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1 Introduction

Since the development of quantum mechanics it is well known that classical physics is not
adequate for describing atomic and subatomic objects. Still, our intuition and the lan-
guage are so strongly dominated by the classical picture of the world, that we often trade
rigorous mathematical expressions for less accurate but better understandable concepts.
The charge density of the nucleon serves as a good example. While hadrons certainly pos-
sess complicated electromagnetic properties, low-energy electron-hadron scattering can be
well described utilizing the one-photon-exchange approximation parameterized in terms of
electromagnetic form factors. Motivated by this approximation, three-dimensional Fourier
transforms of the form factors in the Breit frame are often interpreted as spatial densities
of the corresponding hadrons. This picture fits well to our classical intuition. It originates
from the seminal papers on electron-proton scattering by Hofstadter, Sachs and others in
the 60ties of the last century [1-3]. Similar interpretations have also been proposed for the
Fourier transforms of the gravitational form factors and for various local distributions [4—
6]. While the classical analogy implies that, e.g., electromagnetic properties of the nucleon



can, to some extent, be described by the charge and magnetization densities, in reality
there is no “true charge density” which characterizes the actual distribution of the charge
“inside” the nucleon. In this sense the spatial densities depend on the adopted definition.
It has been repeatedly pointed out that the identification of spatial density distributions
with the Fourier transforms of the corresponding form factors in the Breit frame suffers
from conceptual problems [7-13]. In ref. [11], it was shown on the example of a spin-0
system that the expression for the charge density in terms of the Breit frame distribution
follows only in the static limit of an infinitely heavy particle.

The issue of a proper definition of the spatial distributions of matrix elements of local
operators has attracted much attention in the last few years. For example, the light-front
approach allows one to define purely intrinsic spatial densities, which have probabilistic
interpretation [7-10, 14, 15], however, the corresponding densities are obtained only as two-
dimensional distributions. The relationship between these densities and the non-relativistic
three-dimensional distributions in the Breit frame in terms of the Abel transforms was
studied in refs. [16-21]. Alternatively, the phase-space approach [22-27] allows one to define
fully relativistic and unambiguous spatial densities, which in contrast to the light-front
ones are three-dimensional. However, these densities do not possess a strict probabilistic
interpretation.

A proper definition of the three-dimensional charge density by using sharply localized
states has been revisited for a spin-0 system in ref. [28]. It turned out that the same
definition was actually suggested long ago in the largely overlooked work by Fleming in
ref. [29]. In ref. [28], closely following the logic of ref. [11], the charge density possessing the
usual probabilistic interpretation has been defined in the zero average momentum frame
(ZAMF) of the system as well as in moving frames by using spherically symmetric sharply
localized wave packets.! This definition has also been generalized to spin-1/2 and spin-3/2
systems and to the gravitational densities [30-33].

The aim of the current paper is to work out the details of the novel definition for
spin-1 systems for the electromagnetic as well as the gravitational local spatial densities.
The electromagnetic densities of spin-1 systems have attracted much attention. In ref. [34]
the relativistic 2D charge densities of the deuteron and their frame dependence have been
studied in the phase-space approach with the result that less frame dependence compared
to the case of the spin-1/2 systems has been found. In ref. [20] the relation between the
3D and 2D Breit-frame expressions and the 2D infinite-momentum frame (IMF) charge
densities have been investigated using the definition of the Wigner distributions and the
Abel transformation. The densities were expressed in terms of multipole expansions which
provide a more clear physical meaning than the helicity-amplitudes of the form factors
usually used [34-37].

The spatial gravitational densities for spin-1 systems have been also extensively dis-
cussed in recent years. In particular, in ref. [38] the multipole expansion of the gravita-
tional densities for spin-1 systems was suggested and computed in the Breit frame. At the

The ZAMF is defined as a Lorentz frame with the vanishing expectation value of the three-momentum
for the state, specified by a spherically symmetric packet. For wave packets with a sharp localization around
an eigenstate of the four-momentum operator, the ZAMF coincides with the rest-frame of the system.



same time, important properties of the EMT of spin-1 systems were derived and another
parametrization of this quantity was suggested in ref. [39]. Further, the multipole expan-
sion of the densities for the p-meson in the light-cone quark model was studied in ref. [40].
Recently the two-dimensional light front densities of spin-1 systems were calculated and
discussed in ref. [41].

In this paper we express the spatial densities of spin-1 systems in terms of the multi-
pole expansion. Analogously to other cases, we consider sharply localized and spherically
symmetric wave packets and obtain local spatial distributions for the ZAMF and moving
frames, as well as traditional distributions for the Breit frame.

