
CUDA Introduction
GPU Programming Foundations 2023
17 April 2023 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
Introduction

GPU History
JUWELS

JUWELS Cluster
JUWELS Booster

JURECA DC
App Showcase

Platform
Overview
3 Core Features

Memory
Asynchronicity
SIMT
Generation Comparison

High Throughput
Summary

Programming GPUs
Libraries
GPU Programming Models
Directives
Thrust
CUDA C/C++

Kernels
Grid, Blocks
Memory Management
Unified Memory

Member of the Helmholtz Association 17 April 2023 Slide 1 67

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL

2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]

2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs
: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

Soon : JUPITER (≈ 1 EFLOP/s, JSC)
: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

Soon : JUPITER (≈ 1 EFLOP/s, JSC)
: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 17 April 2023 Slide 2 67

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016 2018 2020

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

MI100

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060
Tesla

 C
2050 Tesla

 M
2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100 Tesla
 V

100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Performance, Double Precision

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 17 April 2023 Slide 3 67

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016 2018 2020

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970 HD 7970 G
Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

MI25

MI60 MI100

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4
Platin

um 8180
Platin

um 9282

Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Memory Bandwidth Comparison

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 17 April 2023 Slide 3 67

JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)

Member of the Helmholtz Association 17 April 2023 Slide 4 67

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Member of the Helmholtz Association 17 April 2023 Slide 5 67

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2020:
#1 Europe
#7 World
#4* Top/Green500

Member of the Helmholtz Association 17 April 2023 Slide 5 67

https://www.top500.org/lists/top500/2021/11/

JURECA DC – Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2× 64 cores)
192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network

Member of the Helmholtz Association 17 April 2023 Slide 6 67

Getting GPU-Acquainted
Some Applications

Location of Code:
1-Introduction-GPU-Programming/Tasks/getting-started

See Instructions.iypnb for hints.
Make sure to have sourced the course environment!

TASK

Member of the Helmholtz Association 17 April 2023 Slide 7 67

Getting GPU-Acquainted
Some Applications

Location of Code:
1-Introduction-GPU-Programming/Tasks/getting-started

See Instructions.iypnb for hints.
Make sure to have sourced the course environment!

GEMM N-Body

Dot ProductMandelbrot

TASK

Member of the Helmholtz Association 17 April 2023 Slide 7 67

Getting GPU-Acquainted
Some Applications

0 2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

0

2000

4000

6000

GF
LO

P/
s

DGEMM Benchmark

CPU
GPU

GEMM

0 20000 40000 60000 80000 100000 120000
Number of Particles

0

5000

10000

15000

20000

GF
LO

P/
s

N-Body Benchmark

1 GPU SP
2 GPUs SP
4 GPUs SP
1 GPU DP
2 GPUs DP
4 GPUs DP N-Body

103 104 105 106 107 108 109

Vector Length

101

102

103

DDot Benchmark

Device
CPU
GPU

Dot Product

0 5000 10000 15000 20000 25000 30000
Width of Image

0

500

1000

1500

M
Pi

xe
l/

s

Mandelbrot Benchmark

CPU
GPU

Mandelbrot

TASK

Member of the Helmholtz Association 17 April 2023 Slide 7 67

Platform

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[7
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
8]

Transporting many

Member of the Helmholtz Association 17 April 2023 Slide 9 67

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[7
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
8]

Transporting many

Member of the Helmholtz Association 17 April 2023 Slide 9 67

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 17 April 2023 Slide 10 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 11 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 11 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 11 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 4
≈32GB/s

HBM2
1555GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 4
≈32GB/s

HBM2
1555GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!

Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 4
≈32GB/s

HBM2
1555GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Unified Memory

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 4
≈32GB/s

HBM2
1555GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 4
≈32GB/s

HBM2
1555GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

Member of the Helmholtz Association 17 April 2023 Slide 12 67

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 17 April 2023 Slide 13 67

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 17 April 2023 Slide 13 67

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 17 April 2023 Slide 13 67

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 17 April 2023 Slide 13 67

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 17 April 2023 Slide 13 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 14 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 14 67

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Member of the Helmholtz Association 17 April 2023 Slide 15 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 16 67

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 17 April 2023 Slide 16 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements

(
Single
Multiple

)
⊗
(
Instruction

Data

)

SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)

SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data

MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data

MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data

SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data

MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data

SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Pr
oc
es
si
ng

U
ni
ts

Pr
oc
es
si
ng

U
ni
ts

Pr
oc
es
si
ng

U
ni
ts

Pr
oc
es
si
ng

U
ni
ts

MIMD

Member of the Helmholtz Association 17 April 2023 Slide 17 67

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements(

Single
Multiple

)
⊗
(
Instruction

Data

)
SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

U
ni
t

SISD

Pr
oc
es
si
ng

U
ni
ts

MISD

Pr
oc
es
si
ng

U
ni
ts

SIMD

Sc
he

du
le
r

SIMT

.. .

