<A NVIDIA

CUDA Tools for Profiling and Debdgging

Markus Hrywniak, Senior DevTech Compute, April 2023

Session outline

Goals
Use compute-sanitizer to automatically detect correctness issues (invalid memory accesses)
Use cuda-gdb to manually and interactively debug a CUDA program

Use Nsight Systems to learn the basic workflow to optimize performance of GPU programs

Debugging Correctness, then Debugging Performance

2 NVIDIA.

Debugging Correctness: Best Practices

Crashes are "nice” — the stacktrace often points to the bug

Prerequisite: Compile flags
While developing, always use -g -lineinfo
Use -g -G for manual debugging
Specific flags for compilers/languages (e.g. gfortran): -fcheck=bounds

Memory corruption: Out-of-bounds accesses may or may not crash
compute-sanitizer. Automate finding these errrors

Other issues: Manual debugging
cuda-gdb: Command-line debugger, GPU extensions

CUDA_LAUNCH_BLOCKING=1 forces synchronous kernel launches

NVCC compile flags for debugging

-g Embed symbol info for host code
-lineinfo Generate line correlation info for device code
-G Device debug - slow

3 NVIDIA.

compute-sanitizer

compute-sanitizer is a collection of tools
memcheck (default) tool comparable to

Other tools include
racecheck: shared memory data access hazard detector
initcheck: uninitialized device global memory access detector
synccheck: identify whether a CUDA application is correctly using synchronization primitives

Main usage: Auto-detect invalid GPU code and shortcut debugging effort
Directly pinpoint source code line/addresses, access size

Filtering and other capabilities. Two commonly useful switches:

--log-file output.log
Separates (potentially verbose) output into separate file

--kernel-regex kns=some_substring
Only checks kernels containing "some_substring”

4 NVIDIA.

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/
https://www.valgrind.org/docs/manual/mc-manual.html

compute-sanitizer

Runit: srun --pty compute-sanitizer ./set_vector
Abbreviated output:

========= COMPUTE-SANITIZER

========= Tnvalid __global__ write of size 4 bytes

========= gt OxcH 1n
/p/home/jusers/hrywniak1/juwels/GPU-Course/task1/set_vector.cu:20:set(int, float*, float)
========= by thread (0,0,0) in block (90,06,0)

========= Address 0Ox2afe49a02000 is out of bounds

========= Saved host backtrace up to driver entry point at kernel launch time

========= Target application returned an error
========= ERROR SUMMARY: 1025 errors

Actual output can be very long, if many GPU threads produce (similar) errors.

5 NVIDIA.

Task 1

Location of code: 2-Tools/exercises/tasks/task1

Steps (see also Instructions.ipynb)
Fix set-vector.cul
Use compute-sanitizer to locate error in set-vector.cu, and fix it
compute-sanitizer should run without errors!
Build: make
Run: make run / make memcheck

6 NVIDIA.

cuda-gdb

"Symbolic Debugger” - leaverage debug symbols to correlate execution issues with original source code

Interactive/manual tool, with useful shortcuts

Textual, like a shell for debugging — Not the easiest to master, but very powerful, and works everywhere

Basic workflow for segfaults

Crashing app invoked via

./my_app_name my_app_arg another_arg
becomes

cuda-gdb --args ./my_app_name my_app_arg another_arg
Shows you the debugger shell prompt: (cuda-gdb)

Launch program with "run”

ldentify the segfault - Done ©

Advanced workflow to step through execution, understand program flow, inspect and modify variables,...

/ NVIDIA.

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html#automatic-error-checking

cuda-gdb Cheat Sheet

Most commands have abbreviations
continue =2 cont, break = b, info = i, backtrace = bt, ...
cuda thread 4 2> cuth 4

Use TAB completion to help you remember command names

Use help and apropos to avoid a round-trip to the browser (try: apropos cuda.*api)

Begin progam execution under debugger

=
run \
backtry
S~

Print call stack (e.g. after an exception)

list

List source code around current location

print <var>

Print contents of <var>, e.q. "print i" to print the loop counter |

set var <var>=<value>

Set value of <var>to <value>, e.q. 'setvari=42"

break
break foo.cpp:
break my_func

Set breakpoint (suspend execution) on: line 10 in current file
.. line 10 in file foo.cpp
.. function my_func in any file

set cuda api_failures stop

Break on any CUDA API failures (e.g. launch errors)

continue / next / step

Resume execution (after hitting breakpoint) until next: break / line /
Instruction

info locals

Print all local variables in current scope

info cuda threads

Print current thread configuration

cuda thread 15

Switch focus to thread (here: 15)

8

NVIDIA.

cuda-gdb Examples

Launching the application inside the debugger - like a shell

S cuda-gdb --args ./gpu-print # The same works on pure CPU using plain gdb.
[...]

For help, type "help".

Type "apropos word" to search for commands related to "word"...

(cuda-gdb)
Type run to actually launch the program itself

(cuda-gdb) run

Starting program: ./gpu_print

[Detaching after fork from child process 7437]
[New Thread 0x15554ca60000 (LWP 7449)]

[New Thread 0x15554c85f000 (LWP 7450)]
blockIdx. X 1, threadIdx.x = 0, i =0

[. ..]

