001019312 001__ 1019312
001019312 005__ 20250129221930.0
001019312 0247_ $$2doi$$a10.2967/jnumed.123.265931
001019312 0247_ $$2ISSN$$a0097-9058
001019312 0247_ $$2ISSN$$a0022-3123
001019312 0247_ $$2ISSN$$a0161-5505
001019312 0247_ $$2ISSN$$a1535-5667
001019312 0247_ $$2ISSN$$a2159-662X
001019312 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05286
001019312 0247_ $$2pmid$$a38050112
001019312 0247_ $$2WOS$$aWOS:001179150300007
001019312 037__ $$aFZJ-2023-05286
001019312 082__ $$a610
001019312 1001_ $$0P:(DE-HGF)0$$aDoering, Elena$$b0$$eCorresponding author
001019312 245__ $$aMRI or 18 F-FDG PET for Brain Age Gap Estimation: Links to Cognition, Pathology, and Alzheimer Disease Progression
001019312 260__ $$aNew York, NY$$bSoc.$$c2023
001019312 3367_ $$2DRIVER$$aarticle
001019312 3367_ $$2DataCite$$aOutput Types/Journal article
001019312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738136549_6365
001019312 3367_ $$2BibTeX$$aARTICLE
001019312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019312 3367_ $$00$$2EndNote$$aJournal Article
001019312 520__ $$aDeviations of brain age from chronologic age, known as the brain age gap (BAG), have been linked to neurodegenerative diseases such as Alzheimer disease (AD). Here, we compare the associations of MRI-derived (atrophy) or 18F-FDG PET–derived (brain metabolism) BAG with cognitive performance, neuropathologic burden, and disease progression in cognitively normal individuals (CNs) and individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). Methods: Machine learning pipelines were trained to estimate brain age from 185 matched T1-weighted MRI or 18F-FDG PET scans of CN from the Alzheimer’s Disease Neuroimaging Initiative and validated in external test sets from the Open Access of Imaging and German Center for Neurodegenerative Diseases–Longitudinal Cognitive Impairment and Dementia studies. BAG was correlated with measures of cognitive performance and AD neuropathology in CNs, SCD subjects, and MCI subjects. Finally, BAG was compared between cognitively stable and declining individuals and subsequently used to predict disease progression. Results: MRI (mean absolute error, 2.49 y) and 18F-FDG PET (mean absolute error, 2.60 y) both estimated chronologic age well. At the SCD stage, MRI-based BAG correlated significantly with beta-amyloid1-42 (Aβ1-42) in cerebrospinal fluid, whereas 18F-FDG PET BAG correlated with memory performance. At the MCI stage, both BAGs were associated with memory and executive function performance and cerebrospinal fluid Aβ1-42, but only MRI-derived BAG correlated with phosphorylated-tau181/Aβ1-42. Lastly, MRI-estimated BAG predicted MCI-to-AD progression better than 18F-FDG PET–estimated BAG (areas under the curve, 0.73 and 0.60, respectively). Conclusion: Age was reliably estimated from MRI or 18F-FDG PET. MRI BAG reflected cognitive and pathologic markers of AD in SCD and MCI, whereas 18F-FDG PET BAG was sensitive mainly to early cognitive impairment, possibly constituting an independent biomarker of brain age-related changes.
001019312 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001019312 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001019312 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001019312 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x3
001019312 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019312 7001_ $$0P:(DE-Juel1)180946$$aAntonopoulos, Georgios$$b1
001019312 7001_ $$0P:(DE-Juel1)178642$$aHönig, Merle$$b2
001019312 7001_ $$0P:(DE-HGF)0$$avan Eimeren, Thilo$$b3
001019312 7001_ $$0P:(DE-HGF)0$$aDaamen, Marcel$$b4
001019312 7001_ $$0P:(DE-HGF)0$$aBoecker, Henning$$b5
001019312 7001_ $$0P:(DE-HGF)0$$aJessen, Frank$$b6
001019312 7001_ $$0P:(DE-HGF)0$$aDüzel, Emrah$$b7
001019312 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b8
001019312 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b9
001019312 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b10
001019312 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.123.265931$$gp. jnumed.123.265931 -$$n12$$p $$tJournal of nuclear medicine$$v64$$x0097-9058$$y2023
001019312 8564_ $$uhttps://juser.fz-juelich.de/record/1019312/files/jnumed.123.265931.full.pdf$$yOpenAccess
001019312 8564_ $$uhttps://juser.fz-juelich.de/record/1019312/files/jnumed.123.265931.full.gif?subformat=icon$$xicon$$yOpenAccess
001019312 8564_ $$uhttps://juser.fz-juelich.de/record/1019312/files/jnumed.123.265931.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019312 8564_ $$uhttps://juser.fz-juelich.de/record/1019312/files/jnumed.123.265931.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019312 8564_ $$uhttps://juser.fz-juelich.de/record/1019312/files/jnumed.123.265931.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019312 909CO $$ooai:juser.fz-juelich.de:1019312$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180946$$aForschungszentrum Jülich$$b1$$kFZJ
001019312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178642$$aForschungszentrum Jülich$$b2$$kFZJ
001019312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
001019312 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b8
001019312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b9$$kFZJ
001019312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b10$$kFZJ
001019312 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001019312 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001019312 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001019312 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x3
001019312 9141_ $$y2023
001019312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
001019312 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2022$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019312 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2022$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
001019312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001019312 920__ $$lyes
001019312 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001019312 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001019312 980__ $$ajournal
001019312 980__ $$aVDB
001019312 980__ $$aI:(DE-Juel1)INM-7-20090406
001019312 980__ $$aI:(DE-Juel1)INM-2-20090406
001019312 980__ $$aUNRESTRICTED
001019312 9801_ $$aFullTexts