
1

OpenACC Performance
Optimization Workflow
Markus Hrywniak, Senior DevTech Compute | JSC OpenACC course, October 2023

2

Before We Start
Content and expectations

• Workflow focus
• Data-driven via tools
• Memory coalescing
• Loop optimizations

• Goal: Understand how tools (compiler output/profiler) can help

• Performance optimization – Now vs. Then
• GPUs are a lot faster than even 2, 3 years ago
• Not just FLOPs, also larger caches, ...
• Programmability even more improved

• Example application: Realism vs. Learning

• Performance optimization is very seldomly a straightfoward process
• Tinker and experiment – this is what makes it fun!

3

General notes

• Important flags for NVHPC Compiler

• Building with lightweight debug information:
• -gpu=lineinfo -gopt

• Check compiler output: -Minfo=accel

22.10.233

4

NVHPC Runtime Measurements

• For quick sanity checks

• Applications compiled with NVHPC compiler: Analyze via environment variables

• Maybe simplest/quickest check

• Set NV_ACC_TIME=1 for lightweight profiler on time of data movements and kernels
• NV_ACC_NOTIFY=1 gives a detailed breakdown of kernel launches and data transfers (bit field)

• More details at https://docs.nvidia.com/hpc-sdk/compilers/openacc-gs/index.html#env-vars

22.10.234

https://docs.nvidia.com/hpc-sdk/compilers/openacc-gs/index.html

5

NVHPC Runtime Measurements

$ NV_ACC_TIME=1 srun -n1 ./spmv
Runtime 0.007972 s.

Accelerator Kernel Timing data
/p/home/jusers/hrywniak1/jusuf/openacc-4/C/task0/spmv.c
main NVIDIA devicenum=0
time(us): 307,478
37: data region reached 2 times

37: data copyin transfers: 168
device time(us): total=222,883 max=1,527 min=143 avg=1,326

57: data copyout transfers: 4
device time(us): total=5,145 max=1,312 min=1,277 avg=1,286

41: compute region reached 10 times
41: kernel launched 10 times

grid: [63443] block: [128]
device time(us): total=79,450 max=7,948 min=7,940 avg=7,945
elapsed time(us): total=79,667 max=8,011 min=7,957 avg=7,966

22.10.235

6

Nsight Profiler Suite
Nsight Systems and Nsight Compute

• Comes with HPC SDK, also standalone

• Profiles application, including CUDA Kernels and API calls

• Supports OpenACC

• Systems for whole application, Compute for kernel tuning

• Generates performance reports, timelines; measures events and metrics

• https://developer.nvidia.com/tools-overview

22.10.236

https://developer.nvidia.com/tools-overview

7

Nsight Systems on the Command Line

$ srun -n1 nsys profile -t cuda,openacc \
-f true -o spmv --stats=true ./spmv

• Always records a report (*.nsys-rep)

• Reports customizable

• Forgot --stats?
nsys stats can post-process any report

22.10.237

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ---------- -------- -------- --------------------

60.4 82200447 12 6850037.3 1272194 7950555 cuStreamSynchronize
25.3 34383053 172 199901.5 1560 6964642 cuEventSynchronize
10.0 13578282 1 13578282.0 13578282 13578282 cuMemHostAlloc
2.7 3721103 6 620183.8 143751 1490944 cuMemAlloc_v2
0.7 954802 168 5683.3 4600 27610 cuMemcpyHtoDAsync_v2
0.4 533741 1 533741.0 533741 533741 cuMemAllocHost_v2
0.3 364570 174 2095.2 1820 4311 cuEventRecord
0.1 119510 1 119510.0 119510 119510 cuModuleLoadDataEx
0.1 114440 10 11444.0 8460 32760 cuLaunchKernel
0.0 28350 4 7087.5 4810 11910 cuMemcpyDtoHAsync_v2
0.0 16230 1 16230.0 16230 16230 cuStreamCreate
0.0 5380 4 1345.0 450 2530 cuEventCreate