(cuda-gdb) # program finished running, debugger waiting for new instructions

9 NVIDIA.

The Most Essential Command

It your app crashes or terminates unexpectedly, the debugger can very often tell you the exact location of the issue
Both in CPU and GPU code

S cuda-gdb --args ./gpu-print
(cuda-gdb) run

[...]

CUDA Exception: Warp Illegal Address
The exception was triggered at PC Oxacbc96 (gpu_print.cu:19)

Thread 1 "gpu_print” received signal CUDA_EXCEPTION_14, Warp Illegal Address.

[Switching focus to CUDA kernel ©, grid 1, block (6,0,0), thread (0,0,0), device 0,sm 0,warp
0,lane 0]

0x0000000000acbcad in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19

19 double x = *(double*)nullptr;

(cuda-gdb) " "

0 0x0000000000acbca® in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19

Backtrace tries to print all stack frames (i.e. function calls) with line information up to the current location
Equally useful when manually debugging or using breakpoints
Some errors can corrupt the stack, making the backtrace less useful

10 NVIDIA.

Breakpoints

Retry, but before launch, set a breakpoint that will pause execution

Reminder: You need -G for meaningful kernel debugging

(cuda-gdb) 1 print_test # show source of function

[...]

(cuda-gdb) break 18

Breakpoint 1 at 0x403fe6: file .../exercises/tasks/task2/gpu_print.cu, line 20.

(cuda-gdb) run

Starting program: ./gpu_print

[...]

[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 9,sm 6,warp 0, lane 9]
Thread 1 "gpu_print" hit print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:18
18 int 1 = 0;

(cuda-gdb) print i

S1 = <optimized out>

(cuda-gdb) next

19 printf("blockIdx.x = %d, threadIdx.x = %d, i = %d\n", blockIdx.x, threadIdx.x, 1i);
(cuda-gdb) print i
S2 =0

(cuda-gdb) continue # resume execution

Why "optimized out™?

11 NVIDIA.

Breakpoints and Program State

Breakpoints can be deleted again

(cuda-gdb) # "info breakpoints”

Num Type Disp Enb Address What

T breakpoint keep y 0x0000000000acbf60 in print_test() at gpu_print.cu:18
breakpoint already hit 1 time

(cuda-gdb) # "delete 1"

(cuda-gdb)

No breakpoints or watchpoints.
Breakpoints can be conditional, also: watchpoints (see help)

Actively change state by setting variables
(cuda-gdb) set var my_variable = 11

Actively change control flow by calling functions
(cuda-gdb) call my_print_func("debugging message")

Inspect memory and variables. Assume we have const char* s = "my_str”

(cuda-gdb) print s # prints "my_str”
(cuda-gdb) print s[0]@3 # prints "my_"
(cuda-gdb) x/5c s # prints next 5 values following address s interpreted as chars (check help)

Ox4c5410: 169 'm" 121 'y 95 '_° 115 's° 116 't’

12 NVIDIA.

GPU-Specifics

GPU-specifics: Setting the focus

(cuda-gdb)
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel ©
* (0,0,0) (0,0,0) (6,0,0) (31,0,0) 32 0x0000000000acbf90 gpu_print.cu 19
(1,0,0) (0,0,0) (1,0,0) (31,0,0) 32 0x0000000000acbf60 gpu_print.cu 18
(cuda-gdb)
thread (0,0,0)
(cuda-gdb)
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), , device 0,sm 0,warp 0, lane
10]
19 printf("blockIdx.x = %d, threadIdx.x = %d, i = %d\n", blockIdx.x, threadIdx.x, 1i);
Focus can be set to specific blocks, SMs, devices, ... — help cuda

Hardware and software abstractions (e.g. blocks vs. SMs)

Options: Try (cuda-gdb) set cuda<ENTER> for a list
Two commonly-used options: api_failures and launch_blocking

13 NVIDIA.

IDE Integration

Beyond shells and text-based user interfaces

Why use an integrated development environment (IDE)?
» Source code editor with CUDA C/C++ highlighting

* Project / file management with integration of version control
» Build system

» Graphical interface for debugging heterogeneous applications
Eclipse platform: https://developer.nvidia.com/nsight-eclipse-edition/

On Windows: Nsight Visual Studio Edition
e https://developer.nvidia.com/nsight-visual-studio-edition/

Nsight Visual Studio Code Edition
» https://developer.nvidia.com/nsight-visual-studio-code-edition/ .

> CUDA:Debug v % - C- matrixMul.cu X

syncthreads();

Recommended: https://github.com/NVIDIA/nsight-training e

2 ma unroll
~ CALL STACK

v (CUDA) PAUSED ON BREAKPOINT r Kk = 0: k < BLOCK SIZE: ++K)
MatrixMulCUDA<32> matrixMul.cu 119 {

> matrixMul PAUSED Csub += As[ty][k] * Bs[k][tx];
> matrixMul PAUSED }
> cuda-EvtHandlr PAUSED

> matrixMul PAUSED

syncthreads();

}

15 <ANVIDIA. I

https://developer.nvidia.com/nsight-eclipse-edition/
https://developer.nvidia.com/nsight-visual-studio-edition/
https://developer.nvidia.com/nsight-visual-studio-code-edition/
https://github.com/NVIDIA/nsight-training

Task 2

Change program execution on-the-fly with cuda-gdb

» Location of code: 2-Tools/exercises/tasks/task?

