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Abstract We study the dependence of the primordial
nuclear abundances as a function of the electromagnetic
fine-structure constant α, keeping all other fundamental con-
stants fixed. We update the leading nuclear reaction rates, in
particular the electromagnetic contribution to the neutron-
proton mass difference pertinent to β-decays, and go beyond
certain approximations made in the literature. In particu-
lar, we include the temperature-dependence of the leading
nuclear reactions rates and assess the systematic uncertain-
ties by using four different publicly available codes for Big
Bang nucleosynthesis. Disregarding the unsolved so-called
lithium-problem, we find that the current values for the obser-
vationally based 2H and 4He abundances restrict the frac-
tional change in the fine-structure constant to less than 2% ,
which is a tighter bound than found in earlier works on the
subject.

1 Introduction

Since the early work of Dirac [1], variations of the fundamen-
tal constants of physics have been considered in a variety of
scenarios, see [2] for a recent status report on possible spatial
and temporal variations of the electromagnetic fine-structure
constant α, the gravitational constant G and the ratio of the
proton and electron masses, μp. See also the recent review
[3].

As is well known, primordial or Big Bang nucleosynthesis
(BBN) is a fine laboratory to test our understanding of the fun-
damental physics describing the generation of the light ele-

a e-mail: meissner@hiskp.uni-bonn.de
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ments. In particular, it sets bounds on the possible variation
of the parameters of the Standard Model of particle physics
as well as the Standard Model of cosmology (�CDM). For
recent reviews, see e.g. Refs. [4–6]. Here, we are interested
in bounds on the electromagnetic fine-structure constant α

derived from the element abundances in primordial nucle-
osynthesis. For earlier work on this topic, see e.g. [7–10] and
references therein. This work is part of a larger program that
tries to map out the habitable universes in the sense that the
pertinent nuclei needed to generate life as we know it are
produced in the Big Bang and in stars in a sufficient amount,
see e.g. [11,12] for reviews.

Here, we focus largely on the nuclear and particle physics
underlying the element generation in primordial nucleosyn-
thesis. In particular, we reassess the dependence of the
nuclear reactions rates on the fine-structure constant, over-
coming on one side certain approximations made in the litera-
ture and on the other side providing new and improved param-
eterizations for the most important reactions in the reac-
tion network, using modern determinations of the ingredients
whenever possible, such as the Effective Field Theory (EFT)
description of the leading nuclear reaction n + p → d + γ 1

and the calculation of the nuclear Coulomb energies based
on Nuclear Lattice Effective Field Theory. For β-decays, we
also use up-to-date information on the neutron-proton mass
difference based on dispersion relations (Cottingham sum
rule). Most importantly, as already done in Ref. [19], we uti-
lize four different publicly available codes for BBN [20–26]

1 There are some ab initio calculations of other reactions in the BBN
network such as [13–18], mainly concerned with radiative capture reac-
tions. The calculations in the framework of so-called “halo-EFT” poten-
tially offer the possibility to study the α dependence of the cross sections
analytically, but the implementation is numerically rather involved and
we thus refrained from doing so in the present context.
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to address the systematic uncertainties related to the mod-
elling of the BBN network. In particular these codes differ
in the number of nuclei and reactions taken into account as
well as in the specific parameterization of the nuclear rates
entering the coupled rate equations for the BBN network.
Moreover, in determining the sensitivity of primordial abun-
dances on nuclear parameters, we account for the temperature
dependence of the variation of some rates on the value of the
fine-structure constant α. To our knowledge, such a compara-
tive study where this temperature dependence was explicitly
considered for a variation of α has not been published before.
We further note that we keep all other constants, like e.g. the
light quark masses mu,md fixed at their physical values.

The paper is organized as follows: In Sect. 2 we collect the
basic formulas needed for discussing the fine-structure con-
stant dependence in BBN. In this section we discuss the vari-
ous dependences of the reaction rates on the value of the elec-
tromagnetic fine-structure constant α. The actual calculation
of the reaction rates is treated in Sect. 3. The BBN response
matrix is introduced in Sect. 4. The numerical results of this
study are presented in Sect. 5 and discussed in Sect. 6. We also
present a detailed comparison to results obtained in earlier
works. In Appendix A we give the novel parameterizations
of 18 leading nuclear reactions in the BBN network.

2 Basic formalism

As discussed in Ref. [19], the basic quantities to be deter-
mined in BBN are the nuclear abundances Yni , where ni
denotes some nuclide. The evolution of the nuclear abun-
dance Yn1 is then generically given by

Ẏn1 =
∑

n2, . . . , n p

m1, . . . ,mq

Nn1

⎛

⎝�m1,...,mq→n1,...n p

Y
Nm1
m1 · · ·Y Nmq

mq

Nm1 ! · · · Nmq !

−�n1,...,n p→m1,...mq

Y
Nn1
n1 · · · Y Nnp

n p

Nn1 ! · · · Nnp !

⎞

⎠ , (1)

where the dot denotes the time derivative in a comoving
frame, and Nni is the stochiometric coefficient of species ni
in the reaction. Further, for a two-particle reaction a + b →
c + d , �ab→cd = nBγab→cd is the reaction rate with nB the
baryon volume density. This can readily be generalised to
reactions involving more (or less) particles, see [26]. These
equations are coupled via the corresponding energy densi-
ties to the standard Friedmann equation describing the cos-
mological expansion in the early universe, for details and
basic assumptions, see also [22,25,26]. In what follows, we
discuss the various types of reactions in the BBN network

and their dependence on the electromagnetic fine-structure
constant.

2.1 Reaction rates

The average reaction rate γab→cd = NA 〈σab→cd v〉 for a
two-particle reaction a + b → c + d is obtained by folding
the cross section σab→cd(E) with the Maxwell-Boltzmann
velocity distribution in thermal equilibrium

γab→cd(T ) = NA

√
8

πμab(kT )3

∫ ∞

0
dE E σab→cd(E)

×e− E
kT , (2)

conventionally multiplied by Avogadro’s number NA , where
μi j is the reduced mass of the nuclide pair i j , μi j =
mim j/(mi + m j ), E is the kinetic energy in the center-of-
mass system (CMS), T is the temperature and k the Boltz-
mann constant. Defining y = E/(kT ) this can be written in
the form

γab→cd(T ) = NA

√
8 kT

π μab

∫ ∞

0
dy σab→cd(kT y) y e−y .

(3)

This is suited for numerical computation e.g. with a Gauß-
Laguerre integrator. In fact, in order to deal with cases with
singular cross sections for E → 0 it is even better to split the
integral and write
∫ ∞

0
dy σ(kT y) y e−y

= 2
∫ √

y

0
dx σ(kT x2) x3 e−x2 +

∫ ∞

y
dy σ(kT y) y e−y

(4)

and evaluate the first integral with a Gauß-Legendre and the
second with a Gauß-Laguerre integrator for some suitable
value of y. Note that in the first term the substitution x = √

y
was performed.

With the detailed balance relation

σcd→ab(E
′) = ga gb

gc gd

p2

p′2 σab→cd(E) , (5)

where

E = p2

2 μab
, E ′ = p′2

2 μcd
, (6)

are the CMS kinetic energies in the entrance and exit chan-
nels, respectively, and gi is the spin multiplicity of particle
i , energy conservation implies

ma + mb + E = mc + md + E ′ or

E ′ = E+Q , with Q=ma+mb−mc−md , (7)
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in terms of the Q-value for the forward reaction. In thermal
equilibrium the inverse reaction rate is then related to the
forward rate as

γcd→ab(T ) =
(

μab

μcd

) 3
2 ga gb
gc gd

e− Q
kT γab→cd(T ) . (8)

This brings us to the central question of this paper, namely
how the value of the electromagnetic fine-structure constant

α = e2

h̄c
(9)

influences the reaction rates? This clearly depends on the
reaction type. With the exception of the leading n + p →
d +γ nuclear reaction, to be discussed in some detail below,
no ab initio expressions for most of the reaction cross sec-
tions is available and accordingly one has to rely on model
assumptions concerning the fine-structure constant depen-
dence of the cross sections and thus of the reaction rates (see
also the discussion in Sect. 6 on this issue). These shall be
discussed in the following subsections separately for strong
reactions of the type

a + b → c + d , (10)

radiative capture reactions of the type

a + b → c + γ , (11)

and β-decays,

a → c + e∓+ (−)
ν . (12)

Note that in the considerations that follow we concentrate
on modeling the impact of a variation of α on the penetra-
bility, related to the Coulomb interaction between charged
particles, as well as on the changes in reaction Q-values due
to changes in binding energies of the nuclides involved in the
reaction. Some of the reactions show appreciable resonance
contributions, see e.g. those listed in Table 11 of the appendix,
and the corresponding resonance parameters (viz. excitation
energy (position) and width) in principle also depend on the
value of α. The study of these effects would, as already men-
tioned above, require a detailed theoretical description of
the nuclear structure and reaction dynamics of the nuclides
involved, see e.g. Refs. [48–51] for results in the framework
of NLEFT. Such a treatment we considered to be beyond the
scope of the present study and accordingly we shall assume
that resonance parameters are α-independent.

We shall start with a brief discussion of the Coulomb pene-
tration factor for charged particles, relevant for what follows.