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- --------- ------- ------- -----------

100.0 79415454 10 7941545.4 7932394 7948329 main_41_gpu

CUDA Memory Operation Statistics (by time):

Time(%) Total Time (ns) Operations Average Minimum Maximum Operation
------- --------------- ---------- --------- ------- ------- ------------------

97.8 220817077 168 1314387.4 138847 1522486 [CUDA memcpy HtoD]
2.2 4926174 4 1231543.5 1111096 1271928 [CUDA memcpy DtoH]

CUDA Memory Operation Statistics (by size in KiB):

Total Operations Average Minimum Maximum Operation
----------- ---------- --------- --------- --------- ------------------

63442.195 4 15860.549 14290.383 16383.938 [CUDA memcpy DtoH]
2719562.816 168 16187.874 1684.441 16384.000 [CUDA memcpy HtoD]

8

Nsight Systems GUI

• Graphical, interactive profiler

• Comes with HPC SDK, also standalone

• High-level, whole-program visualization for quick insight

• Timeline traces for OpenACC, OpenMP, CUDA, MPI, etc.

• https://docs.nvidia.com/nsight-systems/UserGuide/index.html

22.10.238

https://docs.nvidia.com/nsight-systems/UserGuide/index.html

9

Nsight Systems GUI
Timeline, Traces and Events View

22.10.239

10

Implementing a Convolution

• Weighted summation over local neighborhood ("stencil")
• Input A, output B (inner grey block)
• 𝑥 = 0…𝑁! − 1, 𝑦 = 0…𝑁" − 1
• stencil coefficients 𝜔 for local neighborhood around x and y

• Halo area at borders

𝐵 𝑥, 𝑦 =&
!"

&
!#

𝜔 𝑠𝑥, 𝑠𝑦 𝐴(𝑥 + 𝑠𝑥, 𝑦 + 𝑠𝑦)

• Jacobi "generalized" – could also be written that way

• "Filter kernel", "stencil", name depends on context
• size of the stencil etc.

• Image filter applications
• border detection, gaussian softening

Y

X

(0,0)

B

A

11

Implementing a Convolution

• Stencil width: Go SW pixels into all directions
• sum up contributions
• repeat for all pixels

• Total points 2 𝑠𝑤 + 1 $

• Example on the right: sw = 2, red square at (x=2, y=2)
• Note: zero-based indexing below

for (int x = sw; x < N - sw; ++x) {
for (int y = sw; y < N - sw; ++y) {

B[x][y] = 0;
for (int sx = -sw; sx <= sw; ++sx) {
for (int sy = -sw; sy <= sw; ++sy) {
const float val =

stencil[sw + sx][sw + sy]
* A[x + sx][y + sy];

B[x][y] += val;
}

}
}

}

SW

Y

X

(2,2)

B

A

12

Implementing a Convolution

• Configurable stencil width

• Explicit looping, no unrolling, for simplicity

for (int x = sw; x < N - sw; ++x) {
for (int y = sw; y < N - sw; ++y) {

B[x][y] = 0;
for (int sx = -sw; sx <= sw; ++sx) {
for (int sy = -sw; sy <= sw; ++sy) {
const float val =

stencil[sw + sx][sw + sy]
* A[x + sx][y + sy];

B[x][y] += val;
}

}
}

}

SW

Y

X

13

Parallelizing on CPU
Via –acc=multicore

• Always: Checking correctness
• Easy to go fast by computing nonsense

• Recall: NV_ACC_TIME for simple measurements

• Code example uses manual timing: Repetitions for averaging

• Exercise in each task folder
• Original task file: .taskN.conv.c
• Solution file: .solutionN.conv.c

14

Task 0
Get familiar with the code and establish a baseline

1. Directory: task0/

2. There are several variants you can build. Try "make all"
1. Launching any of the built executable variants will print a help
2. NOTE: We will use SW=3 for all tasks – the Makefile targets do this automatically

