001     10192
005     20200402205843.0
024 7 _ |2 DOI
|a 10.1134/S1063783410050343
024 7 _ |2 WOS
|a WOS:000277453000034
037 _ _ |a PreJuSER-10192
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Rogachev, A.V.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Structure of Organosilicon Dendrimers of Higher Generations
260 _ _ |a College Park, Md.
|b Inst.
|c 2010
300 _ _ |a 1045 - 1049
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physics of the Solid State
|x 1063-7834
|0 22462
|y 5
|v 52
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The structure of organosilicon dendrimers of the ninth generation with the four-functional core and butyl terminal groups has been studied by small-angle neutron scattering. It has been demonstrated that the dendrimers are monodisperse objects with an anisometric shape. The partial volume and the average scattering density have been determined using the contrast variation technique. It has been shown that the dendrimers under study are identical in overall sizes and scattering density distribution. It has been revealed that 20% of the overall volume of the dendrimer is accessible for the penetration of the solvent. The distribution of the scattering length density in the dendrimers has been simulated and reconstructed using the Monte Carlo method, and a change in the excluded volume for different contrasts has been revealed. The specific features of the spatial structure of organosilicon dendrimers of higher generations have been discussed.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kuklin, A.I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Cherny, A.Yu.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Ozerin, A.N.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Muzafarov, A.M.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Tatarinova, E.A.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Gordeliy, V. I.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB482
773 _ _ |a 10.1134/S1063783410050343
|g Vol. 52, p. 1045 - 1049
|p 1045 - 1049
|q 52<1045 - 1049
|0 PERI:(DE-600)1473624-x
|t Physics of the solid state
|v 52
|y 2010
|x 1063-7834
856 7 _ |u http://dx.doi.org/10.1134/S1063783410050343
909 C O |o oai:juser.fz-juelich.de:10192
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |a übergangsweise lautet die FE-Bezeichnung für das ISB-2 N 03
|y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISB-2
|l Molekulare Biophysik
|d 31.12.2010
|g ISB
|0 I:(DE-Juel1)ISB-2-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)120433
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21