+ Steps (see also Instructions.ipynb)

- Let thread 4 from the first block (block O) print 42 instead of O.
Do not change the source code!
Do use cuda-gdb commands and breakpoints.

» Build and run once to see the standard output:
make run

* Run and debug interactively on a compute node:

1. eval SJSC_SUBMIT_CMD b
7. cuda-gdb --args

* Hints:
» Use the cheat sheet: breakpoints, listing source, setting variable values, changing the active cuda thread...

* |f you get stuck, see the solutions directory for the commands to feed into cuda-gdb

- The Makefile has debug-cuda-gdb and debug-cuda-gdb-solution commands you can also try
16 <ANVIDIA I

Write Debuggable Software

Think about interfaces in your code: Which parts must depend on each other, etc.
Example: BLAS, linear algebra routines

Think about structure and architecture (,,the big picture®)

Don't go overboard: ,| read this book, we need 100% test coverage’, etc.
For many research codes that would be overkill

“Everything should be made as simple as possible, but no simpler.”

Badly structured legacy code slows you down as well, as it resists change
Today's code is tomorrow's legacy

Strike a balance, avoid full rewrites. Code encapsulates hard-earned bug fixes and knowledge

Representative test cases
Contain the correct science, walk the code paths

But run quickly, best on a single process, should run on a single node
Some (but not all) tests at full scale

17 NVIDIA.

Debugging Performance

Why you must use profilers

Paraphrasing Donald Knuth:
- Don't overoptimize, but meta-optimize your own time by using tools to focus on relevant parts

Do not trust your gut instinct — very often very misleading

. . . N 4. Deploy 1. Assess
- Easy to waste a lot of time chasing the "perceived” issue and Test ’ . Identify Performance
Getting the same information, you end up reimplementing your own profiler Limiter

» Analyze Profile

Iterative workflow » Find Indicators

Different kinds of measurement tools, different tradeoffs
* Instrumenting/Sampling
 Profiling/Tracing

A

3. Optimize 2. Parallelize

$

* multi-process, single-process, kernel-level

Focus on GPU and system-level: Nsight Systems Build Knowledge
» Continue with kernel analysis in Nsight Compute (tomorrow)

18 <ANVIDIA. I

http://wiki.c2.com/?PrematureOptimization

The Nsight Suite Components

How the pieces fit together

= Nsight Systems: Coarse-grained, whole-application Start here

= Nsight Compute: Fine-grained, kernel-level A
£
a4

= NVTX: Support and structure across tools

Recheck overall
workload behavior

Recheck overall
workload behavior

= Main purpose: Performance optimization
= But at their core, advanced measurement tools

Dive into top
CUDA kernels

Dive into graphics
frames

\

Finished if
performance
satisfactory

2

19 <ANVIDIA I

Interlude - Maximum achievable speedup

Amdahl’'s law

Amdahl’'s law states overall speedup s given the parallel fraction p of code and number of processes N

1 - 1
S =
B
1 Pty P

Limited by serial fraction, even for N - o Using 1 to 4 processes, total runtime

Example for p = 30%

Generally applicable on any level
* e.g. also valid for per-method speedups

N=1
N=2

N=3

N=4

O 2 4 6 8 10 12
Hm Serial part ®m Parallel part

20 <ANVIDIA. I

Nsight Systems GUI

Main timeline view, Events View

@ NVIDIA Nsight Systems 2023.2.1 — [] X

File View Tools Help

scale_report.qdrep
‘ = Timeline View - ‘ B g E.! L X A 3 warnings, 15 messages
Os = +520ms +530ms +540ms +550ms +560ms +570ms .
» CPU (96)
* CUDA HW (0000:03:00.0 - TR A1 L 1.0 L Akl B B B
* 54.5% Context 1
* 100.0% Kernels
100.0% scale(float, f
¥ 35.5% Unified memory
v Threads (7)
Ll
v W [4892] scale_vector v D S ui
T I O I AL ORI W T BTN N T T T
QS runtime libraries | sem_timedwait | |_| || | sem_timedwait |
CUDA AP |cudapevicesy..|
Profiler overhead | CUDA profiling data flush overhead
F e >
Events View - ‘
Mame - H =t
~ MName Start Duration TID 4| Description:
T ¥ cudaMallocManaged 0,27528s 265216 ms 4892
227 ¥ cudaMallocManaged 0,540498s 23380 pus | 4892
229 scale vector_um!main 0,540807s - 48972
230 scale vector um!main 0,541117s - 4892
2371 scale vector_um!main 0,541227s - 48972
232 scale vector_um!main 05474865 - 48972
233 scale vector_um!main 0,5415%96s - 48972
234 scale vector_um!main 0,541706s - 48972
235 scale vector_um!main 0547939 - 48972
230 scale vector_um!main 05421055 - 48972
237 scale vector_um!main 0542297 - 48972
238 scale vector_um!main 0542569 - 48972
239 scale vector um!main 0,54268s - 4892
240 scale vector_um!main 0,54278% - 48972
241 scale vector um!main 0,542948s | - 4892 b
]

21

<A NVIDIA.