3. Generate reference data. Use "make create_ref"
1. This will run the serial version and output the expected data in a .bin file, as we have not yet verified any of the parallel

versions
2. Note the command line, you can run this yourself with any version

$ make create_ref
srun […] ./conv_serial 3 yes
Recreating reference data...
Using stencil width = 3
Runtime 1194.230588 ms

4. Inspect the Makefile, the source conv.c and look for the TODO
1. Use the correct #pragma to parallelize the outer loop
2. Compare runtimes of all versions. You can use "make run_all". Write down the runtimes.

15

Task 0 - Results

• Reference results: Simplest way is to dump data and compare (or run known-good implementation afterwards)
• Only serial known-good for task 0 – for other tasks, we can copy/link .bin file or use existing GPU version

• Roughly, you should see
• Serial, Multicore, GPU
• 1200 ms vs 165 ms vs 56 ms

• Now, to make it faster, look for first clues

• Compiler output

• Profilers: Nsight Systems should usually be your first step!

16

Task 0 – Compiler output

run_convolution_kernel_and_time:

49, Generating copyout(B[:4096][:]) [if not already present]

Generating copyin(stencil[:stencil_dim][:stencil_dim],A[:4096][:]) [if not already present]

51, Generating NVIDIA GPU code

56, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

57, #pragma acc loop seq

59, #pragma acc loop seq

60, #pragma acc loop seq

57, Complex loop carried dependence of B->,A->,stencil prevents parallelization

59, Complex loop carried dependence of stencil prevents parallelization

Loop carried dependence of B-> prevents parallelization

Loop carried backward dependence of B-> prevents vectorization

Complex loop carried dependence of B->,A-> prevents parallelization

60, Complex loop carried dependence of stencil,B->,A-> prevents parallelization

Loop carried dependence of B-> prevents parallelization

Loop carried backward dependence of B-> prevents vectorization

Via –Minfo=accel

17

Locating kernels - Nsight Systems timeline
...and how to get to Nsight Compute for kernels

• Record timeline
• nsys profile -t cuda,openacc -o task1_initial ./conv_gpu 3

• Locate kernel and get command line
• ncu --kernel-name run_convolution_kernel_and_time_51_gpu --launch-skip 2 --launch-count 1
"./conv_gpu" 3

18

Using Nsight Compute

• Very powerful and configurable tool

• Command line mode: Useful for quick experiments

• Export into report file, "-o output_filename"
• Transfer report to local machine, inspect metrics, charts, etc.

• Other recommended options:
• "--set full" – ensures you record all metrics (collections takes longer)
• "--import-source on" – ensures the report embeds source file in current optimization state

• Ensure you only record what you need, use the "skip" and "count" options, short -s and -c

19

Task 1

1. Directory task1/

2. Run the GPU version: Just type "make" (and look at the executed command line)

3. Identify potential issues
1. Check profiler output, "make ncu"
2. Also try "make NV_ACC_TIME=1" (or NOTIFY)
3. Closely look at compiler output.

4. Look for TODO and implement collapse clause

5. Note down new time, and also record a profile via "make profile" (you will need it later)

20

Task 1 - Results

• NCU output:
Section: Launch Statistics

-- --------------- ------------------------------
Block Size 128
Function Cache Configuration cudaFuncCachePreferNone
Grid Size 32
Registers Per Thread register/thread 38
Shared Memory Configuration Size Kbyte 32.77
Driver Shared Memory Per Block Kbyte/block 1.02
Dynamic Shared Memory Per Block byte/block 0
Static Shared Memory Per Block byte/block 0
Threads thread 4096
Waves Per SM 0.02
-- --------------- ------------------------------
WRN The grid for this launch is configured to execute only 32 blocks, which is less than the GPU's 108

multiprocessors.