Warp

. . .

Warp

. . .

Warp

Member of the Helmholtz Association 17 April 2023 Slide 17 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Multiprocessor

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 17 April 2023 Slide 18 67

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 17 April 2023 Slide 19 67

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 17 April 2023 Slide 19 67

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 17 April 2023 Slide 19 67

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4 Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 17 April 2023 Slide 20 67

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 17 April 2023 Slide 20 67

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4 Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 17 April 2023 Slide 20 67

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 17 April 2023 Slide 21 67

Programming GPUs

Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 17 April 2023 Slide 23 67

http://www.netlib.org/lapack/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 17 April 2023 Slide 24 67

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 17 April 2023 Slide 24 67

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 17 April 2023 Slide 25 67

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 17 April 2023 Slide 25 67

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 17 April 2023 Slide 25 67

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 17 April 2023 Slide 25 67

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 17 April 2023 Slide 25 67

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 17 April 2023 Slide 26 67

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 17 April 2023 Slide 27 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 17 April 2023 Slide 28 67

cuBLAS Task
Implement amatrix-matrix multiplication

Location of code: 01-Basics/exercises/tasks/02-cuBLAS
Look at Instructions.ipynb Notebook for instructions

1 Implement call to double-precision GEMM of cuBLAS
2 Build with make (loadmodules of this task via source setup.sh!)
3 Run with make run

Check cuBLAS documentation for details on cublasDgemm()

TASK

Member of the Helmholtz Association 17 April 2023 Slide 29 67

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 17 April 2023 Slide 30 67

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 17 April 2023 Slide 30 67

! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?

Member of the Helmholtz Association 17 April 2023 Slide 31 67

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 17 April 2023 Slide 32 67

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 17 April 2023 Slide 32 67

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 17 April 2023 Slide 32 67

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 17 April 2023 Slide 32 67

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Member of the Helmholtz Association 17 April 2023 Slide 33 67

Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC, OpenMP
Thrust
Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
PyCUDA, Cupy, Numba

Other alternatives
CUDA Fortran
HIP
OpenCL

Member of the Helmholtz Association 17 April 2023 Slide 34 67

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 17 April 2023 Slide 36 67

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 17 April 2023 Slide 36 67

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 17 April 2023 Slide 36 67

GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for () {

#pragma omp parallel for
for () {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran

Member of the Helmholtz Association 17 April 2023 Slide 37 67

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 17 April 2023 Slide 38 67

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 17 April 2023 Slide 38 67

Programming GPUs
Thrust

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
A precursor to a GPU-accelerated pSTL?
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), …)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [](){} lambdas!

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 17 April 2023 Slide 40 67

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), [=]

__device__ (auto x, auto y) {return a*x+y;});↪→

// or:
using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 +

_2);↪→

x = d_x;

Member of the Helmholtz Association 17 April 2023 Slide 41 67

Thrust Task
Let’s sort some randomness

TASK

Location of code: 01-Basics/exercises/tasks/03-Thrust
Look at Instructions.ipynb for instructions

1 Sort random numbers with Thrust on CPU and GPU
2 Build with make

Reset environment to original; call source setup.sh or re-login!
3 Run with make run

Check Thrust documentation for details on thrust::sort()

Member of the Helmholtz Association 17 April 2023 Slide 42 67

http://thrust.github.io/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 17 April 2023 Slide 43 67

Programming GPUs
CUDA C/C++

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 17 April 2023 Slide 45 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 17 April 2023 Slide 46 67

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 17 April 2023 Slide 47 67

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)

Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 17 April 2023 Slide 47 67

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 17 April 2023 Slide 47 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 17 April 2023 Slide 48 67

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 17 April 2023 Slide 49 67

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

Member of the Helmholtz Association 17 April 2023 Slide 50 67

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 17 April 2023 Slide 50 67

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!

Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 17 April 2023 Slide 50 67

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 17 April 2023 Slide 50 67

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 17 April 2023 Slide 50 67

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 17 April 2023 Slide 51 67

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters
shared Dynamic sharedmemory

Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 17 April 2023 Slide 51 67

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters
shared Dynamic sharedmemory

Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 17 April 2023 Slide 51 67

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D

Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};

Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 17 April 2023 Slide 52 67

Grid Sizes
Block and grid sizes are hardware-dependent

For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024

Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 17 April 2023 Slide 53 67

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024

Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 17 April 2023 Slide 53 67

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 17 April 2023 Slide 53 67

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples

Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 17 April 2023 Slide 53 67

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 17 April 2023 Slide 53 67

Hardware Threads
Mapping Software Threads to Hardware

Thread

CUDA Core

Thread Block

Multiprocessor (SM)

Grid

GPU Device

Member of the Helmholtz Association 17 April 2023 Slide 54 67

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)

Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 17 April 2023 Slide 55 67

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 17 April 2023 Slide 55 67

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 17 April 2023 Slide 55 67

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 17 April 2023 Slide 56 67

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 17 April 2023 Slide 56 67

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 17 April 2023 Slide 56 67

Task: Scale Vector
Work on an Array of Data

Location of code: 01-Basics/exercises/tasks/04-Scale-Vector
Look at Instructions.ipynb for instructions

1 Implement the whole CUDA flow (allocation, kernel configuration, kernel launch)
2 Build with make
3 Run with make run

Additional task: Look at the version with explicit transfers (_et)

TASK

Member of the Helmholtz Association 17 April 2023 Slide 57 67

Task: Jacobi
Implement Manual Memory Handling

Location of code:
01-Basics/exercises/tasks/05-Jacobi-Explicit-Transfers
Look at Instructions.ipynb for instructions

1 Port the application from Unified Memory to manual memory handling
2 Build with make
3 Run with make run

TASK

Member of the Helmholtz Association 17 April 2023 Slide 58 67

Unified Memory
Overview

Everything started with manual data management
First Unified Memory since CUDA 6.0
Better Unified Memory better since CUDA 8.0
Now: Unified Memory great default, explicit memory only a possible optimization

Member of the Helmholtz Association 17 April 2023 Slide 59 67

Manual Memory vs. Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);
kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);
host_func(data)
cudaFree(data_d); free(data);

}

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data);

}

Member of the Helmholtz Association 17 April 2023 Slide 60 67

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 17 April 2023 Slide 61 67

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 17 April 2023 Slide 61 67

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 17 April 2023 Slide 61 67

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 17 April 2023 Slide 61 67

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 17 April 2023 Slide 61 67

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 17 April 2023 Slide 62 67

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

100× slower?!
What’s going wrong here?

Member of the Helmholtz Association 17 April 2023 Slide 62 67

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 17 April 2023 Slide 62 67

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 17 April 2023 Slide 62 67

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 17 April 2023 Slide 63 67

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 17 April 2023 Slide 63 67

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 17 April 2023 Slide 63 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously

cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept

cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping

cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 17 April 2023 Slide 64 67

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Member of the Helmholtz Association 17 April 2023 Slide 65 67

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Member of the Helmholtz Association 17 April 2023 Slide 65 67

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Read-only copy of data
is created on GPU during
prefetch
→ CPU and GPU reads will
not fault

Member of the Helmholtz Association 17 April 2023 Slide 65 67

Tuning scale_vector_um
Express data movement

Location of code: 01-Basics/exercises/tasks/06-Scale-Vector-Hints/
Look at Instructions.ipynb for instructions

1 Task: Advise CUDA runtime that data should bemigrated to GPU before kernel call
2 Build with make
3 Run with make run
4 Glimpse at profile with make profile

See also CUDA C programming guide (L.3.) for details on data performance tunig

TASK

Member of the Helmholtz Association 17 April 2023 Slide 66 67

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#um-performance-tuning

Conclusions

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
Threads, Blocks to expose parallelism for a kernel
Several API routines exist
Unified Memory productive, possibly with hints

Member of the Helmholtz Association 17 April 2023 Slide 67 67

Conclusions

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
Threads, Blocks to expose parallelism for a kernel
Several API routines exist
Unified Memory productive, possibly with hints

