
GPU PROGRAMMING WITH CUDA
An Introduction to CUDA Fortran
June 22, 2023 Kaveh Haghighi Mood JSC

Member of the Helmholtz Association

OVERVIEW

Introduction

CUDA Fortran basics

Kernel loop directives (CUF kernels)

Useful libraries

Drop-in Fortran array intrinsics acceleration with CuTENSOR

CUDA Fortran Limitations

ISO standard Fortran + GPUs

Member of the Helmholtz Association June 22, 2023 Slide 1

ACCELERATION POSSIBILITIES

Applications

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association June 22, 2023 Slide 2

WHY CUDA FORTRAN?

GPU support in native Fortran language
Libraries and directive-based programming models are not flexible enough
Not so difficult!
Interoperable with OpenACC and standard language parallelization
Similar to CUDA C
CUDA Libraries

Member of the Helmholtz Association June 22, 2023 Slide 3

FORTRAN VS CUDA FORTRAN
Fortran

program testVecAdd
use mathOps
implicit none

integer, parameter :: N = 40000
real :: a(N)

a = 10.0
call vecAdd(a,1.0)
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd
end module mathOps

Member of the Helmholtz Association June 22, 2023 Slide 4

FORTRAN VS CUDA FORTRAN
CUDA Fortran

program testVecAdd
use mathOps
use cudafor
implicit none

integer, parameter :: N = 40000
real :: a(N)
real,device :: a_d(N)
integer tBlock, grid

a = 10.0
a_d = a
tBlock = 256
grid = ceiling(real(N)/tBlock)
call vecAdd<<<grid,tBlock>>>(a_d,1.0)
a = a_d
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains
attributes(global) subroutine vecAdd(a,b)
implicit none

real :: a(:)
real,value :: b
integer :: i, n

n = size(a)
i= blockDim%x*(blockIdx%x-1)+threadIdx%x
if (i=<n) then
a(i)=a(i)+b

endif

end subroutine vecAdd
end module mathOps

Member of the Helmholtz Association June 22, 2023 Slide 5

CUDA FORTRAN BASICS
Data management

Fortran enabled for CUDA
- device attribute −→ declare variables in the device memory

real,device :: a_d(N)

- Standard Fortran array assignment −→ data copies between host and device + sync

a = a_d

- Standard Fortran allocate and deallocate −→ for both host and device allocations

allocate (a(N),a_d(M), b(M,N))

- managed attribute −→ declare unified memory arrays

real,managed :: a(:)

Memory copy functions (cudaMemcpy, cudaMemcpy2D,...) are also available
Scalars −→ CUDA runtime responsibility, if passed by value

real,value :: b

Member of the Helmholtz Association June 22, 2023 Slide 6

CUDA FORTRAN BASICS
Kernel launch

Fortran enabled for CUDA
- triple chevron notation:
call kernel<<<grid,block[,bytes][,streamid]>>>(arg1,arg2,...)

- attributes(global) −→ mark kernel subroutines
- use cudafor −→ CUDA Fortran types (blockDim%x, blockIdx%x)

Similar to CUDA C loops are replaced with bound checks
Launch parameters can be extended to two and three dimensions
with dim3 derived type:
type(dim3) :: gridDim, blockDim

blockDim = dim3(32,32,1)
gridDim = dim3(ceiling(real(NN)/tBlock%x), ceiling(real(NM)/tBlock%y), 1)
call calcKernel<<<gridDim,blockDim>>>(A_dev,Anew_dev)

Member of the Helmholtz Association June 22, 2023 Slide 7

CUDA FORTRAN BASICS
From a subroutine to a CUDA Kernel

Consider a simple subroutine:

module mathOps
contains

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n

a(i)=a(i)+b
enddo
end subroutine vecAdd

end module mathOps
Member of the Helmholtz Association June 22, 2023 Slide 8

CUDA FORTRAN BASICS
From a subroutine to a CUDA Kernel

Step 1: identify the loop and its index
do i=1,n

Step 2: replace loop boundaries with if statement
if (i=<n) then

a(i)=a(i)+b
endif

Step 3: calculate the loop index using CUDA Fortran variables
i= blockDim%x*(blockIdx%x-1)+threadIdx%x

