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History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC )

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak
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Status Quo Across Architectures
Performance
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Status Quo Across Architectures
Memory Bandwidth
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JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)
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JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node
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Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2020:
#1 Europe
#7 World
#4* Top/Green500
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JURECA DC – Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2× 64 cores)
192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network
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Getting GPU-Acquainted
Some Applications

Location of Code:
1-Introduction-GPU-Programming/Tasks/getting-started

See Instructions.iypnb for hints.
Make sure to have sourced the course environment!

TASK
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Platform



CPU vs. GPU
Amatter of specialties

Transporting one
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Transporting many
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s
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Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory
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Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
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Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements
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SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if
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A100 vs H100
Comparison of current vs. next generation

A100 H100
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Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4 Waiting
Ready
Context Switch
Processing
Thread/Warp
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs



Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math
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cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 17 April 2023 Slide 26 67

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas


cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);
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cuBLAS Task
Implement amatrix-matrix multiplication

Location of code: 01-Basics/exercises/tasks/02-cuBLAS
Look at Instructions.ipynb Notebook for instructions

1 Implement call to double-precision GEMM of cuBLAS
2 Build with make (loadmodules of this task via source setup.sh!)
3 Run with make run

Check cuBLAS documentation for details on cublasDgemm()

TASK

Member of the Helmholtz Association 17 April 2023 Slide 29 67

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm


Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
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Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?
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Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors
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Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%
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! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?
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Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC, OpenMP
Thrust
Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
PyCUDA, Cupy, Numba

Other alternatives
CUDA Fortran
HIP
OpenCL
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Programming GPUs
Directives



GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug
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GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for ( ) {

#pragma omp parallel for
for ( ) {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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Programming GPUs
Thrust



Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
A precursor to a GPU-accelerated pSTL?
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), … )
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [](){} lambdas!

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/
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Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), [=]

__device__ (auto x, auto y) {return a*x+y;});↪→

// or:
using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 +

_2);↪→

x = d_x;
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Thrust Task
Let’s sort some randomness

TASK

Location of code: 01-Basics/exercises/tasks/03-Thrust
Look at Instructions.ipynb for instructions

1 Sort random numbers with Thrust on CPU and GPU
2 Build with make

Reset environment to original; call source setup.sh or re-login!
3 Run with make run

Check Thrust documentation for details on thrust::sort()
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Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Programming GPUs
CUDA C/C++



CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67



Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for ( ;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67



Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for ( ;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}
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Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!
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Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch
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Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D

Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67



Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67



Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};

Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67



Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
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Grid Sizes
Block and grid sizes are hardware-dependent

For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024

Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();
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Hardware Threads
Mapping Software Threads to Hardware

Thread

CUDA Core

Thread Block

Multiprocessor (SM)

Grid

GPU Device
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Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)

Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)
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Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);
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Task: Scale Vector
Work on an Array of Data

Location of code: 01-Basics/exercises/tasks/04-Scale-Vector
Look at Instructions.ipynb for instructions

1 Implement the whole CUDA flow (allocation, kernel configuration, kernel launch)
2 Build with make
3 Run with make run

Additional task: Look at the version with explicit transfers (_et)

TASK
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Task: Jacobi
Implement Manual Memory Handling

Location of code:
01-Basics/exercises/tasks/05-Jacobi-Explicit-Transfers
Look at Instructions.ipynb for instructions

1 Port the application from Unified Memory to manual memory handling
2 Build with make
3 Run with make run

TASK
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Unified Memory
Overview

Everything started with manual data management
First Unified Memory since CUDA 6.0
Better Unified Memory better since CUDA 8.0
Now: Unified Memory great default, explicit memory only a possible optimization
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Manual Memory vs. Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);
kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);
host_func(data)
cudaFree(data_d); free(data);

}

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data);

}
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Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)
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Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
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100× slower?!
What’s going wrong here?
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Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!
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Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously

cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)
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Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }
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Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Read-only copy of data
is created on GPU during
prefetch
→ CPU and GPU reads will
not fault

Member of the Helmholtz Association 17 April 2023 Slide 65 67



Tuning scale_vector_um
Express data movement

Location of code: 01-Basics/exercises/tasks/06-Scale-Vector-Hints/
Look at Instructions.ipynb for instructions

1 Task: Advise CUDA runtime that data should bemigrated to GPU before kernel call
2 Build with make
3 Run with make run
4 Glimpse at profile with make profile

See also CUDA C programming guide (L.3.) for details on data performance tunig

TASK
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Conclusions

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
Threads, Blocks to expose parallelism for a kernel
Several API routines exist
Unified Memory productive, possibly with hints
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Thank you

for your att
ention!

a.herten@fz-juelich.de
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Glossary I
AMD Manufacturer of CPUs and GPUs. 3, 4, 5, 6, 7, 8, 9

Ampere GPU architecture from NVIDIA (announced 2019). 13, 14, 15
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 186
ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,

7, 8, 9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 8, 9, 94, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 135, 136, 137, 142, 143, 144, 145, 146, 154, 179, 180, 181, 185

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 185
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Glossary II

JURECA Amulti-purpose supercomputer at JSC. 15
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 12, 13, 14

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 58, 59, 60,
184, 185, 186, 187

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 187

OpenACC Directive-based programming, primarily for many-core machines. 94, 96, 97, 98,
99, 100, 101, 180, 181

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 8, 9, 94
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Glossary III

OpenGL The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3, 4, 5, 6, 7, 8, 9

OpenMP Directive-based programming, primarily for multi-threadedmachines. 94, 96,
97, 98, 99

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 69, 108

Tesla The GPU product line for general purpose computing computing of NVIDIA. 12,
142, 143, 144, 145, 146

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 94, 103, 105, 180, 181
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Glossary IV

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 142, 143, 144, 145, 146

Volta GPU architecture from NVIDIA (announced 2017). 187

CPU Central Processing Unit. 12, 15, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 69, 99, 105, 148, 149, 150, 158, 159, 160,
161, 162, 170, 171, 172, 173, 174, 175, 178, 184, 185
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Glossary V

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 64, 65, 66, 68, 72, 73, 74, 75, 76, 77, 88, 95, 96, 97, 98, 99,
102, 105, 107, 118, 119, 120, 135, 136, 137, 142, 143, 144, 145, 146, 148, 149, 150,
151, 152, 153, 158, 159, 160, 161, 162, 170, 171, 172, 173, 174, 175, 177, 178, 179,
180, 181, 184, 185, 186, 187

SIMD Single Instruction, Multiple Data. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
SIMT Single Instruction, Multiple Threads. 23, 24, 25, 38, 39, 41, 42, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60
SM Streaming Multiprocessor. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60

SMT Simultaneous Multithreading. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
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