Our work is organized as follows. In section 2 we specify the details of the localized
states used in the definitions of local spatial densities. In section 3 we define the elec-
tromagnetic densities corresponding to the matrix elements of the electromagnetic current
in the ZAMF and discuss the static approximation. Gravitational spatial densities of the
EMT operator in the ZAMF and the static approximation are considered in section 4. In
section 5 we obtain the expressions of spatial densities in moving frames, and section 6
contains our summary.

2 Sharply localized states

We are interested in matrix elements of the electromagnetic current and the EMT operators
in spatially localized normalizable Heisenberg-picture states. Such states can be specified
in terms of wave packets

®,X,0 Je PX|p,g), (2.1)

d3p
= | ——=¢(o
with the eigenstates of the four-momentum |p,o), characterizing our spin-1 system with
momentum p and polarization o, normalized as

(p,0'|p,0) = 2E(2m)* 551,06 (p' —p). (2.2)

Here, p=(E,p), E=+/m?+p? and m is the mass of the system. The spatial translation
vectors X can be interpreted as the position of the electromagnetic or the gravitational
center of the system depending on the considered distributions, see refs. [28, 30, 32]. It
follows from the normalization of the wave packet that the profile function satisfies the
condition

/ &pl(o,p)[2=1. (2.3)

To define the spatial density distributions of a physical system we use spherically
symmetric wave packets with profile functions ¢(o,p) = ¢(p) = ¢(|p|) that are also spin-
independent in case of systems of non-zero spin. The average momentum of the system in
the state specified by such a packet is equal to zero. Therefore, we identify the correspond-
ing density distributions as characterizing the system in the ZAMF.

For our calculations below it is convenient to define dimensionless profile functions

¢(p) = R*?¢(Rp), (2.4)



where R specifies the size of the wave packet with small values of R corresponding to sharp
localization.

3 Electromagnetic densities

The matrix element of the electromagnetic current operator for a spin-1 system for mo-
mentum eigenstates can be parameterized in terms of three form-factors [42]

¥',0')3"(x,0)|p,0) = —e P PITEE (1 o' )es(p, o) [QP 1P G (g?)

G 2
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(3.1)

where ¢=p'—p and M is an arbitrary mass parameter, which is introduced to make the
form factors dimensionless. It is natural to take M equal to the physical mass m of the
system. However, to avoid the mixing of terms of different orders of 1/m, when considering
the static limit below, it is important to distinguish between m and M. Therefore we put
the parameter M equal to m only at the end of calculations, i.e. after performing the
systematic expansion in 1/m, whenever applicable. In appendix A, an explicit example is
given to further corroborate this issue. The polarization 4-vectors in eq. (3.1) are defined
in standard way [43]:

Pér , p-é
e'(p,o) = (rr:’ea+nfb(rn—1‘—7E')p>’ (3.2)

where o € {+,—,0} and the three-dimensional polarization basis vectors in the spherical
representation are given by

1
e =F5(1,40,0), &=(0.0.1) (3.3)

The matrix element of the electromagnetic current operator for the state defined in
eq. (2.1) takes the following form

jh(r) = (®,X,0'[j#(x,0)|®, X, )
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where P=(p’+p)/2, q=p'—p, E=y/m?*+P2—P-q+q?/4, E' = /m?>+P2+P-q+q?/4
and r=x—X.

3.1 Electromagnetic densities in the ZAMF

To obtain the electromagnetic spatial densities corresponding to internal structure of a
spin-1 system we consider sharply localized wave packets in eq. (3.4). Using the method of
dimensional counting of ref. [44] for the form factors G1(¢?), G2(¢?) and G3(q?) decaying



for large ¢ as 1/q*, 1/¢* and 1/q° (or faster), respectively, the R — 0 limit in eq. (3.4) can
be taken as discussed in ref. [28]. The final result for spherically symmetric wave packets
with ¢(P)=¢(|P]), takes the form

i _d’q Akl pkal qJ_ sw kg G2(—ad) ‘
il , A l —iqr
A (27T)3 {50 Ugo( ) Q om g ( )+QU 4191 2m2 € )
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where S,/, and Qf}‘%a are the spin and the quadrupole operators, respectively, defined in
appendix B, and 1 is a three-dimensional unit vector. Here and in what follows, aj =a-fifi
and a; =a—a-fifi denote the components of a vector a parallel and perpendicular to
the unit vector A, respectively, and a = ]aH|, a) =laj|. The spatial densities defined via
eq. (3.5) do not depend on the form of the radial profile function of the wave packet. The
combinations of the form factors appearing in eq. (3.5) are given by