Step 4: add global attribute
attributes(global) subroutine vecAdd(a,b)

Member of the Helmholtz Association June 22, 2023 Slide 9

TASK1
The first CUDA Fortran program

In this exercise, we’ll scale a vector (array) of single-precision numbers by a scalar.
Navigate to:

07-CUDA_Fortran/exercises/tasks/scale_vector

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association June 22, 2023 Slide 10

IMPORTANT NOTES

use cudafor is necessary to use CUDA Fortran types
The Fortran array notation should be used for simple data transfers not complicated
calculations
Only one device array is allowed on the right hand side. Following statement is not legal:
A = C_dev + B_dev
CUDA Fortran source code should have .cuf or .CUF extension or you can add "-cuda" to
compiler flags

Member of the Helmholtz Association June 22, 2023 Slide 11

TASK2
Jacobi solver with explicit kernel

Navigate to:

07-CUDA_Fortran/exercises/tasks/jacobi-explicit

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association June 22, 2023 Slide 12

ROUTINE QUALIFIERS
In CUDA Fortran you can specify the type of memory you want to use for your data with variable
qualifiers.

default or attributes(host) −→ allocated in the host main memory
attributes(global) −→ kernel subroutine
attributes(device) −→ called from a kernel or another device routine
attributes(grid_global) −→ threads within the grid group are guaranteed to be co-resident.
Allows grid sync operations (on cc70 or better)

Some notes:
Device routines should not have variable with save attribute
Device routines should not contain any host routine

Member of the Helmholtz Association June 22, 2023 Slide 13

VARIABLE QUALIFIERS
In CUDA Fortran you can specify the type of memory you want to use for your data with variable
qualifiers.

default −→ allocated in the host main memory
device −→ device global memory
managed −→ managed memory
constant −→ device constant memory space, read only for device subprograms
shared −→ shared memory, only be declared in a kernels or device routines
pinned −→ allocated in host pagelocked memory

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory

Member of the Helmholtz Association June 22, 2023 Slide 14

ROUTINE QUALIFIERS
In CUDA Fortran you can specify the type of memory you want to use for your data with variable
qualifiers.

default or attributes(host) −→ allocated in the host main memory
attributes(global) −→ kernel subroutine
attributes(device) −→ called from a kernel or another device routine
attributes(grid_global) −→ threads within the grid group are guaranteed to be co-resident.
Allows grid sync operations (on cc70 or better)

Some notes:
Device routines should not have variable with save attribute
Device routines should not contain any host routine

Member of the Helmholtz Association June 22, 2023 Slide 15

CUDA STREAMS IN CUDA FORTRAN
Recap from CUDA cource part 1

Cuda Streams are work queues to express concurrency between different tasks, e.g.
Host to device memory copies
Device to host memory copies
Kernel execution

To overlap different tasks just launch them in different streams
All tasks launched into the same stream are executed in order
Tasks launched into different streams might execute concurrently (depending on available resoucres:
copy engines, compute resources)

Kernel launches are always asynchronous
The default (NULL) stream is used
The default (NULL) stream waits for work in all other streams which do not have the
cudaStreamNonBlocking flag set

Member of the Helmholtz Association June 22, 2023 Slide 16

CUDA STREAMS
How to use

Create / destroy a stream

integer(kind=cuda_stream_kind) :: stream
integer :: istat

istat = cudaStreamCreate(stream2)
istat = cudaStreamDestroy(stream2)

Launch
call kernel <<<gridSize ,blockSize ,0, stream2 >>>(b_d)
istat = cudaMemcpyAsync(a_d , a, nElements, stream1)

Synchronize

istat = cudaStreamSynchronize (stream)

Member of the Helmholtz Association June 22, 2023 Slide 17

CUDA EVENTS IN CUDA FORTRAN
Recap from CUDA cource part 1

Cuda Events are synchronization markers that can be used to:
Time asynchronous tasks in streams
Allow fine grained synchronization within a stream
Allow inter stream synchronization, e.g. let a stream wait for an event in another stream

Member of the Helmholtz Association June 22, 2023 Slide 18

CUDA EVENTS
How to use

Create an event
type (cudaEvent) :: startEvent, stopEvent

istat = cudaEventCreate(startEvent)

Record
istat = cudaEventRecord(startEvent,stream)