Nsight Compute GUI

First steps in kernel analysis - Understanding the initial limiter

GPU "Speed of Light Throughput”
» SOL = theoretical peak

"Breakdown' tables
- DRAM: Cycles Active

Tooltips

Rules point to next steps

&7 NVIDIA Nsight Compute — O] X
File Connection Debug Profile Tools Window Help
=] Connect X 2 9 S =+ 3 = Baselines < > Metric Details
spmv_v100_21.5_0.ncu-rep
Page: | Details ¥ Result: 0- 545-main_471_gpu * | N v/ | Add Baseline |*|| Apply Rules Occupancy Calculator Copy as Image |~
Result Time Cycles Regs GPU SM Frequency CC Process ® 0 0 O
. Current 545 - main_41_gpu (63443, 1, 1)x(128,1,1) 7,75 msecond 10.176.310 80 0-Tesla V100-SXM2-16GB 1,31 cycle/nsecond 7.0 [19559] spmv

© The report contains imported source files.

* GPU Speed Of Light Throughput All *- O

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical
maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and
memary resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 3,17 Duration [msecond] 7,75
Memory Throughput [%] 92,37 Elapsed Cycles [cycle] 10.176.310
L1/TEX Cache Throughput [%] 32,76 SM Active Cycles [cycle] 10.160.469 39
L2 Cache Throughput [%] 31,70 SM Frequency [cycle/nsecond] 1,31
DRAM Throughput [%] 92,37 | DRAM Frequency [cycle/usecond] 878,26

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be

B shifted from the most utilized to another unit. Start by analyzing workloads in the » Memory Workload Analysis section.

® Roofline Analysis The ratio of peak float (fp32) to double (fp&4) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and close to 1% of
ys its fp64 peak performance.

GPU Throughput

Compute (SM) [%] -

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0
Speed Of Light (SOL) [%]
Compute Throughput Breakdown Memory Throughput Breakdown
SM: Mio2rf Writeback Active [%] 3,11 DRAM: Cycles Active [%] 92,37
SM: Inst Executed Pipe Lsu [%] 2,74 DRAM: Dram Sect{ dram__cycles_active.avg.pct_of_peak_sustained_elapsed
SM: Issue Active [%] 184 L2:D Sectors Fill [| ¥ of cycles where DRAM was active
SM: Inst Executed [%] 1,84 L1: Data Pipe LsU | 4ram: Device (main) memory, where the GPUs global and local memory resides.
SM: Mio Inst Issued [%] 1,38 L1: Lsu Writeback ArmweTs] yae 7 e e
SM: Pipe Fp64 Cycles Active [%] 0,84 L2: T Sectors [%] 24 56
SM: Pipe Shared Cycles Active [%] 0,84 L2: Lts2xbar Cycles Active [%] 23,90
SM: Pipe Alu Cycles Active [%] 0,78 L2: XbarZlts Cycles Active [%] 21,23
SM: Pipe Fma Cycles Active [%] 0,67 L2: T Tag Requests [%] 20,96
ChA: Inct Cwvoraitod PDinag Mha Prad On A [92] ngEo [1- KA YharH1tew Poad Corntnre [90] 10 35

22

Anvigide 2

Where Should | Start Profiling?

lways tradeoff between slightly conflicting goals
Performance; Maintainability; Effort

tart with a system-level view - Nsight Systems

nsure you understand your timeline, and where the GPU is active/inactive
where initialization happens
how the time-% shifts for different relevant workloads

ake the low-hanging fruit!

£2] NVIDIA Nsight Systems 2023.2.1 - m] X

File View Tools Help

scale_report.qdrep
= Timeline View v @ a 1x 3 warnings, 15 messages
Os » -
» CPU (96)
~ CUDA HW (0000:03:00.0 - TR L2]2 i et B N et

¥ 64.5% Context 1
* 100.0% Kernels
~ 100.0% scale _E , flo..
100.0% scale(float, f _EZ effloat, flo...
» 35.5% Unified memory

v Threads (7)

on't shy away from kernel-level optimization, but ensure you understand impact
Again, Amdahl's: Hypothetically, optimized kernel takes O s, how large is whole-program speedup?

eneral guidelines - if your whole timeline is a single kernel, by all means start optimizing it first!

Performance Optimization session has more detail on Nsight Compute

- '] Ak L o Ll S [1l
vV [4892)] scale_vector ¥ —————————————— "™ - T] LH
OS runtime libraries sem_timedwait L sem_timedwait
CUDA profiling data flush overhead
[»
Events View v
Name X
~ Name Start Duration TID | Description:
1 » cudaMallocManaged 0,27528s 265,216 ms | 4892
227 » cudaMallocManaged 0,540498s 23380ps 4892
229 scale_vector_um!main 0,540807s | - 4892
230 scale_vector_um!main 0,541117s | - 4892
23 scale_vector_um!main 0,541227s | - 4892
232 scale_vector_um!main 0,541486s - 4892
233 scale_vector_um!main 0,541596s | - 4892
234 scale_vector_um!main 0,541706s | - 4892
235 scale_vector_um!main 0,541939s - 4892
236 scale_vector_um!main 0,542105s | - 4892
237 scale_vector_um!main 0,542297s | - 4892
238 scale_vector_um!main 0,542569s | - 4892
239 scale_vector_um!main 0,54268s - 4892
240 scale_vector_um!main 0,542789s - 4892
241 scale vector um!main 0,542948s - 4892 b
(m]
{7 NVIDIA Nsight Compute -] X
File Connection Debug Profile Tools Window Help
%) Connect Baselines Sy Metric Details
spmv_v100_21.5_0.ncu-rep
Page: Details ¥ Result: 0- 545-main_41_gpu v | ¥ || | Add Baseline |~/ | Apply Rules B8 Occupancy Calculator Copy as Image '~
Result Time Cycles Regs GPU SM Frequency CC Process ® O 0 O
. Current 545 - main_41_gpu (63443, 1, 1)x(128,1,1) 7,75msecond 10.176.310 80 0 - Tesla V100-SXM2-16GB 1,31 cycle/nsecond 7.0 [19559] spmv

© The report contains imported source files.

