001019297 001__ 1019297 001019297 005__ 20240201205521.0 001019297 0247_ $$2doi$$a10.1016/B978-0-323-91688-2.00001-1 001019297 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05273 001019297 037__ $$aFZJ-2023-05273 001019297 1001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b0$$ufzj 001019297 245__ $$a3 - Brain networks atlases 001019297 260__ $$aCambridge, Massachusetts$$bAcademic Press$$c2023 001019297 29510 $$aAdvances in Resting-State Functional MRI: Methods, Interpretation, and Applications 001019297 300__ $$a59-85 001019297 3367_ $$2ORCID$$aBOOK_CHAPTER 001019297 3367_ $$07$$2EndNote$$aBook Section 001019297 3367_ $$2DRIVER$$abookPart 001019297 3367_ $$2BibTeX$$aINBOOK 001019297 3367_ $$2DataCite$$aOutput Types/Book chapter 001019297 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1706788458_3610 001019297 520__ $$aThe human brain consists of multiple areas and networks with distinct functions. To better understand the functional organization of human brain, methods including independent component analysis and graph theory have been applied to resting-state fMRI (rs-fMRI) data to delineate functional networks and parcellate the brain. An important discovery that motivated the study of brain networks with rs-fMRI was the so-called default mode network, referring to a set of regions that tend to deactivate in response to a wide range of goal-directed task conditions, and which was also observed by decomposing rs-fMRI data. Following upon studies that extracted additional, core brain networks from rs-fMRI, several functional atlases were developed by partitioning the brain into different numbers of regions or networks. From these predefined brain atlases, rs-fMRI features can be extracted for a range of applications, such as to study functional organization across development and aging and for predicting behavior from functional connectivity in healthy populations. In clinical applications, brain atlases have been used to facilitate the prediction of disease symptoms and treatment outcomes, as well as to investigate dysfunctions in patients. Nevertheless, several challenges remain in building and applying brain atlases, in particular with regard to interindividual variability, a topic that will likely remain under investigation in the future. 001019297 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001019297 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1 001019297 588__ $$aDataset connected to CrossRef Book 001019297 7001_ $$0P:(DE-Juel1)164828$$aLi, Jingwei$$b1$$ufzj 001019297 773__ $$a10.1016/B978-0-323-91688-2.00001-1 001019297 8564_ $$uhttps://www.sciencedirect.com/science/article/abs/pii/B9780323916882000011?via%3Dihub 001019297 8564_ $$uhttps://juser.fz-juelich.de/record/1019297/files/AuthorPreprintOriginalSubmission2022.pdf$$yOpenAccess 001019297 8564_ $$uhttps://juser.fz-juelich.de/record/1019297/files/AuthorPreprintOriginalSubmission2022.gif?subformat=icon$$xicon$$yOpenAccess 001019297 8564_ $$uhttps://juser.fz-juelich.de/record/1019297/files/AuthorPreprintOriginalSubmission2022.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001019297 8564_ $$uhttps://juser.fz-juelich.de/record/1019297/files/AuthorPreprintOriginalSubmission2022.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001019297 8564_ $$uhttps://juser.fz-juelich.de/record/1019297/files/AuthorPreprintOriginalSubmission2022.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001019297 909CO $$ooai:juser.fz-juelich.de:1019297$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001019297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b0$$kFZJ 001019297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164828$$aForschungszentrum Jülich$$b1$$kFZJ 001019297 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001019297 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1 001019297 9141_ $$y2023 001019297 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001019297 920__ $$lyes 001019297 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001019297 980__ $$acontb 001019297 980__ $$aVDB 001019297 980__ $$aUNRESTRICTED 001019297 980__ $$aI:(DE-Juel1)INM-7-20090406 001019297 9801_ $$aFullTexts