001     1019323
005     20250204113741.0
024 7 _ |a 10.1002/aenm.202303568
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05297
|2 datacite_doi
024 7 _ |a WOS:001122818800001
|2 WOS
037 _ _ |a FZJ-2023-05297
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Weiling, Matthias
|0 P:(DE-Juel1)190810
|b 0
245 _ _ |a Mechanistic Understanding of Additive Reductive Degradation and SEI Formation in High‐Voltage NMC811||SiO x ‐Containing Cells via Operando ATR‐FTIR Spectroscopy
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706859939_29240
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The implementation of silicon (Si)-containing negative electrodes is widely discussed as an approach to increase the specific capacity of lithium-ion batteries. However, challenges caused by severe volume changes and continuous (re-)formation of the solid-electrolyte interphase (SEI) on Si need to be overcome. The volume changes lead to electrolyte consumption and active lithium loss, decaying the cell performance and cycle life. Herein, the additive 2 sulfobenzoic acid anhydride (2 SBA) is utilized as an SEI-forming electrolyte additive for SiOx-containing anodes. The addition of 2 SBA to a state-of-the-art carbonate-based electrolyte in high-voltage NMC811||AG+20% SiOx pouch cells leads to improved electrochemical performance, resulting in a doubled cell cycle life. The origin of the enhanced cell performance is mechanistically investigated by developing an advanced experimental technique based on operando attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. The operando ATR-FTIR spectroscopy results elucidate the degradation mechanism via anhydride ring-opening reactions after electrochemical reduction on the anode surface. Additionally, ion chromatography conductivity detection mass spectrometry, scanning electron microscopy, energy dispersive X-ray analysis, and quantum chemistry calculations are employed to further elucidate the working mechanisms of the additive and its degradation products.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a Elektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)
|0 G:(BMBF)13XP5129
|c 13XP5129
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lechtenfeld, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 2
700 1 _ |a Frankenstein, Lars
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 4
700 1 _ |a Wang, Jian-Fen
|0 P:(DE-Juel1)199048
|b 5
|u fzj
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Baghernejad, Masoud
|0 0000-0002-2754-6623
|b 7
|e Corresponding author
773 _ _ |a 10.1002/aenm.202303568
|g p. 2303568
|0 PERI:(DE-600)2594556-7
|n 5
|p 2303568
|t Advanced energy materials
|v 14
|y 2024
|x 1614-6832
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019323
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)199048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 0000-0002-2754-6623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21