2 2
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The densities of eq. (3.5) can be also parameterized in the following form
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where Y;(r) are multipoles defined in the appendix B and
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po(r) = (T||)go(71)
d2 r? 1 . ~ r2 1 A ~
pa(r) = _Z 200 [(3;—1) 3 02(r1)Gi(r)+ <3Té—1> ﬁTiOl(M)%(H) ;
1 d2 n TL d ~
pu(r) = —5 - [ 5(7"”)7EM(TL). (38)
Here, the differential operators O;(r,) and Oy(r,) are given by
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and we have introduced the two-dimensional Fourier transforms of the form factors
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3.2 Electromagnetic densities in the Breit frame

The traditional (“naive”) densities in terms of the Fourier transforms of the form factors
in the Breit frame emerge by first expanding the integrand in eq. (3.4) in inverse powers
of m up to leading order prior to performing the integration [11, 12] (notice that for this
expansion it is important to distinguish between m and M), and then expanding the
integrands in powers of R around R=0 and keeping terms up to the zeroth order. The
resulting expressions read:

3
jgaive(r) - / (;Zﬂ_) —1q i <GC’< )(500, + GQ2( )Ql;n;qmqk>

= Ooor PE (1) + Qe Yo ™ (B) p5 ™ (1),

. dgq 7iq-rGM(7q2)- & — (& &)\ ,naive
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where the electric monopole G¢, the electric quadrupole G, and the magnetic dipole Gy
form factors in the Breit frame are given by

o
Go(—4®) = Gi(—q )+WG3(—012),

Go(—q®) = —G3(—q?),

Cr(—q?) = Ga(—q?). (3.12)

These expressions coincide with the traditional expressions for the current densities of a
spin-1 system obtained in the Breit frame, see for example ref. [34], after expanding the
latter in inverse powers of m and keeping the leading-order terms.? The electric charge
density distribution p#V¢(r), the electric quadrupole charge distribution ,oréai"e(r), and the
magnetic density piai(r) have the following form

naive _ d3q *iqTG 2 3.13
Pc (T) - (271')36 C(_q )> ( . )
. 1 dld [ dq _;
naive — - 1 ,7wr —q? .14
Q" (r) om? drrdr / (2m)3 € Go(=a’), (3.14)
) 1 d dq
naive _ —Qrcy _q? . 3.15
par (1) 2m dr / (277)36 wu(=a’) (3.15)

As it was already discussed in refs. [11, 28], these densities describe the leading-order
approximation to the matrix element of the current operator of systems in a state with
localization much larger than the Compton wavelength 1/m yet much smaller than all
intrinsic scales encoded in form factors. Clearly, for light hadrons with the intrinsic size
being smaller than or comparable to the Compton wavelength, such an approximation
becomes invalid.

2Notice that when expanding the densities from ref. [34] in inverse powers of m, one has to divide
the expressions from that work by a factor of 2m, take into account that the mass parameter M in the
parameterization of the form factors is not the mass in which the expansion is done, and keep only the
leading-order term for each component of the current separately.
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Figure 1. Comparison of the electric monopole, electric quadrupole and the magnetic dipole
densities computed in static approximation (dashed lines) with the densities computed in sharply
localized states (solid lines).

To demonstrate the effect of different localization of states on the obtained distribu-
tions in figure 1 we compare the electric monopole, electric quadrupole and the magnetic
dipole densities of the deuteron computed in the static approximation (dashed lines) and
the densities obtained in sharply localized states. For calculations of the densities we em-
ployed expressions for the electromagnetic form factors obtained by parameterizing the
world data [45, 46]. Since our plots are intended to provide merely qualitative results into
the considered densities, we only show the central values without uncertainties. Notice that
the differences shown in the figure originate from both the dependence of the correspond-
ing spatial densities on different form factors as well as the difference in the integration
procedure.

4 Gravitational densities

Next we consider the local spatial densities corresponding to the matrix elements of the
EMT operator. As emphasized in ref. [32] these densities differ significantly from the ones
of the electromagnetic current. This is due to the fact that a superposition of eigenstates
of the electric charge operator, which makes the localized packet, is again an eigenstate of
the charge operator with the same eigenvalue, while this is not the case for the energy-
momentum operator.