2.1.1 Coulomb-penetration factor

The Coulomb-penetration factor for an 
-wave is given by,
see e.g. [27,28] ,

v
(η, ρ) = 1

F2

 (η, ρ) + G2


(η, ρ)
, (13)

where F
 ,G
 are the regular and irregular Coulomb func-
tions, respectively, that are the linearly independent solutions
of the radial Schrödinger equation

u′′

(ρ) +

(
1 − 2 η

ρ
− 
(
 + 1)

ρ2

)
u
(ρ) = 0 , (14)

where we defined

k =
√

2 μabc2 E

h̄2c2
,

ρ = k r ,

η = Za Zb μabc2 α

h̄c k
, (15)

for the Coulomb-scattering of charges Zae , Zbewith masses
ma ,mb and the reduced mass

μab = ma mb

ma + mb
(16)

at the energy E of the relative motion, subject to the
Coulomb-potential

V (r) = Za Zb e2

r
= Za Zb α h̄c

r
. (17)

Approximate parameterizations of v
(η, ρ) have been exten-
sively discussed in the literature, see e.g. [29] in particular
for the dependence on the nuclear distance r where this is
to be evaluated for a specific reaction. As argued in [27,28],
this distance is not well defined and the cross section should
not depend on such an unobservable parameter. Accordingly,
if one takes, as in [27,28], lim ρ → 0 the penetration factor
for an 
-wave then reads

v
(η) ≈ ε2

 ,

ε2

 =

(
1 + η2


2

)
ε2

−1 ,

ε2
0 = 2π η

e2π η − 1
. (18)

Therefore, we shall use as Coulomb penetration factor the
expression for s-waves:

P(x) = x

ex − 1
, lim

x→0
P(x) = 1 . (19)

Note that the corrections due to a variation of α in ε2

 for


 > 0 according to Eq. (18) are of higher order in α and thus
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small anyway . Here we defined

x = 2π
Za Zb μabc2 α

h̄c k
=

√
EG(α)

E
(20)

in terms of the so-called Gamow energy for a two-particle
reaction channel i j

EG(α) = 2 π2 Z2
i Z2

j μi j c
2 α2 (21)

and the CMS energy E or E + Q for the entrance and exit
channel, respectively.

2.2 Strong reactions a + b → c + d

For a strong reaction of this type the Q-value is given by

Q = ma + mb − mc − md , (22)

where the nuclear mass of each nuclide i with mass number
Ai and charge number Zi reads

mi = Zi m p + (Ai − Zi )mn − Bi , (23)

with Bi the nuclear binding energy. Thus, because of baryon
number and charge conservation (Aa+Ab = Ac+Ad , Za+
Zb = Zc + Zd ) :

Q = Bc + Bd − Ba − Bb . (24)

Now the binding energy can be written as

Bi = BN
i − VC

i (α) , (25)

where BN
i denotes the strong contribution to the binding

energy and

VC
i (α) ∝ α Zi (Zi − 1) (26)

is the expectation value of the Coulomb contribution propor-
tional to the value of the electromagnetic fine-structure con-
stant. Considering its variation in the form α = α0 (1 + δα) ,
where

α0 = 7.2973525693(11) 10−3 = 1/137.035999084(2)

(27)

is the current experimental value from Ref. [30], the Q-value
varies as

Q(α) = Q(α0) + (VC
a + VC

b − VC
c − VC

d ) δα . (28)

One therefore needs an estimate of the Coulomb contribution
to the nuclear masses, this we shall discuss in Sect. 2.7.

We shall assume that the cross section for a strong reaction
a + b → c + d depends on α as

σab→cd

(
E; Q(α), Ei

G(α), Ei
G(α)

)

= √
E + Q(α) Pi (xi (E, α)) Pf (x f (E, α)) f (E) ,

(29)

where f is some function independent of α and Pi (xi ),
Pf (x f ) are the penetration factors given by Eq. (19) reflect-
ing the Coulomb repulsion in the entrance and in the exit
channel, respectively. The first factor in Eq. (29) accounts
for the exit channel momentum dependence of the cross sec-
tion of the strong reaction a + b → c + d. Here,

xi (E, α) =
√

Ei
G(α)

E
, (30)

x f (E, α) =
√

E f
G(α)

E + Q(α)
,

(31)

are the arguments of the penetration factors, with

Ei
G(α) = 2 π2 Z2

a Z
2
b μabc

2 α2 , (32)

E f
G(α) = 2 π2 Z2

c Z
2
d μcdc

2 α2 , (33)

the Gamow-energies in the entrance and the exit channel,
respectively, and μi j = mi m j/(mi +m j ) the corresponding
reduced masses. Although in order to calculate the linear
response of the abundances one could proceed by calculating
first order partial derivatives

∂σ

∂α
= ∂σ

∂Q

∂Q

∂α
+

∑

k=i, f

∂σ

∂Pk

∂ Pk
∂xk

∂ xk
∂α

, (34)

etc. , we prefer not to presume linearity and rather calculate a
variation of the cross section with a variation α = α0 (1+δα)

through the expression

σab→cd

(
E; Q(α), E f

G(α), Ei
G(α)

)

= σab→cd

(
E; Q(α0), E

i
G(α0), E

f
G(α0)

)

× P(xi (E, α))

P(xi (E, α0))

√
E + Q(α)

E + Q(α0)

P(x f (E, α))

P(x f (E, α0))
, (35)

where specifically the first factor reads

P(xi (E, α))

P(xi (E, α0))
=

√
Ei
G (α)

E

e

√
EiG (α)

E − 1

e

√
EiG (αo)

E − 1√
Ei
G (α0)

E

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, for n-induced reactions

(1 + δα) e

√
EiG (αo)

E −1

e

√
EiG (α)

E −1

, else,
(36)

and the remaining factors are given by

√
E + Q(α)

E + Q(α0)

P(x f (E, α))

P(x f (E, α0))
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
E+Q(α)
E+Q(α0)

, if c = n and/or d = n

√
E f
G (α)

E f
G (α0)

e

√
E
f
G (α0)

E+Q(α0) −1

e

√
E
f
G (α)

E+Q(α) −1

, else.
(37)

We note that these factors are energy-dependent and therefore
the change in the rate

γ (T ; Q(α), Ei
G(α), E f

G(α))

=
∫ ∞

0
dE E σ(E; Q(α), Ei

G(α), E f
G(α)) e− E

kT , (38)

i.e. the factor

γ (T ; Q(α), Ei
G(α), E f

G(α))

γ (T ; Q(α0), Ei
G(α0), E

f
G(α0))

(39)

depends on the temperature T and as it stands requires a
numerical evaluation of Eq. (38) .

2.3 Radiative capture reactions a + b → c + γ

Similar considerations hold for radiative capture reactions.
The cross section of a reaction a + b → c + γ is assumed
to depend on α as

σab→cγ (E; Q(α), Ei
G(α))

= α (E + Q(α))3 Pi (xi (E, α)) f (E) (40)

with f some α-independent function and Pi (xi ) the penetra-
tion factor, see Eqs. (19,30,32), for the entrance channel. The
first factor accounts for the fact that in the amplitude for a
radiative capture reaction the photon coupling is proportional
to e, leading to a factor proportional to α = e2/(h̄c) in the
cross section. The second factor reflects the final momentum
dependence assuming dipole dominance of the radiation 2 .
We thus calculate a variation of the cross section for radiative
capture with a variation α = α0 (1 + δα) via

σab→cγ

(
E; Q(α), Ei

G(α)
)

= σab→cγ

(
E; Q(α0), E

i
G(α0)

)

× P(xi (E, α))

P(xi (E, α0))
(1 + δα)

(
E + Q(α)

E + Q(α0)

)3

(41)

where the first factor is the same as in Eq. (36) . Again note
that both factors are energy-dependent and therefore a change
in the rate, see Eq. (38), is temperature-dependent.

2 Note, however, that this is not always the case, exceptions with appre-
ciable E2 (electric quadrupole) contributions are e.g. the reactions:
2H+2H → 4He+γ , 2H+4He → 6Li+γ and 4He+12O → 16O+γ .
We nevertheless always assume dipole dominance.

2.4 Approximate treatment of α-dependent factors

As mentioned twice, the variation of the cross sections with a
variation of α induces energy-dependent factors, that in turn
lead to temperature-dependent variations in the correspond-
ing reaction rates, that can be fully accounted for only via a
numerical integration of Eq. (38). In fact this is what was done
in the present work for the most important 18 nuclear reac-
tions in the BBN network, listed in Sect. 5. For the remain-
ing reactions we relied on the following approximations, that
turned out to be effective.

For neutron induced reactions

σ(E) ∝ R(E)√
E

(42)

where for a non-resonant reaction R(E) is a weakly depen-
dent function of the CMS kinetic energy E , see e.g. [31] . If
we make the extreme approximation that R(E) ≈ const. the
maximum of the remaining energy dependent factors in the
integrand of Eq. (38) is reached at the energy

E = En = 1

2
kT . (43)

Likewise, assuming that for the astrophysical S-factor for
charged particle induced reactions

S(E) = E σ(E) e

√
EiG
E ≈ const. (44)

holds, one finds that the maximum of the remaining energy-
dependent factors in the rate is reached at

E = Ec =
(
kT

2

) 2
3

(Ei
G)

1
3 . (45)

Substituting E �→ En, Ec in the expressions in Eqs. (35,
41) then leads to temperature-dependent factors, that can be
taken in front of the integral in Eq. (38) and thus merely
multiply the corresponding rates. The quality of this approx-
imation may be inferred from Fig. 1, where we compare the
results of the numerical calculation of the rates according to
Eq. (38) (yellow areas for a variation δα ∈ [−0.1, 0.1]) with
the approximation discussed in this subsection, represented
by blue lines for δα = −0.1 and 0.1 .

