′s

∫
d2n̂ d3q

(2π)3

(
qiq j − δi jq2⊥

)

× D
(
−q2⊥

)
e−iq·r (37)

can be interpreted as the distribution of the shear force and
the internal pressure.

As mentioned above, a superposition of eigenstates of the
energy-momentum vector with different eigenvalues is not an
eigenstate of this operator. Therefore, in general, the inter-
pretation of the t00(r) and t0i (r) in terms of the energy and

6 Notice that this interpretation has been questioned recently in Ref.
[34].

momentum distributions seems to be problematic. However,
in sharply localized states, where the wave packets are dom-
inated by large momenta, these quantities can be interpreted
as energy and momentum spatial distributions, respectively.7

For a spin-0 system in the ZAMF we have:

t00(r) = Nφ,R

∫
d2n̂ d3q

(2π)3 �2

[
−q2⊥

]
e−iq·r, (38)

and for the spin-1/2 system in the ZAMF we obtain the fol-
lowing expressions

t00(r) = Nφ,R

∫
d2n̂ d3q

(2π)3 A
[
−q2⊥

]
e−iq·r, (39)

t0i (r) = Nφ,R
iε jkl

2m

∫
d2n̂ d3q

(2π)3 σ k⊥ql
(
δi j + n̂i n̂ j

)

× J
[
−q2⊥

]
e−iq·r. (40)

On the other hand, in the static approximation the states are
defined by packets with sizes much larger than the Comp-
ton wavelength of the system. For this case, our expressions
of the spatial distributions in the static approximation for a
spin-0 system, Eq. (10), and for a spin-1/2 system, Eq. (15),
coincide with the corresponding Breit-frame expressions for
the t00 and t0i components, while for the t i j components
the Breit-frame expression reproduces the part describing
the internal structure only. Thus, the Breit-frame expres-
sions indeed correspond to the system in the ZAMF in a
state described by a packet with the characteristic scale much
larger than the Compton wavelength of the system. For such
a packet the integral is governed by momenta much smaller
than the mass of the system and, therefore, replacing the
corresponding energies by the first term in the expansion
E = √

m2 + p2 = m + p2/(2m) + · · · is a good approx-
imation. That is, the packet is dominated by eigenstates of
the energy with the same eigenvalue m, and therefore it is
also an eigenstate of the energy operator with the eigenvalue
m. Thus, t00(r) can be interpreted in this case as the spa-
tial distribution of the mass, which is the same as the full
energy of the system in the ZAMF in the static approxima-
tion. More details of interpretation of the Fourier transforms
of the gravitational form factors in the Breit frame in terms of
various spatial distributions can be found in Ref. [6]. Taking
into account that sharp localization of the system requires a
huge amount of energy, it is not surprising that the normal-
ization factor for the energy and the momentum distributions
Nφ,R explodes. Again, the functional form of these densi-
ties is uniquely determined by the corresponding form fac-
tors. To illustrate the comparison of the static approximation

7 Notice here that for these terms we do not offer separate interpretation
of the t̄ and t2 contributions and therefore the second contribution is
dropped as compared to the first.
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Fig. 1 Normalized energy, pressure and shear force density distributions in the static approximation (dashed lines) and in the ZAMF (solid lines).
Normalizations of densities are chosen by dividing the corresponding matrix elements of the EMT by their integrals over the three dimensional
space

and the ZAMF expressions, in Fig. 1 we plot the normalized
energy, pressure and shear force density distributions for a
hypothetical spin-0 system with gravitational form factors
�1(q2) = 1/(1 − q2/�2)3 and �2(q2) = 1/(1 − q2/�2)2,
where we take � = 1 GeV.

Finally, as the spatial densities are given in terms of
r = x − X, X should be interpreted as the position of the
center-of-gravity of the system.

5 Summary and conclusions

To summarize, in the current work we considered the one-
particle matrix elements of the EMT in localized states of
spin-0 and spin-1/2 systems. Specifying the one-particle
states by spherically symmetric wave packets, independent
of the spin polarization for the case of spin-1/2 systems, and
sharply localizing system we obtained the definition of spa-
tial distributions which are independent of the specific radial
form of the packet. This definition is applicable for an arbi-
trary relative size of the Compton wavelength and other inter-
nal characteristics of the system. We obtained the expressions

for the newly defined quantities in the ZAMF as well as in
moving reference frames. Writing the spatial distributions in
the ZAMF as integrals of the corresponding expressions in
the IMF over all possible directions, we offered a physical
interpretation of the obtained results.

Finally, using the results of Ref. [11], we also considered
the static approximation and obtained the spatial distribu-
tions, which coincide with the Fourier transforms of the form
factors in the Breit frame as originally suggested as spatial
distributions of various quantities [6].
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