The matrix elements of the EMT of a spin-1 system in one-particle eigenstates of the
energy-momentum operator can be parametrized in terms of form factors as follows [38]

(q2))

¥, 0Ty (x,0)|p,0) =P (¥, 0")e* (p, o) e 9™ [2PHPV <—gaﬁAo(q2) +

+2(Py (903 Pa+ Gualsl+ Py (948 Pa+ guaPs]) J (¢°)
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Here, we again distinguish between the mass of the system m and the mass parameter
M, which can be absorbed in the normalization of the form factors. Notice that in the
parametrization we also included the non-conserved part of the EMT (namely the form
factors f(q?), ¢o(q?) and ¢1(¢?)), so that e.g. in QCD, one can consider the quark and gluon
EMTs separately. However, for a conserved EMT these form factors vanish.

To define the spatial densities associated with the EMT we consider its matrix element
in a state specified by eq. (2.1) and take the limit of sharply localized states. The considered
matrix element of the EMT operator has the form

3 D73 ,
tg”(r)Z<@7XIT“”(X70)|<D7X>:/( TLLG_ () )X (gl | T (x,0) )
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4.1 Gravitational densities in the ZAMF

Analogously to the case of the electromagnetic current we take the limit of sharply localized
packets by applying the method of dimensional counting of ref. [44]. However, when ex-
panding in powers of R around R =0, we now keep explicitly only the leading-order terms
for each form factor separately and denote by “Rest” all other contributions. This is be-
cause different parts of the EMT require a different physical interpretation as discussed in
refs. [16, 32, 47]. For the form factors decaying for large ¢% as Ag(¢?) ~1/q*, A1(¢%) ~1/4°,



J(@®)~1/q", Do(q*) ~1/d% Di(¢*) ~1/¢% E(¢*)~1/q", f(a®)~1/%, G(q®)~1/q" and
¢1(q?) ~1/¢% or faster, the final result reads
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where the explicit form of the linear combinations of the form factors, &(—q?), J(—q?),
D;(—q?) and C;(—q?) is specified in appendix C. As mentioned above, we kept explicitly
the leading-order contributions of the terms with the D;(—q?) and C;(—q?) form factors,
while the contributions of the same order (and lower) in R stemming from the terms with
the &£(—q?) and J(—q?) form factors are not shown for the reason explained above. The
spatial densities of eq. (4.3) depend on the wave packet only via the overall normalization
constants

1 e
No = 3 [ dPPYO(P]E,
R B T(IDI[2
Noa = 5 [ dPPIO(PIPE. (44)
Notice that for R — 0, the first normalization constant in eq. (4.4) goes to infinity while

the second constant vanishes.

The energy distribution tgo(r) can be written in the form of a three-dimensional mul-

tipole expansion as follows:
t8)(r) = pro(r)3ers+Quis Y () pra(r), (4.5)

where the monopole and quadrupole energy distributions have the form

pio(r) = Now [ d*d(rp)eo(rs)

pra(r) = d)’ /d2 [( i 1) El(TJ_)—l-(?)g—l) €2(TL)1 ’ (4.6)
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2
Ers) = [ e e, @)

where the differential operators O; are defined in eq. (3.9).

The multipole expansion of the momentum-density distribution has the form

19(r) = (8o0 x Y1(£)) J(r), (4.8)
where
Ty = 228 [ st L ),
Ir) = = T ), (19)
with
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The ijth components of the EMT can be written as the sum of three parts
£ (r) =13 (r)+15 () +15 (), (4.11)
where the first term is called the flow tensor and has the form
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After integrating over the momentum q and the unit vector fi in eq. (4.12) we obtain the
following expression
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where
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The second part of t;j is the stress tensor, which describes the internal structure of the
system and has the form:

.. 3
t;](r):NqS,RQ/dQA (dﬂ-ﬂ_)l {(dqu_ QZQJ) [50’02)0( ) Q qu Dl( )
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It can be reduced to

(1) = Nons | dn{w[wl( Y3 (@)da(r) |+ QB Y (1) (893 () + 3 (2)da(r)
+QU,ds(r)+ Qi V3" (8)+ Q2 V" (7)) do(r)+ QU Yo' (2) (6 e1 (r)+ Y5 (B)éa(r) )

QU s(r)+ (Qif, Y )+ Q2% V3 <f>)é4<r>}, (4.15)

where the functions (fZ and é; are given in appendix D. Different parametrizations of the
multipole expansion of the EMT distributions have been applied in refs. [38, 40, 48, 49].
Using eq. (4.15) and the parametrization from ref. [48] we obtain the following pressure