Query

istat = cudaEventQuery (event)

Synchronize

istat = cudaEventSynchronize (event)

Member of the Helmholtz Association June 22, 2023 Slide 19

TASK3
CUDA events, Pinned Host Memory and CUDA Streams

Navigate to:

07-CUDA_Fortran/exercises/tasks/streams_and_events

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association June 22, 2023 Slide 20

CUF KERNELS

To many loops? Reductions? Writing kernels is difficult?
Compiler can write kernels for you, using !$CUF directive:

!$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>
do i=1,N
do j=1,M
do k=1,P
...

enddo
enddo

enddo

Member of the Helmholtz Association June 22, 2023 Slide 21

CUF KERNELS

Compiler can choose launch parameters, if "*" is used
The n parameters after do, denotes the minimum debt of nested loops
DO loops must have invariant loop limits
GOTO or EXIT statements are not allowed
Array syntax are not allowed
Kernel launch is asynchronous

Member of the Helmholtz Association June 22, 2023 Slide 22

CUF KERNELS
Explicit Reductions

Since version 21.7 explicit reductions are possible for CUF kernels:

!$cuf kernel do <<< *, *>>> reduce(+:value)
do i=1,N

...

Both the reduce and reduction keywords are accepted
Supported reductions for integers: +, *, max, min, iand, ior, and ieor
Supported reductions for real: +, *, max, min
Supported reductions for complex: +

Member of the Helmholtz Association June 22, 2023 Slide 23

TASK4
Jacobi solver with kernel loop directives

Navigate to:

07-CUDA_Fortran/exercises/tasks/jacobi-cuf

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment
Compare the results with the explicit kernel version

Member of the Helmholtz Association June 22, 2023 Slide 24

USEFUL LIBRARIES INCLUDED IN NVHPC SDK
Why Libraries?

cuRAND cuBLAS cuFFT cuSOLVER cuSPARSE cuTENSOR
Programming GPUs is easy: No need to reinvent the wheel, use libraries!

Delivers good performance
Optimizations for different architectures −→ Not your responsibility
Testing and bug fixing −→ Not your responsibility

Member of the Helmholtz Association June 22, 2023 Slide 25

USEFUL LIBRARIES INCLUDED IN NVHPC SDK
Why Libraries?

cuRAND cuBLAS cuFFT cuSOLVER cuSPARSE cuTENSOR
Programming GPUs is easy: No need to reinvent the wheel, use libraries!

Delivers good performance

Optimizations for different architectures −→ Not your responsibility
Testing and bug fixing −→ Not your responsibility

Member of the Helmholtz Association June 22, 2023 Slide 25

USEFUL LIBRARIES INCLUDED IN NVHPC SDK
Why Libraries?

cuRAND cuBLAS cuFFT cuSOLVER cuSPARSE cuTENSOR
Programming GPUs is easy: No need to reinvent the wheel, use libraries!

Delivers good performance
Optimizations for different architectures −→ Not your responsibility

Testing and bug fixing −→ Not your responsibility

Member of the Helmholtz Association June 22, 2023 Slide 25

USEFUL LIBRARIES INCLUDED IN NVHPC SDK
Why Libraries?

cuRAND cuBLAS cuFFT cuSOLVER cuSPARSE cuTENSOR
Programming GPUs is easy: No need to reinvent the wheel, use libraries!

Delivers good performance
Optimizations for different architectures −→ Not your responsibility
Testing and bug fixing −→ Not your responsibility

Member of the Helmholtz Association June 22, 2023 Slide 25

LIBRARIES
cuBLAS

GPU-accelerated implementation of the basic linear algebra subroutines:
Complete 152 BLAS routines
Multi-GPU support
Supports CUDA streams
Uses Tensor cores if available
cuSPARSE provides similar functionality for sparse matrices

Member of the Helmholtz Association June 22, 2023 Slide 26

LIBRARIES
cuBLAS

How to use:
Two interfaces are available cublas legacy interface is similar to BLAS cublas_v2 have more
options for example to use streams.