* GPU Speed Of Light Throughput All -)

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical
maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and
memory resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 3,11 Duration [msecond) 7,75
Memory Throughput [%] 92,37 Elapsed Cycles [cycle] 10.176.310
L1/TEX Cache Throughput [%) 32,76 SM Active Cycles [cycle] 10.160.469,39
L2 Cache Throughput [%] 31,70 SM Frequency [cycle/nsecond] 1,31
DRAM Throughput %) 92,37 DRAM Frequency [cycle/usecond] 878,26

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be

High T hy
o SO shifted from the most utilized to another unit. Start by analyzing workloads in the » Memory Workload Analysis section.

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and close to 1% of

@ Roofline Analysis its fp64 peak performance.

GPU Throughput

compute (sw) 1% [
Memory [%] —

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0
Speed Of Light (SOL) [%]
Compute Throughput Breakdown Memory Throughput Breakdown
SM: Mio2rf Writeback Active [%) 3n DRAM: Cycles Active [%) 92,37
SM: Inst Executed Pipe Lsu [%] 2,74 DRAM: Dram Sect{ dram__cycles_active.avg.pct_of_peak_sustained_elapsed
SM: Issue Active [%] 1,84 L2: D Sectors Fill { ¥ of cycles where DRAM was active
SM: Inst Executed [%] 1,84 L1:Data Pipe Lsu | yram; Device (main) memory, where the GPUs global and local memory resides.
SM: Mio Inst Issued [%) 1,38 L1: Lsu Writeback ActveT7y T
SM: Pipe Fp64 Cycles Active %) 0,84 L2: T Sectors [%) 24,56
SM: Pipe Shared Cycles Active [%] 0,84 L2: Lts2xbar Cycles Active [%) 23,90
SM: Pipe Alu Cycles Active [%) 0,78 L2: Xbar2lts Cycles Active [%] 21,23
SM: Pipe Fma Cycles Active [%] 0,67 L2: T Tag Requests [%] 20,96

23

NVIDIA.

System-level Profiling with Nsight Systems

Global timeline view

CUDA HW: streams, kernels, memory

Different traces, e.g. CUDA, MP!
» correlations API <-> HW

Stack samples
bottom-up, top-down for CPU code

GPU metrics

Events View
Expert Systems

looks at single process (tree)

» correlate multi-process reports into
single timeline

ﬁ} NVIDIA Nsight Systems 2021.4.7 — L] it
File View Tools Help
Jacobi_metncs_no-nvix.0.nsys-rep
= Timeline View v =] Q) 1x Ay 2 warnings, 16 messages
15 ~ +850ms +900ms +950ms 25 +50ms +100ms -
» GPU (0000:03:00.0 - NVIDIA
* CUDA HW (0000:03:00.0 - i EREEE —
M DtoH
b 61.4% Default stream 7 I'-,_,.-' [Memcpy DioH
» 31.8% Stream 13 1 1
b £.5% Stream 16
5 streams hidden... —
* Threads (8)
| v "y T - 1 I
= v/ [10309] MP| Rank 0 - g E i! g% g_] é L
MP | MPI_Sendrecv [41,692 ... [MPLS...| M... [MPL_S...| MPI_Sen... [MPL_...|| MPL..| |MPLS.. |
|IlliI --------- N | e -
CUDA AP ‘cudafiostaioe) GREIR [DTEEEEENEE ML e
Profiler overhead
V| [10367] jacobi - !
o threads hidden... =— |-
Name v ‘
~ Mame Start Duration TID GPU Context + | Description:
Memset 1,88258s 3,200 ps GPU O Stream 13 void jacobi_kernel<(int)32, -
* float *, int, int, int, bool)
G Memcpy DtoD | 1,88565s 5024 ps GPU O Stream 14 Begins: 1,88259s
7 Memcpy DtoH | 1,88565s 4 864 us GPU O Stream 13 Ends: 1,88565s (+3,050 ms)
b el o o DT B4 e e e b
C)
24

<ANVIDIA. I

Nsight Systems Basic Workflow

Navigating the timeline and finding interesting areas

ﬁ} NVIDIA Nsight Systems 2021.4.1 — [] ot

File View Tools Help

Jacobi_metncs_no-nvix.0.nsys-rep

= Timeline View - Q1 Ay 2 warnings, 16 messages

» (= 0,55 15 1,55 g 2,55 3s =

* CPU (96)