- 11 -



and shear force distributions:?
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The third part of the ¢jth components of the EMT is not conserved and it also con-
tributes to the multipole pressure and shear force distributions

ij L3 .
tsj(r):&de»,Rz/dQ (2733 {5a’om200( ) +al QYA nlc (—at)
(4.17)
+Ca(—a) A'él/aqﬁqi}eiq’r-
It can be rewritten as
£ (r) = 6 (001001 (1) + QN Y (2)ga(r) ), (4.18)
where
01(r) = Ny ro / d2hm?Co(r)o(r)), (4.19)
Nor2 [ 2. i 3r7 A 5
gg(T):—T/d n 7“72_1 OQ(TL)Cl(rL)(S(TH)—i- TT—l OQ(TJ_)CQ(I'J_)(;(T’”) s
(4.20)
and
] d2 —iq T
cz-(m):/(;)ge atric(—q?). (4.21)

In all above expressions we have dropped the corresponding subleading contributions con-
tained in“Rest”.

It is not surprising that the normalization factors of the energy and momentum distri-
butions diverge in the limit of sharply localized states. This is because for such states, the

3Notice that this interpretation in terms of the pressure and shear forces has been criticized recently in
ref. [50].
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weight of the energy-momentum eigenstates with larger eigenvalues in the wave packet in-
creases with the reduction of the localization. On the other hand, the overall normalization
of the internal pressure and shear force distributions vanish as these functions are related
to the variation of the action with respect to the spatial metric g;x(r). This variation
corresponds to a change of the location of the system in three-dimensional space, which
vanishes for sharply localized states. Notice that for spherically symmetric packets the
shape of all distributions does not depend on the localization of the system and is uniquely
determined by the corresponding form factors.

4.2 Gravitational densities in the Breit frame

The “naive” densities in terms of the Fourier transforms of the form factors in Breit frame
emerge in static approximation by expanding the integrand in eq. (4.2) in powers of 1/m
up to leading-order terms before performing integration. The resulting expressions have
the form:

(27)3 1202 AM?

X (P_(21> ¢ (P+(21> e~tar,

e B (- ) P A
+J(—2q2) (iga,g Xq)l} % (P—;l) o* (P+‘21> eiar,

ty = m/ dgpdg (P— 2> 0" <P+g) e J(_QqQ)(P (800 xa)’

+P] (ZSO' qu> )JFPZP] (50’0 (AO(q ) 2 Al( )) +Q§%quqlw>

3,73 2 2
Tk = O R SNE) R o

12M2 AM?
Do(—q?) , q° E(—q*)\ = Di(—q?)
2¢ ) 0 I WA NPV Eee L W)
+(q Wy %%) {60(7( 4 +48M2D1( q’) 3 Qo0 q 1602
- M2 M2 2 . i
051501 (f(—q2)6+00(—q2)2+61(—q2);14> —f(—a®)M?*QY,,
_ ol 2w k| E(—=q?) 2 Aij
—a1(=a") g0 Qsr0d"q _T( 0 Qb sd"d +d"(Q5,d’ +Q,4) —a QJ/U)-

(4.22)
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To consider sharply localized wave packets we expand around R =0 by using the method
of dimensional counting and obtain

d’q &7 (—d?) ia
t?l[a).lve = m/ (27T) [50 0’8 F(_q2)+2T ];go'qkql (& ar +ReSt7

d3 & —iq-r
t?l;lve = /(QW(igz(Sa’axq)jBF(_qZ)@ q +Rest,

.. 47d; . SBF _q2 R
t e = 2 /dPP4\¢ !/ Zq”(égfgng(—q%rQn(lg) M d"d

3R*m

eIk

( Z]QO’ o‘q q +q (Q aq +Qo' o-q) q2QZU))DQBF(_q2)

D (—q?)

—zqr[ (a0~ 05 01 DET(—a?) + Qtaa"d (a6 —aiay )

+08i;05om*CEF (—q*) = QY m* F(—q®) +0;;Q% ,¢"d'CPF (—q?)| +Rest,  (4.23)

where the explicit form of the linear combinations of the form factors, £PF(—q?),
TP (—q?%), DBF(—q}) and CPF(—q?) is specified in appendix C, and we have substi-
tuted M =m.

The t%. % and the second term of £ _in eq. (4.23) coincide with the correspond-

naive’ “naive naive
ing expressions of spatial densities obtained as the Fourier transforms of the gravitational
form factors in the Breit frame in ref. [38], provided that one takes into account the normal-
ization factor 2m and performs the 1/m expansion up to required orders in the expressions

of the last reference.

