001019162 001__ 1019162
001019162 005__ 20231213202051.0
001019162 0247_ $$2doi$$a10.5281/ZENODO.7835783
001019162 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05208
001019162 037__ $$aFZJ-2023-05208
001019162 1001_ $$0P:(DE-Juel1)178612$$aWagner, Adina Svenja$$b0$$eCorresponding author
001019162 1112_ $$aISBI 2023$$cCartagena de Indias$$d2023-04-18 - 2023-04-21$$wColombia
001019162 245__ $$aTowards computational reproducibility when working with very large datasets
001019162 260__ $$c2023
001019162 3367_ $$033$$2EndNote$$aConference Paper
001019162 3367_ $$2DataCite$$aOther
001019162 3367_ $$2BibTeX$$aINPROCEEDINGS
001019162 3367_ $$2DRIVER$$aconferenceObject
001019162 3367_ $$2ORCID$$aLECTURE_SPEECH
001019162 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1702477774_10687$$xAfter Call
001019162 520__ $$aThis archive contains the slides for a talk entitled 'Towards computational reproducibility when working with very large datasets', part of the special session ' 10 years of reproducibility in biomedical research: How can we achieve generalizability and fairness?' at the ISBI 2023 .
001019162 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001019162 588__ $$aDataset connected to DataCite
001019162 650_7 $$2Other$$aISBI
001019162 650_7 $$2Other$$abiomedical imaging
001019162 650_7 $$2Other$$aFAIR
001019162 650_7 $$2Other$$adata analysis
001019162 650_7 $$2Other$$aDataLad
001019162 650_7 $$2Other$$areproducibility
001019162 773__ $$a10.5281/ZENODO.7835783
001019162 8564_ $$uhttps://juser.fz-juelich.de/record/1019162/files/isbi_2023.pdf$$yOpenAccess
001019162 8564_ $$uhttps://juser.fz-juelich.de/record/1019162/files/isbi_2023.gif?subformat=icon$$xicon$$yOpenAccess
001019162 8564_ $$uhttps://juser.fz-juelich.de/record/1019162/files/isbi_2023.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019162 8564_ $$uhttps://juser.fz-juelich.de/record/1019162/files/isbi_2023.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019162 8564_ $$uhttps://juser.fz-juelich.de/record/1019162/files/isbi_2023.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019162 909CO $$ooai:juser.fz-juelich.de:1019162$$popenaire$$popen_access$$pVDB$$pdriver
001019162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178612$$aForschungszentrum Jülich$$b0$$kFZJ
001019162 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001019162 9141_ $$y2023
001019162 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019162 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001019162 980__ $$aconf
001019162 980__ $$aVDB
001019162 980__ $$aUNRESTRICTED
001019162 980__ $$aI:(DE-Juel1)INM-7-20090406
001019162 9801_ $$aFullTexts