Note that in the present treatment we preferred to account
for the Coulomb suppression in an entrance or exit channel
with charged particles by the penetration factor of Eq. (19)
and do not rely on a simple Gamow-factor ∝ e−x =
e−√

EG (α)/E , with E being the CMS energy of the relevant
channel with charged particles. We found that doing so would
lead to overestimating the α-dependence in the rates by a
factor ≈ 1.5, while the temperature dependence would still
roughly follow the same trends as in Fig. 1.
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Fig. 1 Temperature-dependence (T9 = T/109 K) of the variation of
the rates γ of 18 leading nuclear reactions with a variation of the fine
structure constant α = α0 (1 + δα). Shown are the exact results in

the interval δα = [−0.1, 0.1] (yellow area, color online) bounded by
the curves (in red) at δα = −0.1 and 0.1 as well as the approximate
expression discussed in Sect. 2.4 for δα = −0.1 and 0.1 (blue curves)

2.5 Coulomb-effects in β-decays

Next, we consider the various β-decays in the BBN network.

The rate for β-decays a → c + e±+ (−)
ν can be written as,

see e.g. [32],

λ = G2

2π3

mp c2

h̄
|Mac|2 f (Z , q) , (46)

where G is Fermi’s weak coupling constant,Mac the nuclear
matrix element and

f (±Z , q) =
∫ q

1
dx F(±Z , x)

√
x2 − 1 x (q − x)2 , (47)

see Eq. (2.158) of Ref. [33] , where we defined q = Q/me =
(ma − mc)/me. Further, F(±Z , E) is the so-called Fermi-
function

F(±Z , E) = F0(±Z , E) L0(±Z , E) ,
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L0(±Z , E) = 1 + γ

2
∓ 5

3
α Z R E ∓ α Z R

3 E

−1

3
(E2 − 1) R2 + · · · ,

F0(±Z , E)

= 4 (2
√
E2 − 1 R)2γ−2 e±πν |�(γ ± i ν)|2

(�(2γ + 1))2 (48)

with the definitions

γ =
√

1 − (Z α)2 ,

ν = Z α E√
E2 − 1

, (49)

where Z is the atomic number of the daughter nucleus c and
R its radius, see Eqs. (2.121)-(2.125),(2.131) of Ref. [33] .
The upper/lower sign holds for β−/β+ decays, respectively.
For Z α 
 1 we can approximate

γ ≈ 1 , L0(±Z , E) ≈ 1 ,

F0(±Z , E) ≈ 4 · 1 · e±πν |�(1 ± i ν)|2
4

(50)

or, with |�(1 ± i ν)|2 = ±πν/ sinh (±πν)

F0(±Z , E) ≈ ±2π ν e±πν

e±πν − e∓πν
= ±2π ν

1 − e∓ 2π ν
, (51)

such that limZ→0 F0(±Z , E) = 1. Accordingly, setting a =
2π Z α then

f (±Z , q) =
∫ q

1
dx

± a x√
x2−1

1 − e
∓ a x√

x2−1

√
x2 − 1 x (q − x)2

=
∫ q

1
dx

±a x2

1 − e
∓ a x√

x2−1

(q − x)2 . (52)

Defining also p = √
q2 − 1 (i.e. the maximal momentum

in β-decay divided by the electron mass) and with the sub-
stitution y = √

x2 − 1/p we can rewrite the expression for
f (±Z , q) as

f (±Z , p) = f (±a, p)

= ±a p2
∫ 1

0
dy y

√
1 + p2 y2

1 − e∓ a
√

1+p2 y2
p y

×
(√

1 + p2 −
√

1 + p2 y2

)2

, (53)

which is slightly better suited for a numerical implementa-
tion, e.g. with a Gauß-Legendre-integrator. Note that both a
and p depend on α.

2.5.1 Electromagnetic contribution to the proton-neutron
mass difference

The neutron-proton mass difference plays an important role
in BBN, see e.g. [41]. According to Refs. [34,35] the proton-

neutron mass difference is given by

mp − mn = �m = �mQCD + �mQED ,

�mQCD = −1.87 ∓ 0.16 MeV ,

�mQED = 0.58 ± 0.16 MeV , (54)

where the nominal electromagnetic contribution is somewhat
smaller than the value �mQED = 0.7 ± 0.3 MeV given ear-
lier in Ref. [36]. We also note that the splitting in strong
and electromagnetic contributions is convention-dependent,
for a pedagogical discussion see [37]. For a comparison of
these results with lattice QCD and other phenomenologi-
cal determinations of the electromagnetic contribution to the
neutron-proton mass difference, we refer to [34].

The neutron-proton mass difference is a crucial parameter
both in the various n ↔ p weak interactions in the early
phase of BBN and in all β-decays. We shall start with a
discussion of the latter.

2.5.2 Implications for β-decays

Writing

mn − mp = −(�mQCD + �mQED) , (55)

the Q-value for the β-decay a → c+ e∓+ (−)
νe depends on a

variation of α = α0(1 + δα) as

Q(α) = Q(α0(1 + δα))

= ±(−�mQCD − �mQED (1 + δα))

−(BN
a − VC

a (1 + δα))

+(BN
c − VC

c (1 + δα))

= Q(α0) + (VC
a − VC

c ∓ �mQED) δα , (56)

where, as in Sect. 2.2, BN
i is the nuclear (strong) contribution

to the binding energy of nuclide i and VC
i the expectation

value of the Coulomb-interaction to the binding energy of
nuclide i .

One thus finds for the variation of the β-decay rate with a
variation of α,

λ(α0 (1 + δα)) = λ(α0)
f (ã(δα), p̃(δα))

f (a, p)
, (57)

where

ã(δα) = a (1 + δα) ,

p̃(δα) =
√
q̃2(δα) − 1 ,

q̃(δα) = Q(α0 (1 + δα))/me , (58)

and the factor determining the variation of the β-decay rate
with a variation of α , see Eq. (57), is determined by evalu-
ating f (ã, p̃) and f (a, p) via Eq. (53) .
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We note that Q(α) = Q(α0(1+δα)) ≥ me , Q(α0) ≥ me

implies an upper limit for δα :

(VC
a − VC

c ∓ �mQED) δα ≥ me − Q(α0)

⇔ δα ≤ Q(α0) − me

VC
c − VC

a ± �mQED
.

(59)

As for other cases where during a variation of α the Q-value
of a reaction becomes negative, we have put the correspond-
ing rate to zero.

We also note that for the neutron decay n → p + e− + ν

the variation of the rate with a variation of α merely implies
a variation of the neutron lifetime τn ∝ 1/λn→p.

2.5.3 Implications for the weak n ↔ p reactions

As detailed in Ref. [26] the six reactions

n + ν ↔ p + e− ,

n ↔ p + e−+ ν ,

n + e+ ↔ p + ν , (60)

determine the evolution of the neutron abundance in the early
phase of BBN and hence are crucial for all other primordial
nuclear abundances. Assuming local thermodynamical equi-
librium in terms of a temperature T and a distinct neutrino
temperature Tν in the so-called infinite nucleon mass approx-
imation the n → p (angular averaged) reaction rate can be
written, see e.g. [26] for details, as

�n→p(�m; T ) = �n+ν→p+e−
n→p+e−+ν

+ �n+e+→p+ν

= K
∫ ∞

me

dE E
√
E2 − m2

e

×
[
(E + �m)2 g

(
E + �m

kBTν

)
g

(
− E

kBT

)

+(−E + �m)2 g

(−E + �m

kBTν

)
g

(
E

kBT

)]
(61)

with

g(x) = 1

ex + 1
(62)

the Fermi-Dirac distribution function. The ratio Tν/T fol-
lows from the cosmological evolution, see the black curve in
Fig. 2.

The constant K is fixed by requiring that �n→p(�m; 0) =
1/τn , with τn the neutron lifetime. The p → n rate is sim-
ply given by substituting �m �→ −�m in Eq. (61) above.
In this case �p→n(�m; 0) = 0 . As discussed in [26] and
[31] there are a number of corrections to the n → p and
p → n rates as given above, viz. the Coulomb correction

0

0.2
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0.8

1

1.2

1.4

0.11101001000

ra
ti
o

T9

p → n
n → p
Tν/T

Fig. 2 Variation of the rate ratios Rn→p (Eq. (63), blue hatched area)
and Rp→n (Eq. (64), red hatched area) with decreasing temperature
(T9 = T/[109 K]) for δα in the range δα = −0.1 (lower curves) up to
δα = 0.1 (upper curves). Also shown is the ratio Tν/T (black curve)

(as discussed above in Sect. 2.5.2), electromagnetic radia-
tive corrections, finite nucleon mass corrections, plasma cor-
rections and non-instantaneous neutrino decoupling effects.
Some of these involve the fine-structure constant α, but since
these effects are small corrections anyway, the most rele-
vant effect when varying α is through the change �m(α) =
�m(α0) − �mQED δα . This effect is illustrated in Fig. 2,
where the double rate ratios

Rn→p = �n→p(�m(α); T ) �n→p(�m(α0); 0)

�n→p(�m(α); 0) �n→p(�m(α0); T )
, (63)

and

Rp→n = �p→n(�m(α); T ) �n→p(�m(α0); 0)

�n→p(�m(α); 0) �n→p(�m(α0); T )
, (64)

obtained by a numerical integration according to Eq. (61)
(with a method similar to that of Eq. (4)) are plotted as a
function of T9 = T/[109 K]). This double ratio was chosen
such that for T → 0 the n → p curves tend to unity and the
p → n curves to zero; the α-dependence of the n → p rate
in this low-temperature limit is then given by the expressions
in the preceding Sect. 2.5.2. As is evident from this figure
the variation of the rates with varying α is non-linear and
strongly temperature dependent.