21

Task 1 - Results

• NV_ACC_TIME command line output:
$ make NV_ACC_TIME=1
./conv_gpu 3
[...]

51: compute region reached 15 times
51: kernel launched 15 times

grid: [32] block: [128]
elapsed time(us): total=842,551 max=74,560 min=50,411 avg=56,170

• Before/after: 56 ms vs. 2.4 ms!

• Relevant profiler output

51, Generating NVIDIA GPU code

56, #pragma acc loop gang, vector(128) collapse(2) /* blockIdx.x threadIdx.x */

57, /* blockIdx.x threadIdx.x collapsed */

59, #pragma acc loop seq

60, #pragma acc loop seq

22

CUDA Warps

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of
a groups of warps

A warp is executed
physically in parallel
(SIMT) on a
multiprocessor

Currently all NVIDIA GPUs
use a warp size of 32

=

23

CUDA Execution Model
Software Hardware

Threads are executed by scalar processors

Thread

Scalar
Processor

Thread
Block Multiprocessor

Thread blocks are executed on multiprocessors (SMs)

Thread blocks do not migrate

Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor resources
(shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Blocks and grids can be multi dimensional (x,y,z)

24

Using the Nsight Compute GUI

• Baseline feature – compare results

• Data-driven,

• SoL throughput: Tables

• Consider warnings/hints from rules

Profile from task 1

25

What is a loop-carried dependence?

• Compiler output:

59, Complex loop carried dependence of stencil prevents parallelization

Loop carried dependence of B-> prevents parallelization

Loop carried backward dependence of B-> prevents vectorization

Complex loop carried dependence of B->,A-> prevents parallelization

60, Complex loop carried dependence of stencil,B->,A-> prevents parallelization

Loop carried dependence of B-> prevents parallelization

Loop carried backward dependence of B-> prevents vectorization

• Code this refers to
59: for (int sx = -sw; sx <= sw; ++sx) {
60: for (int sy = -sw; sy <= sw; ++sy) {
61: const float val =
62: stencil[sw + sx][sw + sy]
63: * A[x + sx][y + sy];
64: B[x][y] += val;
65: }

}

26

Task 2: Remove the dependence

1. Directory task2/

2. Check compiler output: loop carried dependence

3. Look for TODOs and break the dependency

4. What is the new runtime? Can you see why?

5. Record a profile via "make profile"
1. Try to compare it with the profile from task 1

27

Task 2 - Results

• Code should've gotten much slower again, about 180 ms

• The compiler was able to parallelize the inner loop

51, Generating NVIDIA GPU code

56, #pragma acc loop gang collapse(2) /* blockIdx.x */

57, /* blockIdx.x collapsed */

59, #pragma acc loop seq

60, #pragma acc loop vector(128) /* threadIdx.x */

Generating implicit reduction(+:B_tmp)

59, Loop is parallelizable

60, Loop is parallelizable

• But why is this slower?
• Memory access patterns
• Extra reduction

28

Memory Coalescing

• Coalesced access:
• A group of 32 contiguous threads („warp“) accessing adjacent elements
• Few transactions and high utilization

• Uncoalesced access:
• A warp of 32 threads accessing scattered elements
• Many transactions and low utilization

• For best performance threadIdx.x should access contiguously

22.10.2328

0 1 31

Coalesced

0 1 31

Uncoalesced

29

OpenACC: 3 Levels of Parallelism

• Vector threads work in lockstep (SIMD/SIMT
parallelism)

• Workers have 1 or more vectors

• Gangs have 1 or more workers and share resources
(such as a cache, the SM, etc.)

