001019091 001__ 1019091
001019091 005__ 20240116084327.0
001019091 0247_ $$2doi$$a10.1073/pnas.2221533120
001019091 0247_ $$2ISSN$$a0027-8424
001019091 0247_ $$2ISSN$$a1091-6490
001019091 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05144
001019091 0247_ $$2pmid$$a37527347
001019091 0247_ $$2WOS$$aWOS:001083463000007
001019091 037__ $$aFZJ-2023-05144
001019091 082__ $$a500
001019091 1001_ $$0P:(DE-Juel1)195972$$aPassiatore, Roberta$$b0
001019091 245__ $$aChanges in patterns of age-related network connectivity are associated with risk for schizophrenia
001019091 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2023
001019091 3367_ $$2DRIVER$$aarticle
001019091 3367_ $$2DataCite$$aOutput Types/Journal article
001019091 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702553119_2342
001019091 3367_ $$2BibTeX$$aARTICLE
001019091 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019091 3367_ $$00$$2EndNote$$aJournal Article
001019091 520__ $$aAlterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk–related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar–occipitoparietal circuit and increased FNC in two prefrontal–sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.
001019091 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001019091 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019091 7001_ $$0P:(DE-HGF)0$$aAntonucci, Linda A.$$b1
001019091 7001_ $$0P:(DE-HGF)0$$aDeRamus, Thomas P.$$b2
001019091 7001_ $$0P:(DE-HGF)0$$aFazio, Leonardo$$b3
001019091 7001_ $$0P:(DE-HGF)0$$aStolfa, Giuseppe$$b4
001019091 7001_ $$0P:(DE-HGF)0$$aSportelli, Leonardo$$b5
001019091 7001_ $$0P:(DE-HGF)0$$aKikidis, Gianluca C.$$b6
001019091 7001_ $$0P:(DE-HGF)0$$aBlasi, Giuseppe$$b7
001019091 7001_ $$0P:(DE-HGF)0$$aChen, Qiang$$b8
001019091 7001_ $$0P:(DE-Juel1)177772$$aDukart, Juergen$$b9
001019091 7001_ $$0P:(DE-HGF)0$$aGoldman, Aaron L.$$b10
001019091 7001_ $$0P:(DE-HGF)0$$aMattay, Venkata S.$$b11
001019091 7001_ $$0P:(DE-HGF)0$$aPopolizio, Teresa$$b12
001019091 7001_ $$0P:(DE-HGF)0$$aRampino, Antonio$$b13
001019091 7001_ $$0P:(DE-HGF)0$$aSambataro, Fabio$$b14
001019091 7001_ $$0P:(DE-HGF)0$$aSelvaggi, Pierluigi$$b15
001019091 7001_ $$0P:(DE-HGF)0$$aUlrich, William$$b16
001019091 7001_ $$0P:(DE-HGF)0$$aWeinberger, Daniel R.$$b17
001019091 7001_ $$0P:(DE-HGF)0$$aBertolino, Alessandro$$b18$$eCorresponding author
001019091 7001_ $$0P:(DE-HGF)0$$aCalhoun, Vince D.$$b19
001019091 7001_ $$0P:(DE-HGF)0$$aPergola, Giulio$$b20
001019091 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2221533120$$gVol. 120, no. 32, p. e2221533120$$n32$$pe2221533120$$tProceedings of the National Academy of Sciences of the United States of America$$v120$$x0027-8424$$y2023
001019091 8564_ $$uhttps://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.pdf$$yOpenAccess
001019091 8564_ $$uhttps://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.gif?subformat=icon$$xicon$$yOpenAccess
001019091 8564_ $$uhttps://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019091 8564_ $$uhttps://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019091 8564_ $$uhttps://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019091 909CO $$ooai:juser.fz-juelich.de:1019091$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195972$$aForschungszentrum Jülich$$b0$$kFZJ
001019091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177772$$aForschungszentrum Jülich$$b9$$kFZJ
001019091 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001019091 9141_ $$y2023
001019091 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019091 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001019091 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
001019091 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-26
001019091 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2023-08-26
001019091 920__ $$lno
001019091 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001019091 980__ $$ajournal
001019091 980__ $$aVDB
001019091 980__ $$aUNRESTRICTED
001019091 980__ $$aI:(DE-Juel1)INM-7-20090406
001019091 9801_ $$aFullTexts