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 17 April 2023 Slide 67 67

mailto:a.herten@fz-juelich.de

Appendix

Appendix
Glossary
References

Member of the Helmholtz Association 17 April 2023 Slide 2 10

Glossary I
AMD Manufacturer of CPUs and GPUs. 3, 4, 5, 6, 7, 8, 9

Ampere GPU architecture from NVIDIA (announced 2019). 13, 14, 15
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 186
ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,

7, 8, 9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 8, 9, 94, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 135, 136, 137, 142, 143, 144, 145, 146, 154, 179, 180, 181, 185

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 185

Member of the Helmholtz Association 17 April 2023 Slide 3 10

Glossary II

JURECA Amulti-purpose supercomputer at JSC. 15
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 12, 13, 14

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 58, 59, 60,
184, 185, 186, 187

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 187

OpenACC Directive-based programming, primarily for many-core machines. 94, 96, 97, 98,
99, 100, 101, 180, 181

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 8, 9, 94

Member of the Helmholtz Association 17 April 2023 Slide 4 10

Glossary III

OpenGL The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3, 4, 5, 6, 7, 8, 9

OpenMP Directive-based programming, primarily for multi-threadedmachines. 94, 96,
97, 98, 99

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 69, 108

Tesla The GPU product line for general purpose computing computing of NVIDIA. 12,
142, 143, 144, 145, 146

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 94, 103, 105, 180, 181

Member of the Helmholtz Association 17 April 2023 Slide 5 10

https://thrust.github.io/

Glossary IV

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 142, 143, 144, 145, 146

Volta GPU architecture from NVIDIA (announced 2017). 187

CPU Central Processing Unit. 12, 15, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 69, 99, 105, 148, 149, 150, 158, 159, 160,
161, 162, 170, 171, 172, 173, 174, 175, 178, 184, 185

Member of the Helmholtz Association 17 April 2023 Slide 6 10

Glossary V

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 64, 65, 66, 68, 72, 73, 74, 75, 76, 77, 88, 95, 96, 97, 98, 99,
102, 105, 107, 118, 119, 120, 135, 136, 137, 142, 143, 144, 145, 146, 148, 149, 150,
151, 152, 153, 158, 159, 160, 161, 162, 170, 171, 172, 173, 174, 175, 177, 178, 179,
180, 181, 184, 185, 186, 187

SIMD Single Instruction, Multiple Data. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
SIMT Single Instruction, Multiple Threads. 23, 24, 25, 38, 39, 41, 42, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60
SM Streaming Multiprocessor. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60

SMT Simultaneous Multithreading. 51, 52, 53, 54, 55, 56, 57, 58, 59, 60

Member of the Helmholtz Association 17 April 2023 Slide 7 10

References I

[2] Kenneth E. Hoff III et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware.” In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 277–286. ISBN: 0-201-48560-5. DOI: 10.1145/311535.311567.
URL: http://dx.doi.org/10.1145/311535.311567 (pages 3–9).

[3] Chris McClanahan. “History and Evolution of GPU Architecture.” In: A Survey Paper (2010).
URL: http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-
hist-paper.pdf (pages 3–9).

[4] Jack Dongarra et al. TOP500. Nov. 2016. URL:
https://www.top500.org/lists/2016/11/ (pages 3–9).

[5] Jack Dongarra et al. Green500. Nov. 2016. URL:
https://www.top500.org/green500/lists/2016/11/ (pages 3–9).

Member of the Helmholtz Association 17 April 2023 Slide 8 10

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2016/11/
https://www.top500.org/green500/lists/2016/11/

References II

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 10, 11).

[9] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 72–76).

Member of the Helmholtz Association 17 April 2023 Slide 9 10

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Héctor J. Rivas. Color Reels. Freely available at Unsplash. URL:
https://unsplash.com/photos/87hFrPk3V-s.

[7] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 20, 21).

[8] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 20, 21).

Member of the Helmholtz Association 17 April 2023 Slide 10 10

https://unsplash.com/photos/87hFrPk3V-s
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

	Outline
	Introduction
	GPU History
	JUWELS
	JUWELS Cluster
	JUWELS Booster

	JURECA DC
	App Showcase

	Platform
	Overview
	3 Core Features
	Memory
	Asynchronicity
	SIMT
	Generation Comparison

	High Throughput
	Summary

	Programming GPUs
	Libraries
	GPU Programming Models
	Directives
	Thrust
	CUDA C/C++
	Kernels
	Grid, Blocks
	Memory Management
	Unified Memory

	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References
	References