2.6 The n + p → d + γ reaction

Fortunately, for the n + p → d + γ reaction an accurate
treatment within the framework of pionless EFT [38,39] is
available. Accordingly, for this leading nuclear reaction in
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the BBN network it is possible to study dependences of
the cross section and hence of the reaction rate on vari-
ous nuclear parameters, such as the binding energy of the
deuteron, np scattering lengths, effective ranges etc. as was
done in [19]. Here we shall focus on the α-dependence.

The cross section was given in [39] as

σnp→dγ (p) = 4π α

×
(

1 − 2 p4 + 4 p2 γ 2 + 3 γ 4

4m2
N (p2 + γ 2)

)
(γ 2 + p2)3

γ 3 m4
N p

×
[〈

χ̃E1V

〉2 + 〈
χ̃M1V

〉2 + 〈
χ̃M1S

〉2 + 〈
χ̃E2S

〉2]
, (65)

where p is the relative momentum, mN = (mp + mn)/2
denotes the nucleon mass, γ = √

Bd mN is the so-called
binding momentum, with Bd = 2.225 MeV the binding
energy of the deuteron, and

〈
χ̃E1V

〉2 ,
〈
χ̃M1V

〉2 ,
〈
χ̃M1S

〉2 ,
〈
χ̃E2S

〉2 , are the dimensionless amplitudes for isovector
electric dipole, isovector magnetic dipole, isoscalar mag-
netic dipole and isoscalar electric quadrupole contributions,
respectively. For the energies relevant in BBN only the
isovector contributions are significant and these were calcu-
lated at N4LO and N2LO for the electric and magnetic parts,
respectively. The overall theoretical uncertainty is claimed
to be better than 1% for CMS energies E ≤ 1 MeV . The
expression of Eq. (65) with all terms included was used to
calculate the cross section for this reaction throughout the
present investigation.

Concerning the variation of this cross section when vary-
ing α = α0 (1 + δα) it is evident that the dominant effect is
simply

σnp→dγ (α; p) = (1 + δα) σnp→dγ (α0; p) . (66)

Note that there is no Coulomb-contribution to the binding
energy of the deuteron, while the expectation value 〈vEM〉 of
the electromagnetic interaction, mainly due to the magnetic
dipole-dipole interaction moment term, see [40] for a treat-
ment based on the Argonne v18 nucleon-nucleon potential,
is very small, 〈vEM〉 = 0.018 MeV. Hence the effects of
a change of the Q-value of the reaction with varying α, as
discussed in the previous subsections, as well as any other
electromagnetic effects on the structure of the deuteron are
considered to be negligible in the present context. More-
over, in the expression of Eq.( 65), as well as in the expres-
sions for the amplitudes χ̃ of Ref. [39] the nucleon mass
mN = (mp + mn)/2 occurs at various instances. Although
a moderately accurate value for the electromagnetic con-
tribution to the neutron-proton mass difference is avail-
able (and was, in fact, used in our discussion of the β-
decays in Sect. 2.5.1), only rough estimates are available
for the electromagnetic contribution to the neutron and pro-
ton mass separately. In Eq. (12.3) of Ref. [42] the estimates
mBorn

p ≈ 0.63 MeV,mBorn
n ≈ −0.13 MeV (with an estimated

accuracy of ≈ 0.3 MeV) for the total electromagnetic self-
energy can be found, which, via mBorn

N ≈ 0.25 MeV , would
imply that mN varies with α (putting mN ≈ 1 GeV for this
estimate) as

mN (α) ≈ mN (α0)(1 + 0.00025 δα) . (67)

For |δα| < 0.1 , as considered here, this would lead to
effects well below the theoretical accuracy quoted above and
therefore this effect was neglected and the variation of the
n+ p → d+γ cross section with α is assumed to be entirely
given by Eq. (66) .

2.7 Coulomb energies

A variation of the value of the fine-structure constant α

implies a variation of the nuclear binding energies and hence
a variation of the Q-values of the reactions, which in turn
leads to a variation of the cross sections and the correspond-
ing rates. Therefore the present study requires an estimate
of the electromagnetic contribution to the nuclear masses
or equivalently to the nuclear binding energies. A rough
estimate is provided by the Coulomb term in the Bethe-
Weiszsäcker formula (for a recent determination, see e.g. [43]
and references therein):

VC
i = aC

Zi (Zi − 1)

A
1
3

, ac ≈ 0.64 MeV , (68)

approximately accounting for the Coulomb repulsion by the
protons in a nucleus. However, this formula is not very precise
when applied to the light nuclei relevant here. We therefore
prefer to use the expectation values of the Coulomb interac-
tion as determined from a recent ab initio calculation of light
nuclear masses in the framework of Nuclear Lattice Effec-
tive Field Theory (NLEFT) [44] , listed in Table 1 . We also
compare the calculated binding energies to the experimental
data as used here in order to give an impression of the quality
of the calculation.

3 Calculation of the reaction rates

For the 18 leading nuclear reactions in the BBN network, viz.
the radiative capture reactions

n + p →d + γ , d + p →3He + γ ,

p + 3H →4He + γ d + 4He →6Li + γ ,

p + 6Li →7Be + γ , 3H + 4He→7Li + γ ,
3He + 4He→7Be + γ ,

(69)

the charged particle reactions

d+d →3H+ p , d+d →3He+n ,

d+3H →4He+n , d+3He→4He+ p ,

p+6Li→3He+4He , p+7Li →4He+4He ,

d+7Li→4He+4He+n , d+7Be→4He+4He+ p ,

(70)
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Table 1 Binding energies B (calculated (cal) and experimental (exp)
values) and expectation values for the Coulomb interaction VC of light
nuclei

Nuclide VC [MeV]a Bcal [MeV]a Bexp [MeV]b

2H 0.0 2.215(150) 2.225
3H 0.0 8.35(22) 8.482
3He 0.688(1) 7.64(14) 7.718
4He 0.759(0) 28.24(16) 28.296
6Li 1.574(2) 32.82(12) 31.994
7Li 1.599(2) 39.61(13) 39.245
8Li 1.649c 41.278
7Be 2.722c 37.600
9Be 2.951(4) 57.59(29) 58.164
8B 4.212c 37.737
10B 4.453(8) 64.46(59) 64.750
11B 4.962(2) 75.38(42) 76.204
12B 4.852c 79.574
11C 6.933c 73.440
12C 7.144(16) 92.36(64) 92.161
13C 7.151(7) 97.07(52) 97.107
14C 7.317(7) 104.87(69) 105.284
12N 9.483c 74.040
13N 9.854c 94.104
14N 10.354(4) 106.25(94) 104.657
15N 10.054(2) 115.29(37) 115.491
14O 12.977c 98.730
15O 13.320c 111.953
16O 13.412(10) 129.99(38) 127.617

aFrom [44]. The errors quoted in parentheses include all the statistic and
systematic uncertainties. In case of 2H, the error is entirely given by the
variation of the np phase shifts at N3LO within their uncertainties
bFrom [45], as used in the present work
cExtrapolated from a least-squares fit to the other data withVC (N , Z) =∑2

k=0
∑1

l=0 ckl(N−Z)l (N+Z)k . where c00 = 0.653 , c10 = −0.232 ,
c20 = 0.065 , c01 = 0.060 , c11 = −0.060 , c21 = −0.003 [in MeV]

and the neutron-induced reactions

n+3He→3H+ p , n+7Be→7Li+ p ,

n+7Be→4He+4He ,
(71)

the rates and their variations with α are calculated by a numer-
ical integration of Eq. (38) and tabulated for 60 temperatures
in the range 0.001 ≤ T9 = T/[109 K] ≤ 10.0. These values
were then used via a cubic spline interpolation in the four
publicly available BBN codes as outlined in Sect. 4. The
resulting rates and their variations with α = α0 (1 + δα) in
the range δα ∈ [−0.1, 0.1] are displayed in Fig. 1 in Sect. 2.4.
To this end, we made new fits to the cross sections (or equiv-
alently of the corresponding astrophysical S-factors) for the
reactions listed above. The parameterizations can be found in
Appendix A. In addition in Fig. 3 the resulting reaction rates

for α = α0 are compared to the rates implemented in the
original versions of the four programmes considered here.

In Fig. 3 we also display the rates obtained with the
NACRE II database, see [46], which served as a further check
on our calculated reaction rates at α = α0 . The rates of all
other reactions were taken as in the original implementation
of the codes and the variation of the rates with α was calcu-
lated as discussed in Sect. 2.4.

The variation of the β-decay rates according to Eq. (57)
was implemented directly in the various codes. In Fig. 4 it is
shown how the β-rates at low temperature (i.e. T 
 T9)
change by a variation of α = α0 (1 + δα). In particular
the rates of the tritium decay and the 14C-decay strongly
depend on the value of δα , the effect of (relatively large)
changes in the (relatively small) Q-values due to changes
in the Coulomb contribution to the binding energies being
dominant.