1 Create a handle (only for v2):
type(cublasHandle) :: handle
cublasCreate(handle)

2 Copy the data to device.
3 Call cuBLAS:

cublasSaxpy(n, a, x, incx, y, incy) ! v1
saxpy(n, a, x, incx, y, incy) ! v1
cublasSaxpy(h, n, a, x, incx, y, incy) v2

4 Copy the data back to host:
5 Clean up:

cublasDestroy(handle)

Member of the Helmholtz Association June 22, 2023 Slide 27

TASK5
cuBLAS

Matrix-matrix multiplication:
Location of code: 07-CUDA_Fortran/exercises/tasks/cuBLAS
Check cuBLAS documentation for details on cublasDgemm()
For the Fortran interface check URL
Look at Instructions.ipynb Notebook for instructions
implement call to double-precision GEMM of cuBLAS with v1 interface

Member of the Helmholtz Association June 22, 2023 Slide 28

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfblas-runtime

LIBRARIES
cuRAND

CUDA pseudorandom generator:
Host and device random number generator
Nine type of generators include Mersenne Twister, Xorshift and MRG
Supports Uniform, Poisson and Normal distributions

How to use:
1 Create a new generator:

type(curandGenerator) :: g
istat = curandCreateGenerator(g,CURAND_RNG_PSEUDO_DEFAULT)

2 Set the generator options (seed, offset, ...):
istat = curandSetPseudoRandomGeneratorSeed(g,1648195)

3 Generate random numbers:
istat = curandGenerateUniformDouble(g, x_d, sampleSize)

4 Clean up:
istat = curandDestroyGenerator(g)

Member of the Helmholtz Association June 22, 2023 Slide 29

TASK6
Monte Carlo integration with cuRAND

In this exercise, we’ll use cuRAND to generate random numbers for Monte Carlo integration:

I =
∫ b

a
f (x)dx = lim

N→∞

b − a
N

N∑
i=1

f (xi). (1)

Crude MC integration algorithm:
1 Draw the sample out of the uniform distribution
2 Calculate function values with the sample

3 Estimate the results Ies = b−a
N

∑N
i=1 f (xi)

Member of the Helmholtz Association June 22, 2023 Slide 30

TASK6
Monte Carlo integration with cuRAND

Navigate to:

07-CUDA_Fortran/exercises/tasks/cuRAND

Look at Instructions.ipynb for instructions
See the cuRAND documentation for further information: URL
For the Fortran interface check URL
Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association June 22, 2023 Slide 31

https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfrand-runtime

LIBRARIES
cuFFT

GPU-accelerated implementation of FFT:
1D, 2D, 3D transforms
Half, single and double precision, complex and real data types support
Supports CUDA streams
Batch execution
FFTW like API
Multi GPU support

Member of the Helmholtz Association June 22, 2023 Slide 32

LIBRARIES
cuFFT

How to use:
1 Create a plan:

ierr = cufftPlan1D(plan, L, CUFFT_D2Z,1)

2 Copy the data to device
3 Call cuFFT:

ierr = cufftExecD2Z(plan, S, ST)

4 Copy the data back to host
5 Clean up:

cufftDestroy(plan)

Member of the Helmholtz Association June 22, 2023 Slide 33

TASK7
cuFFT

Use cuFFT to find the components of a signal:
Location of code: 07-CUDA_Fortran/exercises/tasks/cuFFT
Check cuFFT documentation for details on cufftPlan1d and cufftExecD2Z

For the Fortran interface check URL
Look at Instructions.ipynb notebook for instructions
implement call to cuFFT to perform a real to complex Fourier transformation
use Instructions.ipynb notebook to visualize results

Member of the Helmholtz Association June 22, 2023 Slide 34

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cf-fft-runtime

LIBRARIES
cuSOLVER

Collection of dense and sparse direct linear solvers and Eigen solvers:
Similar to LAPACK
Both dence and sparse solvers
Multi GPU support
Tensor core support

Member of the Helmholtz Association June 22, 2023 Slide 35

LIBRARIES
cuTENSOR

Tensor Linear Algebra on GPUs:
Direct Tensor Contraction
Reduction
Elementwise Operations
Mixed precision support
Multi GPU support
High level interfaces (cutensorex) for Fortran intrinsic array functions (see next section)

Member of the Helmholtz Association June 22, 2023 Slide 36

FORTRAN ARRAY INTRINSICS WITH CUTENSOR

nvfortran compiler can map Fortran intrinsic to to CuTENSOR
Close to zero efforts acceleration for intrinsic functions like matmul, transpose, reshape
functions!
Just add use cutensorex and recompile with -cudalib=cutensor !

