001     1019091
005     20240116084327.0
024 7 _ |a 10.1073/pnas.2221533120
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05144
|2 datacite_doi
024 7 _ |a 37527347
|2 pmid
024 7 _ |a WOS:001083463000007
|2 WOS
037 _ _ |a FZJ-2023-05144
082 _ _ |a 500
100 1 _ |a Passiatore, Roberta
|0 P:(DE-Juel1)195972
|b 0
245 _ _ |a Changes in patterns of age-related network connectivity are associated with risk for schizophrenia
260 _ _ |a Washington, DC
|c 2023
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702553119_2342
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk–related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar–occipitoparietal circuit and increased FNC in two prefrontal–sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Antonucci, Linda A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a DeRamus, Thomas P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fazio, Leonardo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stolfa, Giuseppe
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sportelli, Leonardo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kikidis, Gianluca C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Blasi, Giuseppe
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chen, Qiang
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177772
|b 9
700 1 _ |a Goldman, Aaron L.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mattay, Venkata S.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Popolizio, Teresa
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Rampino, Antonio
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sambataro, Fabio
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Selvaggi, Pierluigi
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ulrich, William
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Weinberger, Daniel R.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Bertolino, Alessandro
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
700 1 _ |a Calhoun, Vince D.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Pergola, Giulio
|0 P:(DE-HGF)0
|b 20
773 _ _ |a 10.1073/pnas.2221533120
|g Vol. 120, no. 32, p. e2221533120
|0 PERI:(DE-600)1461794-8
|n 32
|p e2221533120
|t Proceedings of the National Academy of Sciences of the United States of America
|v 120
|y 2023
|x 0027-8424
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019091/files/passiatore-et-al-2023-changes-in-patterns-of-age-related-network-connectivity-are-associated-with-risk-for-schizophrenia.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019091
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195972
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)177772
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21