Home > Publications database > ROOM TEMPERATURE INVESTIGATION OF SKYRMION- HOSTING PT/CO/TA MULTILAYERS |
Conference Presentation (After Call) | FZJ-2023-05285 |
; ; ;
2023
Abstract: Multilayers composed of heavy metals and ferromagnetic materials with strong perpendicular anisotropy are potential candidates for magnetic memory applications [1,2]. In particular, magnetic skyrmions may enable ultra-dense storage devices due to the extremely low spin currents needed to move/manipulated them [2]. Skyrmions emerge from the competition between the Dzyaloshinskii–Moriya interaction and exchange interactions generated at the interface of thin ferromagnetic layers and heavy metals with large spin-orbit coupling [3]. Pt/Co-based multilayers generally exhibit worm domains, which can nucleate into skyrmions through breaking/nucleation processes [4]. Recent studies have demonstrated the nucleation of skyrmions by varying external magnetic field, temperature, and current in sputtered Pt/Co/Ta multilayers [4,5].In this work, [Pt/Co/Ta]x multilayers with perpendicular magnetic anisotropy were grown by molecular beam epitaxy. We have demonstrated the feasibility of manipulating magnetic domains in our multilayers by changing the number of repetitions x and the Co layer thickness between 5 Å to 21 Å. Using magnetic force microscopy (MFM), we observed worm domains or stripe domains. These domains can be broken into skyrmions, by applying an out- of-plane field or into stripe domains by applying in-plane fields. We achieved partially ordered skyrmions at a low external field of ~38 mT for the multilayer with a cobalt thickness of 17 Å (see Figure 1). Furthermore, isolated skyrmions in this multilayer remain even after the external magnetic field has been removed.References[1] A. Fert and V. Sampai (2013) Nat. Nanotechnol. 8, 152–156[2] C Wang C, Seinige H. and Tsoi M. (2013), J. Phys. D: Appl. Phys. 46, 285001[3] Xichao Zhang X., Zhou Y., Song K.M., Park T.E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G. and Woo S. (2020), J. Phys. Condens. Matter 32, 143001[4] Ma M., Ang C., Li Y., Pan Z., Gan W., Lew W.S. and Ma F. (2020), J. Appl. Phys. 127, 223901[5] Brandao J., Dugato D.A., Puydinger dos Santos M.V., Berón F. and Cesar J.C. (2022), Appl. Surf. Sci. 585, 152598
Keyword(s): Magnetic Materials (1st) ; Information and Communication (1st) ; Magnetism (2nd)
![]() |
The record appears in these collections: |