» GPU {0000:03:00.0 - NVIDIA ATC

» CUDA HW (0000:03:00.0 - NVID

- Threads (8]
e Mdis, B bl . . . LN A MRAiUE [k . L L
[10309] MPI Rank O ~ N S— —] —] — § NEN SN —] - -
—_j— — - TTMEETE TTU"TENE TT™ i
MPI | MPL_Init [314,790...]
CUDA API [cudaFree i:l[cl_ﬂaFr...:[u.ldaFr-EEHusl_']
Profiler overhead %
¥ [10367] jacobi ~ | = g L
b threads hidden... = _ _) _ _
1 4
Events View
MName
4~ Name Start Duration GPU Context + ' Description:
1 initialize_boundaries{float *, float *, float, int, int, Int, 1... | 1,88146s 15,360 ps GPU O Stream 7
2 void jacobi_kernel<{int)32, (int)32>(float *, const floa... | 1,88259s 3,056 ms GPU (O Stream 13
3 void jacobi_kernel<(int)32, (int)32=(float *, const floa... | 1,88574s 3,052 ms GPU 0O Stream 13
4 void jacobi_kernel<(int)32, (int)32>(float *, const floa... | 1,88884s 3,051 ms GPU O Stream 13
5 void jacobi_kernel<{(int)32, (int)32>(float *, const floa... | 1,89193s 2,052 ms GPU O Stream 13
CJ

25 <ANVIDIA. I

Launching the Profilers

module load GCC Nsight-Systems Nsight-Compute

Nsight Systems
nsys (CLI) and nsys-ui (GUI)

Record timeline:
nsys profile -o scale_um_baseline ./scale_vector_um

Always specify a meaningful output file name. Auto-timestamping: -0 S(date +%Y%m%d_%H-%M-%S) __my_app

Nsight Compute
ncu (CLI) and ncu-ui (GUI)

Record all kernels, or (here) select specific instance:
ncu --set full -k scale -s 8 -¢c 1 -f -0 scale_kernel_baseline ./scale_vector_um

Nsight Systems can help generate the -s/-c arguments:

v CUDA (Tesla V100-SXM2-16GB)

v 80.0% Context 1

v 100.0% Kernels

Analyze the selected kernel with NVIDIA Nsight Compute

v 100.0% scale

Copy ToolTip

100.0% scale(float, float*, 1

(-!"\If'\\f rlll"l"!'\l"\'l' T:mr\

26 NVIDIA.

Task 3

Location of code: 2-Tools/exercises/tasks/task3

See Instructions.ipynb

Use the command line tools to gather a profile
Then use the GUI to view it: X-Forwarding, or Xpra (described in the .ipynb)

Objective: Get to know the tools and basic workflow. Check the .ipynb and the Makefile:
Main Goal: Use Nsight Systems to write scale_vector_um’s timeline to file and open the result in the GUI

Try to determine:

Kernel runtime
CUDA API operations and their duration

Optional Goal: Use Nsight Compute to profile a specific kernel on the command line, then write the output to a file and open it
in the GUI

What are the limiters of the kernel?

2/ NVIDIA.

A first (I)Nsight

Use the command line
srun nsys profile --trace=cuda,nvtx,mpi --output=my_report.%q{SLURM_PROCID} ./jacobi -niter 160

Inspect results: Open the report file in the GUI
Also possible to get details on command line
Either add --stats to profile command line, or: nsys stats --help

Runs set of reports on command line, customizable (sqglite +):
Useful to check validity of profile, identify important kernels

Running [.../reports/ jacobi_metrics_more-nvtx.0.sqglite]...

Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns)

36750359 20 1837518.0 1838466.5 622945 3055044 1245121.7(void jacobi_kernel
22816 2 11408 .0 11408 .0 7520 15296 5498 .5 \\initialize_boundaries

28 NVIDIA.

Same section of timeline as before
- Events view: Quick navigation

Like manual timing, only less work
Nesting

Correlation, filtering

Adding Some Color

Code annotation with NVTX

25 ~ +350ms +400ms

» CPU (96)

¥ GPU (0000:03:00.0 - NVIDIA
» CUDA HW (0000:03:00.C 1
* Threads (8]

* V| [17825] MPI Rank Q0 = ® i E
MP
MNVTX single_gpu [93,348 ms]
FRRRERERREME
CUDA API cudatiostatioc (@ |11

Profiler overhead
v [17878] jacobi ~

o threads hidden... —

cvents View bl

4 Name

v [] init

Start
01707 7s

v I lacobi solve Highlight Selected on Timeline

Show Current on Timeline

Copy Selected

+450ms

+500ms

+550ms +600ms

+650ms

+ 7/00ms

—

MP_Send

:

R .| MPI_Sendrecv [63,695 ms] |MPI_Sendrecv [55,344 I:I e [

(eudaVemepy) |@lcu) ..

