001019053 001__ 1019053
001019053 005__ 20250204113740.0
001019053 0247_ $$2doi$$a10.1039/D3TB01854G
001019053 0247_ $$2ISSN$$a2050-750X
001019053 0247_ $$2ISSN$$a2050-7518
001019053 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05115
001019053 0247_ $$2pmid$$a38170794
001019053 0247_ $$2WOS$$aWOS:001135612500001
001019053 037__ $$aFZJ-2023-05115
001019053 082__ $$a610
001019053 1001_ $$0P:(DE-HGF)0$$aSchickle, Karolina$$b0$$eCorresponding author
001019053 245__ $$aRevealing bactericidal events on graphene oxide nano films deposited on metal implant surfaces
001019053 260__ $$aLondon [u.a.]$$bRSC$$c2024
001019053 3367_ $$2DRIVER$$aarticle
001019053 3367_ $$2DataCite$$aOutput Types/Journal article
001019053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716900170_28545
001019053 3367_ $$2BibTeX$$aARTICLE
001019053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019053 3367_ $$00$$2EndNote$$aJournal Article
001019053 520__ $$aAt a time when pathogens are developing strong resistance to antibiotics, ,the demand for microbe-killing surfaces on implants has increased significantly. To achieve this goal, profound understanding of the underlying mechanisms is crucial. We show that graphene oxide (GO) nano-films deposited on stainless steel (SS316L) exhibit superior antibacterial features. The physicochemical properties of GO itself have a crucial impact on the biological events and their diversity may account for the contradictory results reported elsewhere. However, essential properties of GO coatings, such as oxygen content and resulting electrical conductivity, have been overlooked so far. We hypothesized that the surface potential and electrical resistance of the oxygen content in the GO-nano films may induce bacteria-killing events on the conductive metallic substrates. In our study, GO applied contains 52 wt.% of oxygen, thus exhibits insulating properties. Deposited as nano-film on an electrical conducting steel substrate, GO flakes induce a Schottky-barrier in the interface, which, in consequence, inhibits the transfer of electrons to the conducting, underlying substrate. Deposited as nano-film on an electrical conducting steel substrate, GO flakes can induce Schottky-barrier in the interface, which, in consequence, inhibits the transfer of electrons to the conducting, underlying substrate. Consequently, this generates reactive oxygen species (ROS), resulting in bacteria-death. We confirmed the presence of GO coatings and their hydrolytic stability by using X-ray photoelectron spectroscopy (XPS) XPS, μRaman spectroscopy, scanning electron microscopy (SEM), and Kelvin probe force microscope (KPFM) measurements. The biological evaluation was performed on the MG63 osteoblast-like cell line and two elected bacteria species: S. aureus and P. aeruginosa, demonstrating both, cytocompatibility and antibacterial behavior of GO-coated SS316L substrates. We propose a two-step bactericidal mechanism: electron transfer from the bacteria membrane to the substrate, followed by ROS generation. This mechanism is supported by changes in contact angle, surface potential, and work function, identified as decisive factors.
001019053 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019053 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019053 7001_ $$0P:(DE-HGF)0$$aGołda-Cępa, Monika$$b1
001019053 7001_ $$0P:(DE-HGF)0$$aParlak Vuslat, Zümray$$b2
001019053 7001_ $$aGrigorev, Nikita$$b3
001019053 7001_ $$aDesante, Gaelle$$b4
001019053 7001_ $$aChlanda, Adrian$$b5
001019053 7001_ $$aMazuryk, Olga$$b6
001019053 7001_ $$0P:(DE-Juel1)181017$$aNeuhaus, Kerstin$$b7
001019053 7001_ $$0P:(DE-Juel1)185885$$aSchmidt, Christina$$b8$$ufzj
001019053 7001_ $$0P:(DE-HGF)0$$aAmousa, NIma$$b9
001019053 7001_ $$0P:(DE-HGF)0$$aDrozdz, Kamil$$b10
001019053 7001_ $$0P:(DE-HGF)0$$aNeuss, Sabine$$b11
001019053 7001_ $$aPajerski, Wojciech$$b12
001019053 7001_ $$aEsteves-Oliveira, Marcella$$b13
001019053 7001_ $$aBrzychczy-Włoch, Monika$$b14
001019053 7001_ $$aKotarba, Andrzej$$b15
001019053 7001_ $$aGonzalez Julian, Jesus$$b16
001019053 773__ $$0PERI:(DE-600)2702241-9$$a10.1039/D3TB01854G$$gp. 10.1039.D3TB01854G$$n10$$p2494-2504$$tJournal of materials chemistry / B$$v12$$x2050-750X$$y2024
001019053 8564_ $$uhttps://juser.fz-juelich.de/record/1019053/files/Paper.pdf$$yPublished on 2023-12-01. Available in OpenAccess from 2024-12-01.
001019053 8564_ $$uhttps://juser.fz-juelich.de/record/1019053/files/Paper.gif?subformat=icon$$xicon$$yPublished on 2023-12-01. Available in OpenAccess from 2024-12-01.
001019053 8564_ $$uhttps://juser.fz-juelich.de/record/1019053/files/Paper.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-12-01. Available in OpenAccess from 2024-12-01.
001019053 8564_ $$uhttps://juser.fz-juelich.de/record/1019053/files/Paper.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-12-01. Available in OpenAccess from 2024-12-01.
001019053 8564_ $$uhttps://juser.fz-juelich.de/record/1019053/files/Paper.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-12-01. Available in OpenAccess from 2024-12-01.
001019053 909CO $$ooai:juser.fz-juelich.de:1019053$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181017$$aForschungszentrum Jülich$$b7$$kFZJ
001019053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185885$$aForschungszentrum Jülich$$b8$$kFZJ
001019053 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019053 9141_ $$y2024
001019053 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001019053 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001019053 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001019053 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-03$$wger
001019053 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
001019053 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
001019053 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
001019053 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
001019053 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019053 9801_ $$aFullTexts
001019053 980__ $$ajournal
001019053 980__ $$aVDB
001019053 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019053 980__ $$aUNRESTRICTED
001019053 981__ $$aI:(DE-Juel1)IMD-4-20141217