As already touched upon in Sect. 2.5.3 the variation of
the weak n ↔ p rates with α is dominated by the variation
of proton-neutron mass difference with α and is strongly
temperature dependent in the early phase of BBN. In the
default version of the Kawano code NUC123 [20] this tem-
perature dependence is parametrized as outlined in Appendix
F of Ref. [20], but a numerical integration along Eq. (61)
can be enforced and was in fact used to implement the α-
dependence of these rates. The PArthENoPE code [23–25]
contains a slightly more sophisticated parameterization, see
e.g.Appendix C of Ref. [31], accounting also for some higher
order corrections. Here we used the α-dependence of the
n ↔ p rates as illustrated in Fig. 2 as a factor multiplying the
parametrized rate. In the AlterBBN code [21,22] the tem-
perature dependence of the weak n ↔ p rates was already
determined numerically as in Eq. (61) and the α dependence
can be accounted for by an appropriate variation of �m .
In this code also the Coulomb correction, see Eq. (57), was
included in the integrand of Eq. (61), but this was found
to have no significant impact on the final abundances to be
discussed below in Sect. 5. The PRIMAT [26] implementa-
tion offers the possibility to study the α-dependence of the
weak n ↔ p reactions in all detail including all the higher
order electromagnetic corrections mentioned in Sect. 2.5.3 .
In fact this code was used to verify that the variation of the
rates through the variation of �m with α as discussed in
Sect. 2.5.3 is indeed the dominant effect. Indeed, ignoring the
α dependence in the higher order corrections implemented
in PRIMAT led to response coefficients that differ at most by
0.5% from the values listed in Table 3 below. Accordingly, in
spite of the fact that the n ↔ p reactions are treated at various
levels of sophistication, the resulting primordial abundances
and their variation with α, to be discussed in Sect. 5, were
found to be rather consistent.
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Fig. 3 Reaction rates γ (T9) for 18 leading nuclear reactions in the
BBN network, where T9 = T/[109 K] . The rates resulting from the
new parameterizations of the S-factors in Appendix A are represented
by solid red curves (color online). The rates in the original version of

the programmes are given by green curves for NUC123 [20], magenta
curves for PArthENoPE [25], blue curves for AlterBBN [22] and
cyan curves for the PRIMAT [26] code. Also shown as a thin black
curve is the result from the NACRE II database, see [46]

4 The BBN response matrix

We estimated the linear dependence of the primordial abun-
dances Yn on small changes in the value of the fine-structure
constant α = α0 (1 + δα) by calculating the abundance of
the nuclide n, with

n ∈ {2H , 3H + 3He , 4He , 6Li , 7Li + 7Be} (72)

i.e. Yn(α0 (1 + δα)), for fractional changes δα in the range
[−0.1, 0.1] with the publicly available codes for BBN,

namely a version of the Kawano code NUC123 [20] (in
FORTRAN), two more modern implementations based on
this, namely PArthENoPE [23–25] (in FORTRAN) and
AlterBBN [21,22] (in C) as well as an implementation as
a mathematica-notebook, PRIMAT [26] . To this end we
performed least-squares fits of a quadratic polynomial to the
abundances:

Pk(δα) = c0

(
1 + c1 δα + c2 δ2

α

)
, (73)
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Fig. 4 Fractional variation of the β-rates at low temperature with
f (α)/ f (α0) calculated by Eq. (57)

such that

∂

∂c j
|Yn/YH (α0 (1 + δα)) − Pk(δα)|2 = 0 , j = 0, 1, 2 .

(74)

Then

∂ log (Yn/YH )

∂log α
≈ c1 (75)

will be called an element of the linear nuclear BBN response
matrix. It represents the dimensionless fractional change in
the primordial abundance ratio Yn/YH due to a fractional
change α in linear approximation. Deviations from a linear
response are then given by the coefficient c2 .

5 Results and discussion

In most of what follows we shall use η = 6.14 · 10−10 from
Ref. [30] as the nominal baryon-to-photon density ratio while
varyingα. The programs were modified as indicated in Sect. 4
of Ref. [19] and the rates for the most relevant reactions listed
in Sect. 3, resulting from the new fits of the cross sections
presented in Appendix A, were used in all programmes.

The resulting nominal (i.e. at α = α0) abundances at the
end of the BBN epoch in terms of the number ratios Y2H/YH ,
Y3H+3He/YH , Y6Li/YH , Y7Li+7Be/YH , and the mass ratio for
4He are compared to the values quoted in Ref. [19] and exper-
imental data in Table 2 . Although the mass ratio for 4He and,
to a minor extend, the number ratio for deuterium did not
change significantly with respect to the values obtained in

Ref [19], the 3H + 3He number ratio increased by approxi-
mately 10% and the 6Li number ratio was found to be larger
by about 60–80%. The latter increase was found to be mainly
due to the new parameterizations of reactions involving 6Li.
In particular, substituting the original parameterization of the
S-factor for the d + 4He → 6Li + γ reaction, see Eq. (A6)
and Fig. 15, for this reaction alone already increases the
number ratio for 6Li to ≈ 1.7 × 10−14 . Furthermore, the
7Li + 7Be number ratio is still too large by a factor of three,
a phenomenon known as the lithium-problem, which is thus
unsolved even with the updated cross sections used here. As
stated previously in [19], in spite of this unresolved issue in
BBN the consistency of the cosmic microwave background
observations with the determined abundances of deuterium
and helium is considered to be a non-trivial success. Accord-
ingly, we think that this issue is no obstacle for the study
presented here.

The elements of the response matrix were then determined
by a polynomial fit, as explained above in Sect. 4 for the abun-
dances relative to the hydrogen abundance, namely Y2H/YH ,
Y3H+3He/YH , Y6Li/YH , Y7Li+7Be/YH , and the mass ratio for
4He .

The dependence of these ratios on the value of the fine
structure constant α = α0 (1 + δα) is displayed in Fig. 5 for
δα ∈ [−0.1, 0.1].

Indeed the variation of the abundance ratios is found to be
very similar for all four publicly available codes, in spite of
the fact that these codes differ in details, such as the number
of reactions in the BBN network or the manner in which the
rate equations are solved numerically. Note, however, that in
the present study the rates calculated for the major reactions
listed in Sect. 3 and their variation with α are the same.

Of course this then also applies to the values for the result-
ing response matrix elements. The response matrix elements
∂ log (Yn/YH )/∂ log α = c1 and the coefficients of the quad-
ratic term in Eq. (73) are given and compared to some results
from the literature in Table 3. Note that with the exception
of 6Li, we have |c2| � |c1|, so that due to the smallness of
α, the second order contribution to the response is of minor
importance. All programs were run with the full network
implemented in the original version codes. We checked that
if we run the programs with a smaller network the results
listed in Tables 2,3 change only in the last digit and therefore
conclude that the approximation, see Sect. 2.4, we made for
rate changes in the reactions beyond the reactions listed in
Eqs. (69–71) are without any effect for the present investiga-
tion.

Apart from the values of c1 for 2H(≈ 3.6) and for
6Li(≈ 6.8) the values obtained in the present study, although
consistent among each other, differ appreciably from the val-
ues obtained in Refs. [7,8,10]. In particular in the present
calculations the linear response for 3H + 3He is much larger
while the linear response for 7Li+7Be is appreciably smaller
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Table 2 Final abundances as number ratios Yn/YH (for 4He the mass
ratioYp) calculated with the modified versions of the codes. The value of
the baryon-to-photon ratio and the nominal value of the neutron lifetime

are η = 6.14 · 10−10 and τn = 879.4 s, respectively. For comparison
also the values previously obtained in Ref. [19] are listed

Code 2H 3H+3He Yp
6Li 7Li+7Be

×105 ×105 ×1014 ×1010

NUC123 2.501 1.139 0.246 1.809 5.172

[19] 2.550 1.040 0.247 1.101 4.577

PArthENoPE 2.569 1.147 0.247 1.820 5.017

[19] 2.511 1.032 0.247 1.091 4.672

AlterBBN 2.585 1.153 0.248 1.904 4.993

[19] 2.445 1.031 0.247 1.078 5.425

PRIMAT 2.563 1.149 0.247 1.862 5.033

[19] 2.471 1.044 0.247 1.198 5.413

PDG [30] 2.547 0.245 1.6

± 0.025 0.003 0.3

in magnitude, although there seems to be at least a consensus
concerning the sign.

In order to clarify this issue, we shall discuss in some
detail the relevance of the various factors that reflect the α-
dependence of the nuclear rates:

• First of all we list in Table 4 the linear response of the
BBN abundances to a variation of α in the β-decay rates
only.

• In Table 5 we display the linear response of the BBN
abundances to a variation of the nuclear reaction rates.
The relevance of the variation of the binding energies
with α may be appreciated by the linear response due
to changes in α accounting for the effects due to the
Coulomb penetration factors only, i.e. without account-
ing for changes in the binding energies, listed in Table 6 .
Here we also compared our results to the results pre-
sented in Table I of Ref. [10] for the dependence of the
abundances on the nuclear rate variation with α, that thus
differ from our results significantly for c1(

3H+ 3He) and
c1(

7Li + 7Be) , our results being larger in magnitude for
the former and smaller for the latter.