Duration

2,490 s

I kernel

[N L L

Il mp 2,66103s
Il norm 2,66114s
v] it_001 2,66127s

oo LS
105,391 ps
128,150 ps
751,182 s

|. culpcOpenMemHandile |

Description:

it 000
Beqgins: 2,66035s

Ends: 2,66127s (+917,263 ps)

Thread: 17825

29 <ANVIDIA. I

Adding NVTX

Simple range-based API

* #include "nvtx3/nvToolsExt.h"

- NVTX v3 is header-only, needs just -1d1 int main(int argc, char** argv) {
» C++ and Python APlIs PUSH_RANGE ("main", ©)
| . . PUSH_RANGE("init", 1)
* Fortran: NVHPC compilers include module do_initialization():
» Just use nvtx and -lnvhpcwrapnvtx POP_RANGE
- Other compilers: See blog posts linked below [* ... %/
o | PUSH_RANGE ("computation”, 2)
¢ Deflnltely: IﬂClUde PUSH/POP Macros (See ||nkS belOW) jacobi_ke rnel<<</* o */' Compute_st ream>>>(L) .
PUSH RANGE (name, color idx) cudaStreamSynchronize(compute_stream);
— — POP_RANGE
» Sprinkle them strategically through code /* ... %/
* Use hierarchically: Nest ranges \ POP_RANGE

* Not shown: Advanced usage (domains, ...)

» Similar range-based annotations exist for other tools
* e.g. SCOREP USER_REGION_BEGIN

https://github.com/NVIDIA/NVTX and https://nvidia.github.io/NVTX/#how-do-i-use-nvtx-in-my-code

https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

30 <A NVIDIA. I

https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfnvtx-runtime
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/group__SCOREP__User.html#gaab4b3ccc2b169320c1d3bf7fe19165f9
https://github.com/NVIDIA/NVTX
https://nvidia.github.io/NVTX/#how-do-i-use-nvtx-in-my-code
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

Nsight Systems Workflow With NVTX

Repeating the analysis

@ NVIDIA Nsight Systems 2021.4.1 — L] et

File View Tools Help

Jacobi_metrnics_more-nvbx.0.nsys-rep

' = Timeline View - Q 1x U | Ay 2 warnings, 16 messages

& 0,55 15 1,55 25 2 5s 3s 3,55 A~

r CPU (96)

} —_—— e e e— o —— e - — - - - — - —_—— e e e

» GPU {0000:03:00.0 - NVIDIA
r CUDA HW (0000:03:00.0 - ©
* Threads (8)

Ll L

i

:

]
B

v V| [17825] MPI Rank 0 ~ i

MPI | MPI_Init [696,556 ms]

NVTX
CUDA API _[ml:laFm..:[cudaFrEEH...]
Profiler overhead
| _ __ kb 1 ,
V| [17878] jacobi ~] - Yoss,
b threads hidden... — _ _ _ _ =
4 b
Events View b
MName = .
Description:
Right-click a timeline row and select "Show in Events View" to see events here
CJ

31 <A NVIDIA. I

GPU Metrics in Nsight Systems

..and other traces you can activate

Valuable low-overhead insight into HW
usage:

« SM Instructions

- DRAM Bandwidth, PCle Bandwith
(GPUDirect)

Also: Memory usage, Page Faults (higher
overhead)

» CUDA Programming guide: Unified Memory
Programming

Can save kernel-level profiling effort!

nsys profile
-—gpu-metrics—-device=0
—-—cuda—-memory-usage=true
——cuda-um-cpu-page—-faults=true
—-—cuda-um—-gpu-page—-faults=true
./ app

0s ~ BYERIENE +679ms +680ms +864ms +865ms
* GPU (0000:07:00.0 - AT00-5xM-:

* GPU Metnics [10 kHzZ]

GPC Clock Frequency

5¥S Clock Frequency
GR Active

S Active

(SM Instructions >

¥ 5M Warp Occupancy

(DRAM Eanc:lwid@

» PCle Bandwidth

* CUDA HW {0000:07:00.0 - A100

¥ 78.2% Context 1

< Memory usage >

¥ 100.0% Kernels . N
Memory:
* 20.8% Unified memonry < m Usage: 512,00 MIB
~— - mma;g]]ime i E.'n:ﬁ':‘lldﬂ..l

< GPFUPage Faults >

| |
1l

IR
R

¥ 100.0% Memory
43.3% HtoD transfer

56.7% DtoH transfer
* Threads (7)

* v [1225233] transpose -

OS runtime libraries

~ lcucapevicesyn..

CLIDA AFI

32 <ANVIDIA. I

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

Other Profilers

Large-scale MPI profiling, custom tooling, and other uses

Performance counters available via CUPTI (CUDA

Profiling Tools Interface)

» Build your own profiler (integration):
https://docs.nvidia.com/cupti/index.html

Score-P: Measurement infrastracture, can record

CPU/GPU

Cube: Display hierarchical info collected via Score-P

Vampir: Analyze application traces, discover MPI issues

.. and many more

Restore Setling & Save Settings

Absolute

| Metric tree

v [0.00 Cycles (#)
v [] 0.00 Completion Stalls
[] 0.00 Stall due to BR or CR

>
>
>
>

v [0.00 Stall due to Load/Store

7.67e10 Stall due to BR or CR
@ 1.02e11 Stall due to Fixed-Point
8.38e10 Stall due to Vector/Scalar

v 6.38e8 Stall due to Dcache Miss

v [] 0.00 Stall due to L2/L3 Hit
3.15e8 L2/L3 hit with conflict
1.57e10 L2/L3 hit with no conflict

v [] 0.00 Stall due to L3 Miss
3.15e7 Stall due to On-chip L2/L3
5.48e8 Stall due to On-chip Memory
6.64e6 Stall due to Off-chip L2/L3/Mem

