001 | 1019310 | ||
005 | 20231219202011.0 | ||
037 | _ | _ | |a FZJ-2023-05284 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Montanez Huaman, Liz Margarita |0 P:(DE-Juel1)185906 |b 0 |u fzj |
111 | 2 | _ | |a MLZ User Meeting |g MLZ User Meeting |c München |d 2023-12-04 - 2023-12-05 |w Germany |
245 | _ | _ | |a Room Temperature Skyrmions in Pt/Co/Ta multilayers |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1702990953_15196 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Magnetic skyrmions are topologically stabilized spin configurations on the nanoscale which makes them promising for next-generation information storage technologies and computing. [1,2] In magnetic multilay- ers, they can be stabilized at room temperature [3]. Skyrmions emerge due to an interplay between several magnetic contributions. Among them the interfacial Dzyaloshinskii-Moriya Interaction (DMI) drives the spins into non-collinear orientation, while the perpendicular magnetic anisotropy (PMA) favours the out-of-plane orientation and the shape anisotropy prefers in-plane spin orientation. Polycrystalline[Pt(40Å)/Co(x)/Ta(19Å)]N multilayerswerefabricatedinamolecularbeamepitaxysetupby thermal deposition on oxidized Si(001) substrates with a buffer layer of 47 Å Ta and a 30 Å Pt cap layer. The Co film thickness was varied between 5 Å and 21 Å, the number of repetitions varied between 8 and 10. Mag- netic force microscopy measurements reveal the existence of skyrmions at a Co thickness between 9 Å and 17 Å. We discuss results obtained from magnetic hysteresis, transport and neutron reflectometry measurements. The latter have been performed with the neutron reflectometer Platypus at ANSTO, Australia.References[1] A. Fert, V. Cros, and J. Sampaio, Nature Nanotech 8, (2013) 152.[2] K. Raab, M.A. Brems, G. Beneke, et al., Nat Commun 13, (2022) 6982.[3] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter et al., Nat. Mat. 15 (2016) 501 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 1 |
693 | _ | _ | |0 EXP:(DE-MLZ)MBE-MLZ-20151210 |5 EXP:(DE-MLZ)MBE-MLZ-20151210 |e MBE-MLZ: Molecular Beam Epitaxy at MLZ |x 0 |
700 | 1 | _ | |a Kentzinger, Emmanuel |0 P:(DE-Juel1)130754 |b 1 |u fzj |
700 | 1 | _ | |a Cortie, David |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Ahrens, Valentin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Guasco, Laura |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Keller, Thomas |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Skoulatos, Markos |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Becherer, Markus |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Pütter, Sabine |0 P:(DE-Juel1)142052 |b 8 |e Corresponding author |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1019310 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185906 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130754 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)142052 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2023 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 2 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 3 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|