Member of the Helmholtz Association June 22, 2023 Slide 37

TASK8
Fortran array intrinsics using Tensor Cores

Navigate to:

07-CUDA_Fortran/exercises/tasks/matmul-cutensor

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment
Compare the calculation time with and without the cuTENSOR

Member of the Helmholtz Association June 22, 2023 Slide 38

TASK8
Fortran array intrinsics using Tensor Cores

Results on JUWELS Booster (gflops):

Size 8192 16384
Naive CUDA shared mem implementation 1945 2205
cuTENSOREX 16083 16435

Member of the Helmholtz Association June 22, 2023 Slide 39

CUDA FORTRAN LIMITATIONS
CUDA Fortran is the most mature programming model for accelerating Fortran codes. Still, there
are some limitations:

Not portable! You have to use Nvidia GPUs
Supported only by Nvidia HPC SDK (formerly known as PGI) and IBM XL Fortran compilers
For some CUDA libraries, you have to write interfaces
Small community

Member of the Helmholtz Association June 22, 2023 Slide 40

ISO STANDARD FORTRAN + GPUS!

Non-standard libraries, directives or language extensions are not attractive enough?
Standard portable acceleration is possible now!
Fortran 2008 DO CONCURRENT supported by nvfortran:
subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n

a(i)=a(i)+b
enddo

end subroutine vecAdd

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do concurrent (i = 1: n)
a(i)=a(i)+b

enddo

end subroutine vecAdd

Member of the Helmholtz Association June 22, 2023 Slide 41

ISO STANDARD FORTRAN ON GPUS!

Correctness? −→ You are responsible

Data transfer? −→ Compiler and runtime env

Additional -stdpar compilation flag is necessary

- -stdpar=multicore−→ compiles for CPU
- -stdpar=gpu,multicore−→ compiles for GPU or CPU

Member of the Helmholtz Association June 22, 2023 Slide 42

ISO STANDARD FORTRAN ON GPUS!

Nested loop example:
do i = 1, n
do j =1,m
C(i,j)=a(i)+b(j)
enddo

enddo

do concurrent (i = 1: n, j=1: m)
C(i,j)=a(i)+b(j)

enddo

Data privatization:
DO CONCURRENT (...) [locality-spec]

locality-spec options:
local(list)
local_init(list)
share(list)

Member of the Helmholtz Association June 22, 2023 Slide 43

ISO STANDARD FORTRAN TASK
Jacobi solver with do concurrent

Navigate to:

07-CUDA_Fortran/exercises/tasks/jacobi-std

Look at Instructions.ipynb for instructions
Call source setup.sh to load the modules of this task into your environment
Compare the results with the explicit and CUF kernel versions

Member of the Helmholtz Association June 22, 2023 Slide 44

CONCLUSION

CUDA Fortran is a mature and powerful programming model for accelerating Fortran codes.
The language semantics is close to standard Fortran, making it easy to use for Fortran
developers.
Development tools and libraries in Nvidia HPC SDK make the porting process more
straightforward.
The compiler can write efficient accelerated routines using CUF kernels.
ISO standard Fortran can be executed efficiently on GPU using nvfortran compiler.

Member of the Helmholtz Association June 22, 2023 Slide 45

RESOURCES

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
CUDA Fortran Porting Guide
CUDA Fortran Programming Guide and Reference
Examples:
NVHPC-INSTALLDIR/arch/version/examples

Thank you for your attention!

Member of the Helmholtz Association June 22, 2023 Slide 46

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

RESOURCES

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
CUDA Fortran Porting Guide
CUDA Fortran Programming Guide and Reference
Examples:
NVHPC-INSTALLDIR/arch/version/examples

Thank you for your attention!

Member of the Helmholtz Association June 22, 2023 Slide 46

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

	Introduction
	CUDA Fortran basics
	Kernel loop directives (CUF kernels)
	Useful libraries
	Drop-in Fortran array intrinsics acceleration with CuTENSOR
	CUDA Fortran Limitations
	ISO standard Fortran + GPUs