Indeed, if we substitute our values, as well as the results
we obtained in [19] for the linear response of the abundances
on binding energies and the neutron life-time τn for the val-
ues of the response matrix C of Table I in [10] and further-
more account for the smaller value ∂ log τn/∂ log α ≈ 2.90,
obtained via Eq. (57) (instead of 3.86 in [10]) and the smaller
value ∂ log QN/∂ log α ≈-0.45 (instead of −0.59 in [10]),
due to the smaller new value for �mQED, and use our val-
ues for the response of the binding energies ∂ log Bi/∂ log α

that are smaller by about 10% in Table IV of [10] we find
approximately for the linear responses
rather close to our values for c1 given in Table 3. Most of the
effects listed above are, although significant, of minor impor-

2H 3H + 3He Yp
6Li 7Li + 7Be

3.7 3.5 1.4 7.0 − 4.4

tance only, and accordingly the difference can be traced back
to the fact that our results for the variation of the rates with
a variation of α when ignoring the effects based on Q-value
changes, as listed in Table 6 differ appreciably from those of
[10] . Unfortunately in the latter reference no results on the α-
dependence of the rates are explicitly given. In appendix A.2
of [10] it is mentioned that parameterizations of the S-factors
were used, the parameters determined by fitting the NETGEN
rates as closely as possible. In order to check our parameteri-
zations of the nuclear rates we compared our rates with results
generated by the NETGEN-tool [46] in Fig. 3 and found that
these are indeed compatible for all reactions, except for the
reaction 7Be + n → 4He + 4He, where the NETGEN-tool
merely uses the THALYS nuclear reaction model [47]. We
instead used data, see also Fig. 26 for our fit of the S-factor.
Therefore the difference must be due to the different way
the Coulomb penetration effects are treated. Note that, as
emphasized in Sect. 2.1.1, we did not rely on temperature-
independent penetration factors taken as a Gamow-factor, but
rather accounted for the penetration dependences in the cross-
section, which then leads to temperature-dependent changes
in the rates.

Our results also differ from the results in Refs. [8] and [7]
published even earlier. Concerning the treatment in [8], it is
noted that, although the authors present a detailed discussion
of the α-dependence in the penetration factors, even account-
ing for additional α-dependent effects due to the periph-
eral nature of some radiative capture reactions such as e.g.
the 3He + 4He → 7Be + γ , an effect taken into account
also in the present treatment. Nevertheless, in contrast to
our treatment, α-dependent effects seem to be treated merely
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Fig. 5 Variation of the abundance ratios Yn/YH with a variation of
α = α0 (1+δα) for δα ∈ [−0.1, 0.1] obtained with the codes: NUC123
[20], AlterBBN [22], PArthENoPE [25], PRIMAT [26] . Here, we
use η = 6.14 ·10−10 and τn = 879.4 s . Also shown are the solid curves

obtained by the fits according to Eq. (73) with the parameters listed in
Table 7. The experimental values cited in PDG [30] (thick red lines) are
indicated by yellow-highlighted regions (color online) representing the
1σ limits by red lines

by temperature-independent factors multiplying the rates. In
Ref. [7], the changes in the reaction rates due to changes
in α were treated through approximate expressions based on
expansions of the S-factors, whereas we preferred to make no
further approximations beyond the modeling of the penetra-
tion factors discussed in Sect. 2.1.1. Note that a comparison
with the work of [9] is not possible, since there any variation
of the fine-structure constant is tied to the variation of certain
Yukawa couplings.

All in all our results indicate that the BBN abundance for
7Li + 7Be is less sensitive and the abundance of 3H + 3He

is more sensitive to variations of the value of the electro-
magnetic fine-structure constant α than what was determined
earlier. Note that such a reduced sensitivity on nuclear quan-
tities, such as binding energies etc.was also observed in [19] .
There it was also found that this is mainly due to inclusion
of the temperature-dependent changes in the rates. Unfortu-
nately, the primordial abundance of 3H + 3He is not known
precisely enough to lead to any implications and the nominal
prediction for the 7Li + 7Be abundance is too large anyway.

If we focus on the deuterium and 4He abundance ratios
alone we can extract from the observationally based data
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Table 3 BBN response matrix c1 = ∂ log (Yn/YH )/∂ log α and the
coefficients c2 of the quadratic term in Eq. (73) at η = 6.14 · 10−10 and
τn = 879.4 s . Yn/YH are the number ratios of the abundances relative
to hydrogen; Yp is conventionally the 4He/H mass ratio. The results

obtained with the four BBN codes NUC123 [20], PArthENoPE [25],
AlterBBN [22], PRIMAT [26] are given in four subsequent rows and
compared to earlier results from Refs. [7,8,10]

Code 2H 3H+3He Yp
6Li 7Li+7Be

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

NUC123 3.655 6.228 3.540 4.625 1.387 0.016 6.830 20.412 − 4.325 7.480

PArthENoPE 3.635 6.182 3.533 4.577 1.389 0.065 7.159 21.482 − 4.308 7.715

AlterBBN 3.644 6.188 3.526 4.568 1.373 0.049 6.857 20.499 − 4.322 7.865

PRIMAT 3.658 6.264 3.534 4.595 1.408 0.081 6.953 20.828 − 4.302 7.563

[10] 3.6 0.95 1.9 6.6 − 11

[8]a 3.99 5.99 1.04 − 2.67 − 9.30 25.7

[7]b 5.13 9.91 0.78 − 1.96 1.96 − 0.73 − 13.6 83.1

aExtracted from Fig.2 of [8] for η = 5.6 · 10−10 after digitizing the data
bExtracted from Fig.4 of [7] for η = 5 · 10−10 after digitizing the data

Table 4 BBN response matrix c1 = ∂ log(Yn/YH )/∂ log α accounting for the variation of the β-decay rates only. See also the caption of Table 3

Code 2H 3H + 3He Yp
6Li 7Li + 7Be

NUC123 0.827 0.250 1.403 2.651 0.475

PArthENoPE 0.832 0.255 1.406 2.663 0.479

AlterBBN 0.829 0.255 1.390 2.632 0.462

PRIMAT 0.845 0.260 1.425 2.701 0.483

Table 5 BBN response matrix c1 = ∂ log(Yn/YH )/∂ log α accounting for the variation of the nuclear rates only, but also including the variation
of the binding energies and thus of the Q-values of the reactions. See also the caption of Table 3

Code 2H 3H + 3He Yp
6Li 7Li + 7Be

NUC123 2.818 3.271 − 0.017 4.005 − 5.192

PArthENoPE 2.795 3.261 − 0.017 4.315 − 5.152

AlterBBN 2.806 3.254 − 0.017 4.037 − 5.153

PRIMAT 2.803 3.257 − 0.017 4.059 − 5.164

Table 6 BBN response matrix c1 = ∂ log(Yn/YH )/∂ log α accounting for the variation of the nuclear rates only, but excluding the variation of the
binding energies. Also see caption to Table 3

Code 2H 3H + 3He Yp
6Li 7Li + 7Be

NUC123 2.619 3.559 − 0.016 5.561 − 2.059

PArthENoPE 2.599 3.550 − 0.017 5.866 − 2.005

AlterBBN 2.598 3.557 − 0.016 5.585 − 1.758

PRIMAT 2.595 3.562 − 0.017 5.610 − 1.769

[10] 2.3 0.79 0.00 4.6 − 8.1

bounds on the variation δα of the value of the fine-structure
constant as listed in Table 7 for the four programs consid-
ered here, showing that one can allow for a variation of the
fine-structure constant α by less than 2% on the basis of the
results obtained with all programs considered here using the
current value for the baryon-to-photon ratio η = 6.14·10−10,
given in [30] . The values for the 4He mass ratio Yp obtained
with all four programs are rather consistent and the range

[−0.018, 0.006] which is more restrictive than the rough esti-
mate |δα| < 0.1 quoted in [7,8] and the limit |δα| ≤ 0.019
mentioned in [10]. The values found on the basis of the deu-
terium number ratio show a larger spread, mainly because
the nominal values, see Table 2, vary more strongly for the
four programs. In spite of this we can determine the range
[−0.007, 0.008] , also still more restrictive than the (1σ )
range [−0.04, 0.10] of [8]. Our new restrictions on the vari-
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Table 7 Lower (δmin
α ) and upper (δmax

α ) limits for the variation δα of the fine-structure constant α = α0 (1 + δα) determined such that the resulting
abundance lies within the error bounds of the observationally based abundance ratios for 2H and 4He given in [30]

Code 2H Yp

δmin
α δmax

α δmin
α δmax

α

NUC123 0.002 0.008 − 0.011 0.006

PArthENoPE − 0.005 0.000 − 0.014 0.003

AlterBBN − 0.007 − 0.001 − 0.018 0.000

PRIMAT − 0.004 0.001 − 0.015 0.003

ation of α are also stronger than found earlier in the NLEFT
analysis of the triple-alpha process in hot, old stars [48,49].

From a comparison of Tables 4, 5 and 6 we also see that
the linear response for Yp due to variations in the β-decay
is the dominant effect. Indeed, as argued in [7], the variation
of Yp with α mainly depends on the variation of the proton–
neutron mass difference with α , i.e. on δmQED that enters the
n → p weak decay.

As was done previously in Ref. [8] we also studied to what
extend the results presently obtained vary with variations of
the baryon-to-photon ratio η and found that our results for
the linear response coefficients c1 do not change significantly
if η is varied within the error range quoted in [30], η10 =
η · 1010 = 6.143 ± 0.190 . With the values of the primordial
abundance ratios for d, 4He and 7Li+7Be mentioned in PDG
[30] we can derive parameter ranges for restricting δα and η

as presented in Figs. 6, 7, and 8 . Note that we here allowed
for a variation of η well beyond the currently accepted limits
quoted in [30] . The results are similar to those obtained in
Ref. [8] although the regions of possible values for the δα-
and η-values are narrower here due to the newer, more precise
observational data quoted in [30] . The comparison of these
results again show that the value of the Li/Be abundance is
incompatible with the other data and we therefore refrain
from any conclusions concerning possible variations of α on
the basis of the 7Li observation.