5 Spatial densities in moving frames

In this section we consider a spin-1 system in the same physical state of eq. (2.1) from
the point of view of a moving frame. In a moving frame, our system is described by the
following wave packet [51]

1, X,0)y = / \/% , /’y(l—%) O[AT D] XY Do [W Ay, Afnlp)} p,o1),

(5.1)
where v = (1—v?)"/2 E=/m2+p? and A;'p=Vx (px¥)+v(p-¥—vE)¥ with Ay de-
noting the Lorentz boost from the ZAMF to the moving frame, characterized by the vector
of velocity v, and ¥ =v/|v|. The D,,,[W] matrices in eq. (5.1) refer to the spin-1 repre-
sentation of Wigner rotations [52].

Th calculation of the local spatial densities for spin-1 systems in moving frames pro-
ceeds in close analogy to refs. [28, 30, 32]. In the limit of sharply localized packets the
leading contribution to the matrix element of the electromagnetic current in the above
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specified moving frame has the form:

+ﬁ@§2011§k1§z (qz— (f’-q)2> G1 ((1% q)z—q2>
+;f’-(égiqu)/\4((f’-q)z—q2> }, (5.2)

where PH = (1, $), p =P/|P|, P'=¥x (Px¥)+7(P-v—vP)¥ and the unit vector 1 is
al

defined as m=P . The combinations of form factors in eq. (5.2) are defined as in the

ZAMF, i.e. by eq. (3.6). We change the integration variable P — P’ and define a vector-

valued function

n(v,m) =9 x (mx9¥)+y(m-v+0)9. (5.3)

Given that P =% x (P'x¥)+~(P'-v+vP')¥, it follows that fi=P. The Jacobian of the
change of variables P — P’ cancels the first factor in the integrands and after some simpli-
fications we obtain

d3q

1 . ) N
) = — [ di —iqr i )t La (8
]v(r) - 4W/dm(27T)36 Da”o’i [W (AV7 )} DUIO’[W (Av,m)]n { n (Salzn Xq)

m

=8

M (=a2)+050,90 (—a?) +2‘332 o, Ak algy (—al) +QN ("2% G (—qi)},

(5.4)
where ## = (1,h) and q =q?®— (A -q)>.
In the IMF with v — 1 and v — 0o, i1 turns to ¥ and using explicit form of the Wigner

rotation matrices, and the integration over m can be carried out explicitly. The resulting
expression has the form:

Jh(r) = / (;i(i?) e AT pr {50/0 Yo (—(ﬁ) + L’mv. (Sa’o X OI> M (—(ﬁ)

1 ko1 91 k) AR 9
+W (]LCJL—F?’U’U QU/UQQ(—qL) . (5.5)
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Analogously to the electromagnetic current, the matrix element of the EMT in a
moving frame for a sharply localized state can be written as

. dP/P/2d3 o ) ~ 7(]5’4—1115’)
W~ [ din a9 (P) €7 DL g W (v )] Do [W (A )] ——-
. &
X{éggglﬁo( 1) +Qb 5, 1 qué’l( al)+= - qL)Qﬁlaquqi
C 2
+i1- (é q)M} +Rest,
m
AdP’P’Qd?’ _ X _ y(P'+uP)
= [ 3 (P)] e DL, (W (Agoti)) Doy (W (Ay.i)] =

NENACS & « .
Xn{((w(sa’mXQ)'n‘i‘(Sagolgo( )M, 4L (<)

m 1 7101

&
+2(J\42)Q§l01 qu} +Rest,
i dP/P/2d3q g ~ . ’}/(P,-f—’UP)
= / dri 6 (P') |79l W (Av,10)] Do [W (A, 10)] ——=—1
Akl ka1l E(— q 1)
{50’0150(—qi)+Q];€101nknlnvégl(_qi)_{- = nglal(JquL
iTJ(—al) a R
+T(SU’101 Xq)'l’l
+ / dmm\&(ﬁ) eITDY W (A 100)] Doy [V (A 102)] —— e
(27T)3 o) v o010 v 2’}/(?/—}-1}31)
Dy(—q
X{ (&‘jQi-Qin) [60 01D0( 9 )+2€rn2j_)Q§l Ulqlqll

2 .
A akal 4 (PN
+ (Qﬁzalnknlmé ~2--0:(8,,, xq>> Di(~q})

~ A 1 A .
+51'] [50/ UlmQCo(—Qi)—FCl(—qi) (qul;lialnknl_2 %(8010’1 Xq)-l’l)

+Co(—al) QN atdL

}+Rest, (5.6)

where in exact analogy to the ZAMF we show explicitly only the leading-order contributions
for each form factor, and the explicit form of the linear combinations of the form factors,
Ei(—d?), T(—d?), Di(—q?) and Ci(—q?) is specified in appendix C .