• Multiple gangs work independently of each other

22.10.2329

Workers

Gang

Vector

Workers

Gang

Vector

30

Mapping OpenACC to CUDA

• The compiler is free to do what it wants

• In general
• gang: mapped to blocks (COARSE GRAIN)
• worker: mapped to threads (FINE GRAIN)
• vector: mapped to threads (FINE SIMD/SIMT)

• Exact mapping is compiler dependent

• Performance Tips
• Use a vector size that is divisible by 32
• Block size is num_workers * vector_length

22.10.2330

31

OpenACC gang, worker, vector clauses

• Gang, worker, vector can be added to a loop clause

• Control the size using the following clauses on the parallel region
• Parallel: num_gangs(n), num_workers(n), vector_length(n)
• Kernels: gang(n), worker(n), vector(n)
• Note: We have not used "worker" parallelism in our example

22.10.2331

#pragma acc parallel loop gang worker
for (int x = sw; x < N - sw; ++x) {
…

#pragma acc loop vector

for (int sx = -sw; sx <= sw; ++sx) {

gang, worker, vector appear once per parallel region

32

Nsight Compute profile
A closer look at Task 2

33

Task 3: Understand slowdown and test fixes

1. Directory task3/

2. Use compiler output, and Nsight Compute, try to undestand memory access patterns
1. Look for memory traffic, worse cache hit rates, uncoalesced access %,

1. also mem tables: global load vs. store – less stores (reduction), but a lot more loads

3. See TODOs to implement one variant (optionally: draw yourself a diagram on paper!)
1. Outer stencil as vector loop
2. Add vector_length(32)

4. Record a profile and compare again

34

Task 3 - Results

• Outer stencil as vector loop: 47 ms
• Add vector_length(32): 17.3 ms
• Still: Have not recovered original performance

• Why does length help?
• Only 49 points, i.e. (3+1+3)^2

SW

Y

X

35

Task 4: Recover and improve performance

1. Directory task4/ (and solution/)

2. Follow the single TODO and measure the runtime

3. Record a profile (again "make profile")

4. Can you find clues on the optimality of the solution?
1. Hint: look at the roofline diagram

5. Can you improve it further?

36

Task 4 - Results

• Runtime about 1.5 ms

• Memory is now (again) more cache-friendly
• 56, #pragma acc loop gang, vector(128) collapse(2) /*

blockIdx.x threadIdx.x */
56: for (int x = sw; x < N - sw; ++x) {
57: for (int y = sw; y < N - sw; ++y) {

• Accesses to input data:

A[x + sx][y + sy];

• Outer loop over rows, inner loop over columns

• Temporal and spatial locality: Each thread loops over its
stencil area

• Neighboring threads from surrounding blocks share cached
data

SW

Y

X

A

B

37

Roofline model

• Powerful tool to judge how well hardware is utilized

• FLOPs vs. AI – "how often is each transferred byte used"

• Compute bound, but below roof
• Inefficiencies in memory accesses

38

Summarizing the Steps

Task Action taken Time [ms]
Serial version, starting point None 1200

Task 0 Add "parallel loop" 165 (multicore)
56 (GPU)

Task 1 Collapse outer loops, expose
parallelism

2.4

Task 2 Break loop-carried dependency
with B_tmp, causes compiler to
apply "vector" to innermost
loop, add reduction

180 (slowdown)

Task 3a Move "vector" to second-
outermost loop

46

Task 3b Use shorter vector_length(32) 17.3

Task 4 Outermost collapsed loop as
"gang vector“ on top of B_tmp

1.5

39

Further tinkering

• Compare stencil size: How does runtime scale with it?
• small size sw=2, latency effects

• Experiment with different stencil sizes (2, 3, 5)
• don't forget reference data

• You can adapt the stencil to actually perform image filtering operations
• Simple image loading libraries available
• Note: We did not normalize stencil coefficients – don't forget to do so

40

Conclusion

• The Nsight Profilers can be used to identify performance bottlenecks in applications and OpenACC Kernels
• But most importantly, combine with knowledge of code
• Closely look at compiler output

• Coalescing memory accesses is important for performance
• Ordering of loop clauses can have large impact

• Iterative methods and workflow – look for clues, experiment, compare!

22.10.2340

41