We close this section with the remark that we also exam-
ined whether the use of a much smaller network, e.g. con-
sidering, apart from the weak reactions only 12 nuclear reac-
tions instead of the more than 400 reactions implemented in
PRIMAT would affect our conclusions significantly. It was
found that the differences in the results were much smaller
than the variation between the four codes considered. Never-
theless we preferred to quote results only for the full nuclear
reaction networks as implemented in the four codes.

6 Summary

In the present paper we investigated the impact of variations
in the value of the fine-structure constant α on the abun-
dances of the light elements, viz. 2H, 3H + 3He, 4He, 6Li
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η ×10−9
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0.00
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δ α

Fig. 6 Restriction on the parameters δα and η based on the experi-
mental value of Y2H/YH from [30] . Shown are the corresponding 1σ

(black), 2σ (dark gray) and 3σ (light gray) regions
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Fig. 7 Restriction on the parameters δα and η based on the experimen-
tal value of Yp from [30] . Shown are the corresponding 1σ (black), 2σ

(dark gray) and 3σ (light gray) regions

and 7Li + 7B in primordial nucleosynthesis (BBN), keep-
ing all other fundamental parameters fixed on their values
obtained in our universe. In order to estimate possible model
dependences concerning e.g. the number of reactions in the
BBN nuclear network, the parameterizations of the nuclear
rates or the manner in which the corresponding rate equations
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Fig. 8 Restriction on the parameters δα and η based on the experimen-
tal value of Y(7Li+7Be)/YH from [30] . Shown are the corresponding 1σ

(black), 2σ (dark gray) and 3σ (light gray) regions

are numerically solved, we compared the results obtained by
using four different publicly available codes. Ideally such an
investigation requires an accurate ab initio theory of nuclear
reactions accounting for all possible electromagnetic effects.
Unfortunately, however, for reactions involving the strong
nuclear interaction this is only realized for the leading nuclear
reaction in the BBN network, the n + p → d + γ reaction
in the framework of pionless EFT. For all other reactions of
this kind we rely on modifications of experimentally deter-
mined reaction cross sections, trying to account for electro-
magnetic effects, such as penetration factors, modeling the
suppression due to the Coulomb barrier in channels involv-
ing charged particles as well as changes in the binding ener-
gies of nuclides due to the Coulomb repulsion of the protons
and hence the Q-values of the nuclear reactions where these
are involved. To this end we made new parameterizations of
the cross sections of the 18 leading nuclear reactions in the
BBN network using current experimental data compiled by
EXFOR. We made an assumption about the α dependence of
the penetration factors which differs from the Gamow-factor
form that was used in previous investigations and used novel
estimates for the Coulomb contribution to nuclear binding
energies based on a recent ab initio calculation in the frame-
work of NLEFT in order to determine the α-dependence of
the nuclear binding energies and the corresponding Q-values.
A further new ingredient for studying the α-dependence of
the weak β-decays in the BBN network is a novel value for
the electromagnetic contribution to the neutron–proton mass
difference, which is slightly smaller than what has been used
before. All these new inputs were then used to determine the
variation of the reaction rates with varying α. Here, we found
in particular that the variation of the reaction rates depends
on the temperature, a feature that seems to have been ignored
in previous investigations. We found consistent results with
all four codes mentioned above and hence conclude that the

model-dependence concerning the specific treatment of the
BBN network is of minor importance for the α-dependence
of the primordial abundances studied here. The results for the
linear response do, however, deviate significantly from older
results, in particular for the α-dependence of the abundances
of 3H + 3He and 7Li + 7Be, the former being much larger
and the latter much smaller than found previously. Unfor-
tunately, in the standard Big Bang scenario used here, the
nominal abundance ratio Y7Li+7Be/YH exceeds the current
observationally based determination by a factor of three, a
feature known as the lithium-problem that is not solved in
the present treatment. This then also impedes a determina-
tion of consistent bounds on the value of the fine-structure
constant from all available primordial abundance data. Using
the observations for 2H and 4He alone, we can nevertheless
state that these data would limit a possible variation of α to
|δα| < 0.02. This is a stronger bound than found earlier in
comparable investigations.

An investigation of the kind presented here heavily relies
on the modeling of electromagnetic effects in the cross sec-
tion data (or, equivalently the astrophysical S-factors) of
the relevant nuclear reactions in the BBN-network. Here we
opted for a specific form of Coulomb penetration factors that
differ from Gamow-factors used before and stressed the rel-
evance of the temperature dependence of the variation of α

in the reaction rates that resulted from numerically integrat-
ing γ (α; T ) ∝ ∫ ∞

0 dE E σ(α; E) exp(E/kT ). It seems that
further progress with the purpose of using primordial nucle-
osynthesis as a laboratory for exploring our understanding of
fundamental physics, apart from astrophysical or cosmolog-
ical aspects will be feasible only if ab initio theories describ-
ing the relevant nuclear reactions including electromagnetic
effects become available. NLEFT appears to be a promising
framework for doing just that, see e.g. Refs. [50,51].

Note added in proof: Very recently, a new python code that
simulates BBN was published under the namePRyMordial
[192,193]. Implementing changes due to a variation of α

according to the method outlined above in PRyMordial,
we could, accounting for some differences due to e.g. the
absence of β-decay rates in PRyMordial, confirm the
results obtained with the other four codes.
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Appendix A: Parameterizations for S-factors and cross
sections

For the relevant reactions treated here almost all S-factors,
related to the cross section σ as

S(E) = E σ(E) e

√
Ei
G/E (A1)

with Ei
G given by Eq. (32), can be written as

S(E) = S0 R(E; a1, a2, a3, q1, q2, q3) , (A2)

with S0 in units of MeV mb, and where

R(E; a1, a2, a3, q1, q2, q3)

:= 1 + a1 E + a2 E2 + a3 E3

1 + q1 E + q2 E2 + q3 E3 , (A3)

is a rational function of the center-of-mass (CMS) kinetic
energy E (given in MeV). There are, however, some reactions
where resonances occur in the energy range considered here.
For these, we can parameterize the S-factor as the rational
function of Eq. (A3) combined with relativistic Breit–Wigner
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Fig. 9 Calculation of the cross section for the n+ p → d+γ reaction
by [39] compared to experimental data compiled by [54]

functions. The parameters for the relativistic Breit–Wigner
functions of the form

BW (E; b, �, M) = b

�2M2 + (
E2 − M2

)2 (A4)

can be found in Table 11, where E, � and M are given in
MeV. The use of a non-relativistic Breit–Wigner function of
the form

bw(E; b, κ, M) = b

1 + κ (E − M)2 (A5)

was found to be more appropriate for the reactions 7Li+d →
n + 4He + 4He and 7Be + n → 7Li + p, the corresponding
parameters (κ in MeV−2) can also be found in Table 11.

A.1 The n + p → d + γ reaction

The cross section for the leading nuclear reaction of BBN,
namely n+ p → d +γ , was calculated according to the for-
mulas , viz. Eqs. (3.3)–(3.16) given in [39] with the parame-

Table 8 Fit parameters of the S-factor, see Eq.(A1), according to Eqs. (A2, A3) and Eq. (A6) for radiative capture reactions. S0 is given in MeV mb;
ak and qk in units of MeV−k

Reaction S0 a1 a2 a3 q1 q2 q3

d + p → 3He + γ 2.066 ×10−4 30.431 14.943 0 − 0.032 0.035 0

d + 4He → 6Li + γ 3.162 ×10−6 −3.163 15.271 − 0.633 0 0 0
3H + p → 4He + γ 1.875 ×10−3 10.773 32.613 113.836 0 0 8.919 ×10−3

3H + 4He → 7Li + γ 1.057 ×10−1 −1.378 1.106 0 0.128 0 0
3He + 4He → 7Be + γ 4.912 ×10−1 −0.908 0.336 0 − 0.610 0.247 0
6Li + p → 7Be + γ 5.000 ×10−2 −13.863 53.532 14.977 − 10.907 33.652 0
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Fig. 10 Fit (red curve, color online) of the S-factor for the d + p →
3He + γ reaction compared to data compiled by EXFOR [54]
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Fig. 11 Fit (red curve, color online) of the S-factor for the 3H + p →
4He + γ reaction compared to data compiled by EXFOR [54]

ters quoted there, also see Sect. 2.6. In Fig. 9 this description
is compared to the existing data as compiled in [54] .

A.2 Other radiative capture reactions

The parameters found by a fit of the parameters in Eqs. (A2,
A3) to the data are displayed in Table 8 for most radiative
capture reactions treated here.

The parameterizations are compared to experimental data
compiled by EXFOR [54] in Figs. 10, 11, 12, 13 and 14.