In the IMF with fi “~} ¥ and v — 00, the integration over m can be carried out explicitly
using the explicit form of the Wigner rotation matrices. The integration over m is done
in full analogy to the electromagnetic case. The resulting expressions after dropping the
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“Rest” contributions have the form:

0 = amyNy [ (jigge—iq~r{ag,ggo<—qi>+ (gﬁqi+(§@k@l> &
+9- (8010 xq)%{g;lqi)}

tgf _ 47T7N¢,R/ (;i@)lgeiq-rg{(gg,ago(_qi)ﬁ-(qﬁ_qﬂ_—i—q;@k@l> Aiégééé;gi)
+9-(80r0 xq)%{g;ﬁ)}’

1§ = dmyNy / ég;eiqr@i@j{ég/ago(—qi%r (fﬁcziJrq;@k@l) Qil’v(w
+9 (800 xq)W}

A5 m2Ca(—a2 ) iR O o2 [ ¢ (—q2 _C2(_‘ﬁ)
o'om Co(—q1)+0"0'Qgpal | C1(—ql) 7 : (5.7)

The expressions in eq. (5.7) have the same interpretation as their analogues in the ZAMF.

Comparing egs. (5.5) and (3.5), it is easily seen that by integrating the IMF expres-
sions over all directions of ¥, one reconstructs the three-dimensional ZAMEF electric charge
density (the symmetric part of j°(r)) exactly and the three-dimensional magnetic charge
density with the additional factor of 1/2, the same holds true for systems with spin-0
and spin-1/2 studied in refs. [28, 30]. The more complicated quadrupole charge density
in the ZAMF can not be reproduced from the moving IMF expressions. This is because
the Lorentz boosts to moving frames amount not only to Lorentz contractions but also
involve Wigner rotations, which modify the non-symmetric quadrupole structure. Com-
paring egs. (5.7) and (4.3) one sees again that the densities with spin structures ~ d,, and
~ S, in the ZAMF can be restored by averaging the IMF expressions up the normalization
factor, while the quadrupole structure ~ Q];l,(, can not be obtained this way.

6 Summary

In this work we considered matrix elements of the electromagnetic current and the EMT
operators for spin-1 systems calculated for sharply localized one-particle states. We ob-
tained the resulting expressions of the local spatial distributions in terms of the form factors
in the ZAMF as well as in moving frames. By considering the static approximation we also
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obtained the traditional expressions in terms of the form factors in the Breit frame. Next
we discussed the physical interpretation of obtained spatial densities. Having calculated
the spatial densities in the IMF, we found that the expressions for the ZAMF densities
coincide with the ones obtained by integrating the corresponding IMF expressions over all
possible directions, as was also found for spin-0 and spin-1/2 systems. The only exceptions
are the quadrupole densities for spin-1 systems, where the mismatch can be traced back to
the fact that Wigner rotations modify the quadrupole structure.

As the next step we plan to apply the obtained results to the electromagnetic and
gravitational densities of the deuteron within the framework of the low-energy effective
field theory of QCD.
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A Distinguishing between m and M

Below we demonstrate the importance of distinguishing between m and M when taking
the static limit. To obtain the charge density in the static approximation we expand the
integrand in eq. (3.4) in powers of 1/m and keep only the leading order term. Then we
expand the integrand in powers of R around R =0 and keep terms up to the zeroth order.
Integration over P now results in

2

d3 ) . k m
Hael®) = [ {a (G1<—q2>+glwag<—q2>) —~Gs(-a?)Q" T } (A1)

By substituting M =m in eq. (A.1) we obtain the expression displayed in eq. (3.11). Notice
that there would be no contribution of the form factor G in eq. (A.1) if we would not
distinguish between m and M and keep only the leading order term of the 1/m expansion.
One might think that the expression of the charge density given in eq. (3.11) could be also
obtained by taking M =m from the very beginning and keeping the terms up to 1/m? in
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the 1/m expansion of the integrand. Doing so we obtain

2

PYPPAd3q - (=N < (151 i
uielr) = [z 6 (1P1) & (1P1) {6 (G1<—q2>+;wcg<—q2>>

e ¢ Oy
( )an‘ 2m2 2R2(

6P2q}G1(~a?) +a*R*G1(~a?) —a*R*Ga(—a?))

k1
Qs (G2<—q2>—G1<—q2>)}. (a.2)

Eq. (A.2) apparently does not reproduce the expression of eq. (3.11). Moreover, it contains
terms which diverge in R — 0 limit. This is caused by the non-commutativity of the 1/m
expansion with the expansion around R =0.

