001 | 1019180 | ||
005 | 20250822121514.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2023-05226 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-05226 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Herten, Andreas |0 P:(DE-Juel1)145478 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a JSC - as part of the Training Programme of Forschungszentrum Jülich |c online |d 2023-09-04 - 2023-09-04 |w Germany |
245 | _ | _ | |a Data Analysis and Plotting in Python with Pandas |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a lecture |2 DRIVER |
336 | 7 | _ | |a Generic |0 31 |2 EndNote |
336 | 7 | _ | |a MISC |2 BibTeX |
336 | 7 | _ | |a Lecture |b lecture |m lecture |0 PUB:(DE-HGF)17 |s 1702968929_18144 |2 PUB:(DE-HGF) |x Other |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Text |2 DataCite |
500 | _ | _ | |a Material can also be found at https://herten1.pages.jsc.fz-juelich.de/jsc-pandas-introduction/ |
520 | _ | _ | |a Pandas solves the full stack of data analysis in Python; reading-in of data, mangling and manipulation, analysis, and visualisation (and much more, actually). It builds up on established Python packages and can be used interchangeably with them (like Numpy, matplotlib); it fits perfectly into the Jupyter Notebooks workflow of modern-day data analysis. This course introduces Pandas with simple examples in hands-on exercises, highlighting the capabilities of the software package on the way with increasing complexity. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) |0 G:(DE-Juel-1)ATML-X-DEV |c ATML-X-DEV |x 1 |
856 | 4 | _ | |u https://indico3-jsc.fz-juelich.de/event/108/ |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1019180/files/Introduction-to-Pandas--slides.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1019180/files/Introduction-to-Pandas--slides.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1019180/files/Introduction-to-Pandas--slides.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1019180/files/Introduction-to-Pandas--slides.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1019180/files/Introduction-to-Pandas--slides.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1019180 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145478 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a lecture |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|