001019310 001__ 1019310 001019310 005__ 20231219202011.0 001019310 037__ $$aFZJ-2023-05284 001019310 041__ $$aEnglish 001019310 1001_ $$0P:(DE-Juel1)185906$$aMontanez Huaman, Liz Margarita$$b0$$ufzj 001019310 1112_ $$aMLZ User Meeting$$cMünchen$$d2023-12-04 - 2023-12-05$$gMLZ User Meeting$$wGermany 001019310 245__ $$aRoom Temperature Skyrmions in Pt/Co/Ta multilayers 001019310 260__ $$c2023 001019310 3367_ $$033$$2EndNote$$aConference Paper 001019310 3367_ $$2DataCite$$aOther 001019310 3367_ $$2BibTeX$$aINPROCEEDINGS 001019310 3367_ $$2DRIVER$$aconferenceObject 001019310 3367_ $$2ORCID$$aLECTURE_SPEECH 001019310 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1702990953_15196$$xAfter Call 001019310 520__ $$aMagnetic skyrmions are topologically stabilized spin configurations on the nanoscale which makes them promising for next-generation information storage technologies and computing. [1,2] In magnetic multilay- ers, they can be stabilized at room temperature [3]. Skyrmions emerge due to an interplay between several magnetic contributions. Among them the interfacial Dzyaloshinskii-Moriya Interaction (DMI) drives the spins into non-collinear orientation, while the perpendicular magnetic anisotropy (PMA) favours the out-of-plane orientation and the shape anisotropy prefers in-plane spin orientation. Polycrystalline[Pt(40Å)/Co(x)/Ta(19Å)]N multilayerswerefabricatedinamolecularbeamepitaxysetupby thermal deposition on oxidized Si(001) substrates with a buffer layer of 47 Å Ta and a 30 Å Pt cap layer. The Co film thickness was varied between 5 Å and 21 Å, the number of repetitions varied between 8 and 10. Mag- netic force microscopy measurements reveal the existence of skyrmions at a Co thickness between 9 Å and 17 Å. We discuss results obtained from magnetic hysteresis, transport and neutron reflectometry measurements. The latter have been performed with the neutron reflectometer Platypus at ANSTO, Australia.References[1] A. Fert, V. Cros, and J. Sampaio, Nature Nanotech 8, (2013) 152.[2] K. Raab, M.A. Brems, G. Beneke, et al., Nat Commun 13, (2022) 6982.[3] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter et al., Nat. Mat. 15 (2016) 501 001019310 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0 001019310 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1 001019310 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 001019310 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0 001019310 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x1 001019310 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0 001019310 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b1$$ufzj 001019310 7001_ $$0P:(DE-HGF)0$$aCortie, David$$b2 001019310 7001_ $$0P:(DE-HGF)0$$aAhrens, Valentin$$b3 001019310 7001_ $$0P:(DE-HGF)0$$aGuasco, Laura$$b4 001019310 7001_ $$0P:(DE-HGF)0$$aKeller, Thomas$$b5 001019310 7001_ $$0P:(DE-HGF)0$$aSkoulatos, Markos$$b6 001019310 7001_ $$0P:(DE-HGF)0$$aBecherer, Markus$$b7 001019310 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b8$$eCorresponding author$$ufzj 001019310 909CO $$ooai:juser.fz-juelich.de:1019310$$pVDB:MLZ$$pVDB 001019310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185906$$aForschungszentrum Jülich$$b0$$kFZJ 001019310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b1$$kFZJ 001019310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b8$$kFZJ 001019310 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0 001019310 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1 001019310 9141_ $$y2023 001019310 920__ $$lyes 001019310 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0 001019310 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1 001019310 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2 001019310 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3 001019310 980__ $$aconf 001019310 980__ $$aVDB 001019310 980__ $$aI:(DE-Juel1)JCNS-4-20201012 001019310 980__ $$aI:(DE-Juel1)JCNS-2-20110106 001019310 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 001019310 980__ $$aI:(DE-588b)4597118-3 001019310 980__ $$aUNRESTRICTED