5.84e7 Stall due to Off-node Memory

[0 1.96e11 Waiting to Complete
s 3.20e10 Thread Blocked

» @ 1.11e11 Completion Table Empty

[3.65e11 Completion Cycles

v [0.00 Stall due to LSU Reject
5.29e7 Reject due to Load-Hit
5.79e8 Reject due to ERAT Miss
7.09e8 Reject due to LMQ Full
1.11e9 Reject due to Reject {other)
[0 2.30e11 Stall due to Store Finish
[1.35e11 Stall due to Load Finish
5.65e10 Stall due to Store Forward
1.22e10 Stall due to Load/Store (other)
3.96e7 Stall due to Next-to-Complete Flush
8.45e9 Stall due to other reasons

Absolute

L Fiat view

Cube-4.3.4: 6445BF3A-CC85-4A88-A4CA-0B1C54BBFR4E/cpi_der_full.cubex

Absolute

(8] BoxPlot

v 1.41ed main

>

>

v

rr

]] O I I) v v v v N I

v [l 9.27e5 MAIN_

1.07e7 mpi_setup_
1.29e4 MP|_Bcast
2.40ed env_setup_
56.00 zone_setup_
1.62ed map_zones_
567.00 zone_starts_
432.00 set_constants_
7.15e7 initialize_
1.96e7 exact_rhs_
3778.00 timer_clear_
9.16e7 exch_gbc_
4.11e6 adi_

3.15e8 compute_rhs_
[] 5.09e9 x_solve_
[] 5.86e9 vy _solve_
[4.15e9 z_solve_
2.40e7 add_
6377.00 MPI_Barrier
A772.00 timer_start_
1799.00 timer_stop_
251.00 timer_read_
1.99e7 verify_
3810.00 MPI_Reduce
2.40ed print_results_
8220.00 MPI_Finalize

v [] - machine Linux

All

¥ [- node jupp00

v [] - MPI Rank 0
7.81e8 Master thread
1.29e8 OMP thread 1
2.89e8 OMP thread 2
1.61e8 OMP thread 3

» O 1.22e9 MPI Rank 1

» O 1.31e9 MPI Rank 2

» O 1.20e9 MPI Rank 3

(16 elements) H

0.00 1.57e10 (1.10%)

1.43e12

0.00

5.09eb (32.51%) 1.57e10

0.00

1.57e10

Selected "x_solve

Ty o e g o o o T o o o T S Tt o e e T o o T e T S o T T o S e T o e e e o e o e e e]

F 4

b

33 <A NVIDIA. I

https://docs.nvidia.com/cupti/index.html

Summary

» Overview of GPU tools
» Debugging with compute-sanitizer and cuda-gdb
* Whole-program optimization with Nsight Systems
 Individual kernels with Nsight Compute

* Profiler usage a "'must” for performance optimization
» ...puts the P in HPC

» Workflow is equally important
* Increase GPU utilization (,fill whitespace®)
* Focus on top kernels, find their limiters, fix them
* Implement and repeat

Questions?

34 <A NVIDIA. I

mailto:mhrywniak@nvidia.com

Further Material

GTC on-demand talks
« What, Where, and Why? Use CUDA Developer Tools to Detect, Locate, and Explain Bugs and Bottlenecks (s41493, GTC 2022)
e Tuning GPU Network and Memory Usage in Apache Spark (s31566, GTC 2022)

Documentation for cuda-gdb, compute-sanitizer, Nsight Systems and Nsight Compute

* In particular, the Kernel Profiling guide (installed with Nsight Compute, or online):
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

GTC labs from Nsight teams: https://github.com/NVIDIA/nsight-training

GPU bootcamp material, e.g., https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/multi_gpu_nways

35 <A NVIDIA. I

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41493/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://github.com/NVIDIA/nsight-training
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/multi_gpu_nways

	Default Section
	Slide 1: CUDA Tools for Profiling and Debugging
	Slide 2: Session outline
	Slide 3: Debugging Correctness: Best Practices
	Slide 4: compute-sanitizer
	Slide 5: compute-sanitizer
	Slide 6: Task 1
	Slide 7: cuda-gdb
	Slide 8: cuda-gdb Cheat Sheet
	Slide 9: cuda-gdb Examples
	Slide 10: The Most Essential Command
	Slide 11: Breakpoints
	Slide 12: Breakpoints and Program State
	Slide 13: GPU-Specifics
	Slide 15: IDE Integration
	Slide 16: Task 2
	Slide 17: Write Debuggable Software
	Slide 18: Debugging Performance
	Slide 19: The Nsight Suite Components
	Slide 20: Interlude - Maximum achievable speedup
	Slide 21: Nsight Systems GUI
	Slide 22: Nsight Compute GUI
	Slide 23: Where Should I Start Profiling?
	Slide 24: System-level Profiling with Nsight Systems
	Slide 25: Nsight Systems Basic Workflow
	Slide 26: Launching the Profilers
	Slide 27: Task 3
	Slide 28: A first (I)Nsight
	Slide 29: Adding Some Color
	Slide 30: Adding NVTX
	Slide 31: Nsight Systems Workflow With NVTX
	Slide 32: GPU Metrics in Nsight Systems
	Slide 33: Other Profilers
	Slide 34: Summary
	Slide 35: Further Material
	Slide 36