The only exception is the reaction d + 4He → 6Li + γ ,
where a resonance appears. In this case the S-factor is given
by the sum of a cubic polynomial in E and a relativistic
Breit–Wigner function:

S(E) = S0

(
1 + a1E + a2E

2 + a3E
3
)

+BW (E; b, �, M) (A6)
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Fig. 12 Fit (red curve, color online) of the S-factor for the 3H+4He →
7Li + γ reaction compared to data compiled by EXFOR [54]

10−1 100

E [MeV]

10−1

100

S
(E

)
[M

eV
m
b]

own fit
[78]
[79]
[80]

[75]
[81]
[82]
[83]

[84]
[85]
[86]
[87]

[88]
[89]
[90]

Fig. 13 Fit (red curve, color online) of the S-factor for the 3He +
4He → 7Be + γ reaction compared to data compiled by EXFOR [54]
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Fig. 14 Fit (red curve, color online) of the S-factor for the 6Li + p →
7Be + γ reaction compared to data compiled by EXFOR [54]
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Table 9 Fit parameters of the S-factor, see Eq.(A1), according to Eqs. (A2, A3, A7, A8) and (A9) for charged particle reactions. S0 is given in
MeV mb; ak and qk in units of MeV−k . For these reactions q3 = 0

Reaction Energy range S0 a1 a2 a3 q1 q2

d + d → 3He + n 54.908 6.942 0.378 0 0.636 − 0.018

d + d → p + 3H 70.667 27.281 136.744 0 38.369 9.531
3H + d → n + 4He E < 0.28 MeV 10800.846 − 1.974 18.252 0 − 24.464 244.175

E ≥ 0.28 MeV − 2116.168 0.137 0.527 − 0.038 − 8.747 0
3He + d → p + 4He E < 0.25 MeV 6703.216 − 8.823 27.654 − 2.772 − 9.380 24.921

E ≥ 0.25 MeV 10663.275 − 0.899 1.562 − 0.033 − 6.664 20.204
6Li + p → 3He + 4He 288.587 − 0.305 − 1.494 0.981 0 0
7Li + p → 4He + 4He E ≤ 4.1 MeV 338.062 0.731 − 0.102 0 0 0

E > 4.1 MeV 12312.399 − 0.472 0.057 0 0 0
7Be + d → p + 4He + 4He 684.412 − 0.554 0.142 0 − 0.535 0.077
7Li + d → n + 4He + 4He 2968.470 8.279 − 0.308 0 54.611 0
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Fig. 15 Fit (red curve, color online) of the S-factor for the d+ 4He →
6Li+γ reaction compared to data compiled by EXFOR [54] . The three
upper limits for E < 0.1 MeV, denoted by arrows, were not included
in the fit
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Fig. 16 Fit (red curve, color online) of the S-factor for the d + d →
3He + n reaction compared to data compiled by EXFOR [54]
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Fig. 17 Fit (red curve, color online) of the S-factor for the d + d →
p + 3H reaction compared to data compiled by EXFOR [54]
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Fig. 18 Fit (red curve, color online) of the S-factor for the 3H + d →
n + 4He reaction compared to data compiled by EXFOR [54]
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Fig. 19 Fit (red curve, color online) of the S-factor for the 3He+d →
p + 4He reaction compared to data compiled by EXFOR [54]
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Fig. 20 Fit (red curve, color online) of the S-factor for the 6Li + p →
3He + 4He reaction compared to data compiled by EXFOR [54]

with the parameters listed in Tables 8 and 11. This param-
eterization is compared to experimental data compiled by
EXFOR [54] in Fig. 15 .

A.3 Charged particle reactions

As in Section A2, we fitted the S-factors according to
Eqs. (A2, A3). The parameters are displayed in Table 9 for
most charged particle reactions treated here.

For the reaction 6Li + p → 3He + 4He which has two
resonances, the S-factor is given by an expression of the
form

S(E) = S0

(
1 + a1E + a2E

2 + a3E
3
)

×BW (E; b1, �1, M1) × BW (E; b2, �2, M2)

(A7)
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Fig. 21 Fit (red curve, color online) of the S-factor for the 7Li + p →
4He + 4He reaction compared to data compiled by EXFOR [54]
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Fig. 22 Fit (red curve, color online) of the S-factor for the 7Li + d →
n + 4He + 4He reaction compared to data compiled by EXFOR [54]
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Fig. 23 Fit (red curve, color online) of the S-factor for the 7Be+d →
p + 4He + 4He reaction compared to data compiled by EXFOR [54]
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Table 10 Fit parameters of the function S[n], see Eq. (A10), according to Eqs. (A12, A3) neutron-induced reactions. S[n]
0 is given in MeV1/2 mb,

and ak and qk in units of MeV−k

Reaction Energy range S[n]
0 a1 a2 a3 q1 q2 q3

3He + n → p + 3H E ≤ 2.8 MeV 715 20.814 0 6.8 38.681 27.876 12.637

E > 2.8 MeV 1691.556a − 0.280 0.033 − 0.001 − 0.234 0.024 0
7Be + n → 4He +4He E ≤ 2.0 MeV 0.381 22.875 7.931 0 0 0 0

E > 2.0 MeV − 0.418 − 108.504 79.576 − 15.092 0 0 0

aHere S[n]
0 in units of MeV mb; to be divided by

√
E , E in MeV. in order to yield S[n]

and for the reaction 7Li+ p → 4He+4He with one resonance
the S-factor is given by

S(E) = S0

(
1 + a1E + a2E

2 + a3E
3
)

×BW (E; b1, �1, M1) . (A8)

For the reaction 7Li + d → n + 4He + 4He a parameter-
ization of the form

S(E) = S0
1 + a1 E + a2 E2

1 + q1 E
+ bw(E; b1, κ1, M1)

+ bw(E; b2, κ2, M2) (A9)

was used. The parameters of the Breit–Wigner functions
can be found in Table 11 .

These S-factor fits are compared to experimental data
compiled by in EXFOR [54] in Figs. 16, 17, 18, 19, 20,
21, 22 and 23.

A.4 Neutron-induced reactions

For neutron capture reactions the cross section is written as

σ(E) = S[n](E)/
√
E, (A10)

implying that the function S[n] is given in units of (MeV)1/2

mb. The S-factor then reads

S(E) = σ(E) E = S[n](E)
√
E , (A11)
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[184]
[185]

Fig. 24 Fit (red curve, color online) of S(E) = S[n](E)
√
E for the

3He + n → p + 3H reaction compared to data compiled by EXFOR
[54]

since for neutron-induced reactions the Gamow-factor is
unity. For neutron-induced reactions we give parameteriza-
tions of S[n](E) in terms of

S[n]
0 R(E; a1, a2, a3, q1, q2, q3) (A12)

Table 11 Fit parameters for resonances parameterized as Breit–Wigner functions in Eqs. (A4, A5). �k and Mk in MeV; κk in MeV−2 . The units
for bk and c depend on the context, see Eqs. (A6, A7, A8, A9)

Reaction Energy range b1 �1 M1 b2 �2 M2 c

d + 4He → 6Li + γ 4.310 × 10−7 0.028 0.711
6Li + p → 3He + 4He 5113.917 0.654 1.187 104.696 13.972 8.72 0
7Li + p → 4He + 4He E ≤ 4.1 MeV 12.395 1.012 2.669

E > 4.1 MeV 27.448 0.912 4.824
7Be + n → 4He + 4He E ≤ 2.0 MeV 4.023 0.825 0.887 2.035 0.455 3.482 0.156

E > 2.0 MeV 9.331 1.246 1.346 39.447 0.723 3.114 − 0.023

b1 κ1 M1 b2 κ2 M2 c

7Li + d → n + 4He + 4He 9820.6 82.387 0.6 8991.0 1963.84 0.8 0
7Be + n → 7Li + p 1.116 131.7 0.327 0 0 0 0
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Fig. 25 Fit (red curve, color online) of S(E) = S[n](E)
√
E for the

7Be + n → p + 7Li reaction compared to data compiled by EXFOR
[54]

with the rational function R of Eq. (A3) and the Breit–Wigner
functions of Eqs. (A4, A5). S[n]

0 is then given in units of
MeV1/2 mb.

Note that for the reaction 3He + n → p + 3H for E >

2.8 MeV, the rational polynomial described by the coeffi-
cients in Table 10 still needs to be divided by

√
E . For this

reaction the fit of the S-factor is compared to experimental
data compiled by EXFOR [54] in Fig. 24 .

For the reaction 7Be + n → p + 7Li the following param-
eterization in terms of a non-relativistic Breit–Wigner func-
tion and a polynomial in

√
E was used:

S[n](E) = 1000.0

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bw(E; b, κ, M) + 7.7874 − 47.778 E
1
2

+140.00 E − 222.87 E
3
2

+201.84 E2 − 97.983 E
5
2

+19.773 E3 (MeV)1/2 mb ,

E ≤ 2.0 MeV ,

1139.627 (MeV)1/2 mb ,

E > 2.0 MeV

(A13)

where again the CMS energy E is given in MeV and the
parameters of the Breit–Wigner function can be found in
Table 11. For this reaction the S-factor fit is compared to
experimental data compiled by EXFOR [54] in Fig. 25 .

Finally, the form of the parameterization for the reaction
7Be + n → 4He + 4He reads

S[n](E) = S[n]
0

(
1 + a1 E + a2 E

2 + a3 E
3
)

×(
c + BW (E; b1, �1, M1)

+BW (E; b2, �2, M2)
)
.

(14)
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Fig. 26 Fit (red curve, color online) of S(E) = S[n](E)
√
E for the

7Be+n → 4He+ 4He reaction compared to data compiled by EXFOR
[54]

The S-factor is compared to experimental data compiled
by EXFOR [54] in Fig. 26 .
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