B Spin operators

The spin (S) and quadrupole (@) operators defined in terms of the polarization vectors of
eq. (3.3) (for more details see ref. [43]):

(0/187]0) = (87) 010 = —ic el el

o' o’
QY :<Si§j+§j§i5(s+1)5ij) 168, (esiel +etdes) (B-1)
772 3 oo 3 07 2\° '
Using these definitions the following useful relations can be obtained:
€ (&5-q)—€5(€5-q) = i(Sore X q), (B.2)
2
” A~ q A
(ea Q)(Ef*ﬂ q) = ?500’_ngl’aqkqu (B'?’)
A AV(AX A 1 .
(é,-1) (& -0) = 30007 = —Q nkal, (B.4)
. A R ~ 2
(8 ) (€5-)+(2-) (€3-0) = - (1-)d0r~ 2057 (B85
9
e el +elen = 3(5”500/—26200, (B.6)
(€5 x&,) = iSurq. (B.7)
Multipole tensor of the nth rank is defined for r #0 as [49]:
o (—1)" - 1
Yirtzrtn(f) = L _pntlghn | giel B.8
n ® =G r (B-8)
From eq. (B.8) follows in particular:
) R T A g
V@)=L Y@ =", vim =0 (B.9)

~19 —



C Linear combinations of the gravitational form factors

Linear combinations of gravitational form factors in the ZAMF:

2

a
Eo(—a?l) = Ao(—a?)- 12;2A1(—q3)+

2 2
! q
+ 1903 <4J(—qi)—2E(—qi)—2Ao(—qi)+A1(—qi)mL2)
A (— 2
&(—q]) = 1(40@,
1 q? M2
&(-al) =5 (Ao(—qi)JrE(—qi)—2J(—qL)—A1(—qi)8nj2> L
2
T(=q?) = J(=at) = Ao(~a})+ Ai(—a? ) k.
Do(—al) , di q? q’
Do(—qi) 5 +24m2 1(—al) 19m2 ( qL)+—8m2D1( q
Dl(_q ) = 1 Do(—q2)—{—Dl(_q2)i
* 4 + L8m2 |’
1
Dy(—qi) = —ng(—(ﬁ),

2 2 q2 2 q2 2 q2 2
Co(—q1) = c(—q1)+ ; a(—al)——% (Co(—(hﬂ‘ni Cl(—(h)> ;
1(_ a? _
Ci(-al) =5 (CO(_Qi)"‘niQCI(_Qi))a

Co(—q?) = ———+

Linear combinations of gravitational form factors in the Breit frame:

q2
EXF(—a?) = Ao(—a?)———= A1 (—q?),

12m?2
A+ (— 2
&7 (—a%) = 1(4q ),
J(— 2
TBF(—q?) = (2(1 )’
BF 2 Do(-a®) @ 2y E(=q®)
Do" (—a) = — g D) - — 5
E(— 2
D2BF(_q2) _ (201 )’
Dq(— 2
DgBF( 2) _ 1(16q )’
€7 (~a?) = F(~a) 5 +n(~a?) s+ 50 pen(—a)
o (=94 q120q224m21q,
(o2
CBF(—q?) = _01(8(1 )

—90 —
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D The coefficients ci, and é;

The differential operators (fl and é&;:

d(r) = (102<r>—202<m) Bo(r)6(r)).

3 3
o (r) = —;Om)—;éz<r”>+;rﬁrf%gzﬂ
2 2
—i—% <rﬁrich£lm+rﬁrl ch‘?fihﬁ)] 750(71)6(7“”) ,
) N
dy(r) = |5 (32 )Oxm)mgm,r”)] Os(r) 2 5.
du(r) = O4m,r||)02(mﬁl;;”5(7~”),
ds(r) = 0A5(M,7“||)02(U)%5(T||),
do(r) = OAG(H,T||)02(71)151”(;L)5(7’||),
é1(r) = [; (3:%-1) 02(71)4-@3(7“”,71)] OQ(TL)Z%S;L)(S(TH),
éa(r) = OA4(7"||77’J_)OA2(7"J_)2§3722L)5(7”||),
és(r) = OA5(7“||>U)OAQ(H){)37(,Z;L)5(7”||),
éq(r) = 06(7’||77’L)02(M)ﬁ2n(;U5(7“||),
where
Os (i) = x4 6:12%12 2y40 ( )_5y26;43r2 <2ya bay?;a:b +y Og(g)),
T R
Onta) = 25 Ontory 4 2Pyt O B 0,
and

B quJ— —iqul 2
Di(m):/(zﬂ)f Di(—q2).

The operators O; and Oy are defined in eq. (3.9).
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